Search Results

Search found 44141 results on 1766 pages for 'unix development support'.

Page 592/1766 | < Previous Page | 588 589 590 591 592 593 594 595 596 597 598 599  | Next Page >

  • Modern Shader Book?

    - by Michael Stum
    I'm interested in learning about Shaders: What are they, when/for what would I use them, and how to use them. (Specifically I'm interested in Water and Bloom effects, but I know close to 0 about Shaders, so I need a general introduction). I saw a lot of books that are a couple of years old, so I don't know if they still apply. I'm targeting XNA 4.0 at the moment (which I believe means HLSL Shaders for Shader Model 4.0), but anything that generally targets DirectX 11 and OpenGL 4 is helpful I guess.

    Read the article

  • Unity3D: How to make the camera focus a moving game object with ITween?

    - by nathan
    I'm trying to write a solar system with Unity3D. Planets are sphere game objects rotating around another sphere game object representing the star. What i want to achieve is let the user click on a planet and then zoom the camera on this planet and then make the camera follow and keep it centered on the screen while it keep moving around the star. I decided to use iTween library and so far i was able to create the zoom effect using iTween.MoveUpdate. My problem is that the focused planet does not say properly centered as it moves. Here is the relevant part of my script: void Update () { if (Input.GetButtonDown("Fire1")) { Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition); RaycastHit hit; if (Physics.Raycast(ray, out hit, Mathf.Infinity, concernedLayers)) { selectedPlanet = hit.collider.gameObject; } } } void LateUpdate() { if (selectedPlanet != null) { Vector3 pos = selectedPlanet.transform.position; pos.z = selectedPlanet.transform.position.z - selectedPlanet.transform.localScale.z; pos.y = selectedPlanet.transform.position.y; iTween.MoveUpdate(Camera.main.gameObject, pos, 2); } } What do i need to add to this script to make the selected planet stay centered on the screen? I hosted my current project as a webplayer application so you see what's going wrong. You can access it here.

    Read the article

  • Game editor integration with the engine?

    - by Daniel
    What I am trying to figure out is what is the best way to integrate the editor(level, effects, model, etc...) in the most effective way? Now the first thing I thought would be to create the game engine(*) extremely modular. For example I took the example of game states. You could have multiple game states that all have their own update() and draw() methods among others. Each game state class would inherit from a base GameState class. This allows for a more modular approach and a useful one at that. Now would the most efficient approach be to implement the editor along with the modular engine, or create two different designs for both the game, and editor? I thought to take the game state example and extend it to window states, and well could be used for a lot more systems. Is there a better implementation of this design(game state) for use in other systems used in the engine? *: Now I know the term game engine is sorta irrelevant, and misused in many situations. What I am referring to as the "game engine" is the combination of the systems that the game must interact with for short. Also this is more of a theory / design question than an implementation. Even though both mix, i'd rather like to have a more general idea on how the editor is built in an efficient way and still using the same engine code as what the game uses. Thanks, Daniel P.S If you need more clarification or extra bits just leave a comment.

    Read the article

  • Narrow-phase collision detection algorithms

    - by Marian Ivanov
    There are three phases of collision detection. Broadphase: It loops between all objecs that can interact, false positives are allowed, if it would speed up the loop. Narrowphase: Determines whether they collide, and sometimes, how, no false positives Resolution: Resolves the collision. The question I'm asking is about the narrowphase. There are multiple algorithms, differing in complexity and accuracy. Hitbox intersection: This is an a-posteriori algorithm, that has the lowest complexity, but also isn't too accurate, Color intersection: Hitbox intersection for each pixel, a-posteriori, pixel-perfect, not accuratee in regards to time, higher complexity Separating axis theorem: This is used more often, accurate for triangles, however, a-posteriori, as it can't find the edge, when taking last frame in account, it's more stable Linear raycasting: A-priori algorithm, useful for semi-realistic-looking physics, finds the intersection point, even more accurate than SAT, but with more complexity Spline interpolation: A-priori, even more accurate than linear rays, even more coplexity. There are probably many more that I've forgot about. The question is, in when is it better to use SAT, when rays, when splines, and whether there is anything better.

    Read the article

  • Simulating smooth movement along a line after calculating a collision containing a restitution of zero in 2D

    - by Casey
    [for tl;dr see after listing] //...Code to determine shapes types involved in collision here... //...Rectangle-Line collision detected. if(_rbTest->GetCollisionShape()->Intersects(*_ground->GetCollisionShape())) { //Convert incoming shape to a line. a2de::Line l(*dynamic_cast<a2de::Line*>(_ground->GetCollisionShape())); //Get line's normal. a2de::Vector2D normal_vector(l.GetSlope().GetY(), -l.GetSlope().GetX()); a2de::Vector2D::Normalize(normal_vector); //Accumulate forces involved. a2de::Vector2D intermediate_forces; a2de::Vector2D normal_force = normal_vector * _rbTest->GetMass() * _world->GetGravityHandler()->GetGravityValue(); intermediate_forces += normal_force; //Calculate final velocity: See [1] double Ma = _rbTest->GetMass(); a2de::Vector2D Ua = _rbTest->GetVelocity(); double Mb = _ground->GetMass(); a2de::Vector2D Ub = _ground->GetVelocity(); double mCr = Mb * _ground->GetRestitution(); a2de::Vector2D collision_velocity( ((Ma * Ua) + (Mb * Ub) + ((mCr * Ub) - (mCr * Ua))) / (Ma + Mb)); //Calculate reflection vector: See [2] a2de::Vector2D reflect_velocity( -collision_velocity + 2 * (a2de::Vector2D::DotProduct(collision_velocity, normal_vector)) * normal_vector ); //Affect velocity to account for restitution of colliding bodies. reflect_velocity *= (_ground->GetRestitution() * _rbTest->GetRestitution()); _rbTest->SetVelocity(reflect_velocity); //THE ULTIMATE ISSUE STEMS FROM THE FOLLOWING LINE: //Move object away from collision one pixel to prevent constant collision. _rbTest->SetPosition(_rbTest->GetPosition() + normal_vector); _rbTest->ApplyImpulse(intermediate_forces); } Sources: (1) Wikipedia: Coefficient of Restitution: Speeds after impact (2) Wikipedia: Specular Reflection: Direction of reflection First, I have a system in place to account for friction (that is, a coefficient of friction) but is not used right now (in addition, it is zero, which should not affect the math anyway). I'll deal with that after I get this working. Anyway, when the restitution of either object involved in the collision is zero the object stops as required, but if movement along the same direction (again, irrespective of the friction value that isn't used) as the line is attempted the object moves as if slogging through knee deep snow. If I remove the line of code in question and the object is not push away one pixel the object barely moves at all. All because the object collides, is stopped, is pushed up, collides, is stopped...etc. OR collides, is stopped, collides, is stopped, etc... TL;DR How do I only account for a collision ONCE for restitution purposes (BONUS: but CONTINUALLY for frictional purposes, to be implemented later)

    Read the article

  • Need ideas for an algorithm to draw irregular blotchy shapes

    - by Yttermayn
    I'm looking to draw irregular shapes on an x,y grid, and I'd like to come up with a simple, fast method if possible. My only idea so far is to draw a bunch of circles of random sizes very near each other, but at a random distance apart from a more or less central coordinate, then fill in any blank spaces. I realize this is a clunky, inelegant method, hopefully it will give you a rough idea of the kinds of rounded, random blotchy shapesI'm shooting for. Please suggest methods to accomplish this, I'm not so much interested in code. I can noodle that part out myself. Thanks!

    Read the article

  • XNA calculate normals for linesegment

    - by Gerhman
    I am quite new to 3D graphical programming and thus far only understand that normal somehow define the direction in which a vertex faces and therefore the direction in which light is reflected. I have now idea how they are calculated though, only that they are defined by a Vector3. For a visualizer that I am creating I am importing a bunch of coordinate which represent layer upon layer of line segments. At the moment I am only using a vertex buffer and adding the start and end point of each line and then rendering a linelist. The thing is now that I need to calculate the normal for the vertices of these line segments so that I can get some realistic lighting. I have no idea how to calculate these normal but I know they all face sideways and not up or down. To calculate them all I have are the start and end positions of each line segment. The below image is a representation of what I think I need to do in the case of an example layer: The red arrows represent the normal that should be calculates, the blue text represent the coordinates of the vertices and the green numbers represent their indices. I would greatly appreciate it if someone could please explain to me how I should calculate these normal.

    Read the article

  • How to implement smooth flocking

    - by Craig
    I'm working on a simple survival game, avoid the big guy and chase the the small guys to stay alive for as long as possible. I have taken the chase and evade example from MSDN create and drawn 20 mice on the screen. I want the small guys to flock when they arent evading. They are doing this, but it isnt as smooth as I would like it to be. How do i make the movement smoother? Its very jittery.# Below is what I have going at the moment, flocking code is within the IF statement, when it isnt set to evading. Any help would be greatly appreciated! :) namespace ChaseAndEvade { class MouseSprite { public enum MouseAiState { // evading the cat Evading, // the mouse can't see the "cat", and it's wandering around. Wander } // how fast can the mouse move? public float MaxMouseSpeed = 4.5f; // and how fast can it turn? public float MouseTurnSpeed = 0.20f; // MouseEvadeDistance controls the distance at which the mouse will flee from // cat. If the mouse is further than "MouseEvadeDistance" pixels away, he will // consider himself safe. public float MouseEvadeDistance = 100.0f; // this constant is similar to TankHysteresis. The value is larger than the // tank's hysteresis value because the mouse is faster than the tank: with a // higher velocity, small fluctuations are much more visible. public float MouseHysteresis = 60.0f; public Texture2D mouseTexture; public Vector2 mouseTextureCenter; public Vector2 mousePosition; public MouseAiState mouseState = MouseAiState.Wander; public float mouseOrientation; public Vector2 mouseWanderDirection; int separationImpact = 4; int cohesionImpact = 6; int alignmentImpact = 2; int sensorDistance = 50; public void UpdateMouse(Vector2 position, MouseSprite [] mice, int numberMice, int index) { Vector2 catPosition = position; int enemies = numberMice; // first, calculate how far away the mouse is from the cat, and use that // information to decide how to behave. If they are too close, the mouse // will switch to "active" mode - fleeing. if they are far apart, the mouse // will switch to "idle" mode, where it roams around the screen. // we use a hysteresis constant in the decision making process, as described // in the accompanying doc file. float distanceFromCat = Vector2.Distance(mousePosition, catPosition); // the cat is a safe distance away, so the mouse should idle: if (distanceFromCat > MouseEvadeDistance + MouseHysteresis) { mouseState = MouseAiState.Wander; } // the cat is too close; the mouse should run: else if (distanceFromCat < MouseEvadeDistance - MouseHysteresis) { mouseState = MouseAiState.Evading; } // if neither of those if blocks hit, we are in the "hysteresis" range, // and the mouse will continue doing whatever it is doing now. // the mouse will move at a different speed depending on what state it // is in. when idle it won't move at full speed, but when actively evading // it will move as fast as it can. this variable is used to track which // speed the mouse should be moving. float currentMouseSpeed; // the second step of the Update is to change the mouse's orientation based // on its current state. if (mouseState == MouseAiState.Evading) { // If the mouse is "active," it is trying to evade the cat. The evasion // behavior is accomplished by using the TurnToFace function to turn // towards a point on a straight line facing away from the cat. In other // words, if the cat is point A, and the mouse is point B, the "seek // point" is C. // C // B // A Vector2 seekPosition = 2 * mousePosition - catPosition; // Use the TurnToFace function, which we introduced in the AI Series 1: // Aiming sample, to turn the mouse towards the seekPosition. Now when // the mouse moves forward, it'll be trying to move in a straight line // away from the cat. mouseOrientation = ChaseAndEvadeGame.TurnToFace(mousePosition, seekPosition, mouseOrientation, MouseTurnSpeed); // set currentMouseSpeed to MaxMouseSpeed - the mouse should run as fast // as it can. currentMouseSpeed = MaxMouseSpeed; } else { // if the mouse isn't trying to evade the cat, it should just meander // around the screen. we'll use the Wander function, which the mouse and // tank share, to accomplish this. mouseWanderDirection and // mouseOrientation are passed by ref so that the wander function can // modify them. for more information on ref parameters, see // http://msdn2.microsoft.com/en-us/library/14akc2c7(VS.80).aspx ChaseAndEvadeGame.Wander(mousePosition, ref mouseWanderDirection, ref mouseOrientation, MouseTurnSpeed); // if the mouse is wandering, it should only move at 25% of its maximum // speed. currentMouseSpeed = .25f * MaxMouseSpeed; Vector2 separate = Vector2.Zero; Vector2 moveCloser = Vector2.Zero; Vector2 moveAligned = Vector2.Zero; // What the AI does when it sees other AIs for (int j = 0; j < enemies; j++) { if (index != j) { // Calculate a vector towards another AI Vector2 separation = mice[index].mousePosition - mice[j].mousePosition; // Only react if other AI is within a certain distance if ((separation.Length() < this.sensorDistance) & (separation.Length()> 0) ) { moveAligned += mice[j].mouseWanderDirection; float distance = Math.Abs(separation.Length()); if (distance == 0) distance = 1; moveCloser += mice[j].mousePosition; separation.Normalize(); separate += separation / distance; } } } if (moveAligned.LengthSquared() != 0) { moveAligned.Normalize(); } if (moveCloser.LengthSquared() != 0) { moveCloser.Normalize(); } moveCloser /= enemies; mice[index].mousePosition += (separate * separationImpact) + (moveCloser * cohesionImpact) + (moveAligned * alignmentImpact); } // The final step is to move the mouse forward based on its current // orientation. First, we construct a "heading" vector from the orientation // angle. To do this, we'll use Cosine and Sine to tell us the x and y // components of the heading vector. See the accompanying doc for more // information. Vector2 heading = new Vector2( (float)Math.Cos(mouseOrientation), (float)Math.Sin(mouseOrientation)); // by multiplying the heading and speed, we can get a velocity vector. the // velocity vector is then added to the mouse's current position, moving him // forward. mousePosition += heading * currentMouseSpeed; } } }

    Read the article

  • What's the proper way to calculate probability for a card game?

    - by Milan Babuškov
    I'm creating AI for a card game, and I run into problem calculating the probability of passing/failing the hand when AI needs to start the hand. Cards are A, K, Q, J, 10, 9, 8, 7 (with A being the strongest) and AI needs to play to not take the hand. Assuming there are 4 cards of the suit left in the game and one is in AI's hand, I need to calculate probability that one of the other players would take the hand. Here's an example: AI player has: J Other 2 players have: A, K, 7 If a single opponent has AK7 then AI would lose. However, if one of the players has A or K without 7, AI would survive. Now, looking at possible distribution, I have: P1 P2 AI --- --- --- AK7 loses AK 7 survives A7 K survives K7 A survives A 7K survives K 7A survives 7 KA survives AK7 loses Looking at this, it seems that there is 75% chance of survival. However, I skipped the permutations that mirror the ones from above. It should be the same, but somehow when I write them all down, it seems that chance is only 50%: P1 P2 AI --- --- --- AK7 loses A7K loses K7A loses KA7 loses 7AK loses 7KA loses AK 7 survives A7 K survives K7 A survives KA 7 survives 7A K survives 7K A survives A K7 survives A 7K survives K 7A survives K A7 survives 7 AK survives 7 KA survives AK7 loses A7K loses K7A loses KA7 loses 7AK loses 7KA loses 12 loses, 12 survivals = 50% chance. Obviously, it should be the same (shouldn't it?) and I'm missing something in one of the ways to calculate. Which one is correct?

    Read the article

  • Moving player in direciton camera is facing

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. My problem is that wherever camera is facing, players forward is always the same direction. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". My camera script so far: using UnityEngine; using System.Collections; public class PlayerScript : MonoBehaviour { public float RotateSpeed = 150, MoveSpeed = 50; float DeltaTime; void Update() { DeltaTime = Time.deltaTime; transform.Rotate(0, Input.GetAxis("LeftX") * RotateSpeed * DeltaTime, 0); transform.Translate(0, 0, -Input.GetAxis("LeftY") * MoveSpeed * DeltaTime); } } public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 170, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • Initializing OpenFeint for Android outside the main Application

    - by Ef Es
    I am trying to create a generic C++ bridge to use OpenFeint with Cocos2d-x, which is supposed to be just "add and run" but I am finding problems. OpenFeint is very exquisite when initializing, it requires a Context parameter that MUST be the main Application, in the onCreate method, never the constructor. Also, the main Apps name must be edited into the manifest. I am trying to fix this. So far I have tried to create a new Application that calls my Application to test if just the type is needed, but you do really need the main Android application. I also tried using a handler for a static initialization but I found pretty much the same problem. Has anybody been able to do it? This is my working-but-not-as-intended code snippet public class DerpHurr extends Application{ @Override public void onCreate() { super.onCreate(); initializeOpenFeint("TestApp", "edthedthedthedth", "aeyaetyet", "65462"); } public void initializeOpenFeint(String appname, String key, String secret, String id){ Map<String, Object> options = new HashMap<String, Object>(); options.put(OpenFeintSettings.SettingCloudStorageCompressionStrategy, OpenFeintSettings.CloudStorageCompressionStrategyDefault); OpenFeintSettings settings = new OpenFeintSettings(appname, key, secret, id, options); //RIGHT HERE OpenFeint.initialize(***this***, settings, new OpenFeintDelegate() { }); System.out.println("OpenFeint Started"); } } Manifest <application android:debuggable="true" android:label="@string/app_name" android:name=".DerpHurr">

    Read the article

  • How do I apply skeletal animation from a .x (Direct X) file?

    - by Byte56
    Using the .x format to export a model from Blender, I can load a mesh, armature and animation. I have no problems generating the mesh and viewing models in game. Additionally, I have animations and the armature properly loaded into appropriate data structures. My problem is properly applying the animation to the models. I have the framework for applying the models and the code for selecting animations and stepping through frames. From what I understand, the AnimationKeys inside the AnimationSet supplies the transformations to transform the bind pose to the pose in the animated frame. As small example: Animation { {Armature_001_Bone} AnimationKey { 2; //Position 121; //number of frames 0;3; 0.000000, 0.000000, 0.000000;;, 1;3; 0.000000, 0.000000, 0.005524;;, 2;3; 0.000000, 0.000000, 0.022217;;, ... } AnimationKey { 0; //Quaternion Rotation 121; 0;4; -0.707107, 0.707107, 0.000000, 0.000000;;, 1;4; -0.697332, 0.697332, 0.015710, 0.015710;;, 2;4; -0.684805, 0.684805, 0.035442, 0.035442;;, ... } AnimationKey { 1; //Scale 121; 0;3; 1.000000, 1.000000, 1.000000;;, 1;3; 1.000000, 1.000000, 1.000000;;, 2;3; 1.000000, 1.000000, 1.000000;;, ... } } So, to apply frame 2, I would take the position, rotation and scale from frame 2, create a transformation matrix (call it Transform_A) from them and apply that matrix the vertices controlled by Armature_001_Bone at their weights. So I'd stuff TransformA into my shader and transform the vertex. Something like: vertexPos = vertexPos * bones[ int(bfs_BoneIndices.x) ] * bfs_BoneWeights.x; Where bfs_BoneIndices and bfs_BoneWeights are values specific to the current vertex. When loading in the mesh vertices, I transform them by the rootTransform and the meshTransform. This ensures they're oriented and scaled correctly for viewing the bind pose. The problem is when I create that transformation matrix (using the position, rotation and scale from the animation), it doesn't properly transform the vertex. There's likely more to it than just using the animation data. I also tried applying the bone transform hierarchies, still no dice. Basically I end up with some twisted models. It should also be noted that I'm working in openGL, so any matrix transposes that might need to be applied should be considered. What data do I need and how do I combine it for applying .x animations to models?

    Read the article

  • 2D metaball liquid effect - how to feed output of one rendering pass as input to another shader

    - by Guye Incognito
    I'm attempting to make a shader for unity3d web project. I want to implement something like in the great answer by DMGregory in this question. in order to achieve a final look something like this.. Its metaballs with specular and shading. The steps to make this shader are. 1. Convert the feathered blobs into a heightmap. 2. Generate a normalmap from the heightmap 3. Feed the normal map and height map into a standard unity shader, for instance transparent parallax specular. I pretty much have all the pieces I need assembled but I am new to shaders and need help putting them together I can generate a heightmap from the blobs using some fragment shader code I wrote (I'm just using the red channel here cus i dont know if you can access the brightness) half4 frag (v2f i) : COLOR{ half4 texcol,finalColor; texcol = tex2D (_MainTex, i.uv); finalColor=_MyColor; if(texcol.r<_botmcut) { finalColor.r= 0; } else if((texcol.r>_topcut)) { finalColor.r= 0; } else { float r = _topcut-_botmcut; float xpos = _topcut - texcol.r; finalColor.r= (_botmcut + sqrt((xpos*xpos)-(r*r)))/_constant; } return finalColor; } turns these blobs.. into this heightmap Also I've found some CG code that generates a normal map from a height map. The bit of code that makes the normal map from finite differences is here void surf (Input IN, inout SurfaceOutput o) { o.Albedo = fixed3(0.5); float3 normal = UnpackNormal(tex2D(_BumpMap, IN.uv_MainTex)); float me = tex2D(_HeightMap,IN.uv_MainTex).x; float n = tex2D(_HeightMap,float2(IN.uv_MainTex.x,IN.uv_MainTex.y+1.0/_HeightmapDimY)).x; float s = tex2D(_HeightMap,float2(IN.uv_MainTex.x,IN.uv_MainTex.y-1.0/_HeightmapDimY)).x; float e = tex2D(_HeightMap,float2(IN.uv_MainTex.x-1.0/_HeightmapDimX,IN.uv_MainTex.y)).x; float w = tex2D(_HeightMap,float2(IN.uv_MainTex.x+1.0/_HeightmapDimX,IN.uv_MainTex.y)).x; float3 norm = normal; float3 temp = norm; //a temporary vector that is not parallel to norm if(norm.x==1) temp.y+=0.5; else temp.x+=0.5; //form a basis with norm being one of the axes: float3 perp1 = normalize(cross(norm,temp)); float3 perp2 = normalize(cross(norm,perp1)); //use the basis to move the normal in its own space by the offset float3 normalOffset = -_HeightmapStrength * ( ( (n-me) - (s-me) ) * perp1 + ( ( e - me ) - ( w - me ) ) * perp2 ); norm += normalOffset; norm = normalize(norm); o.Normal = norm; } Also here is the built-in transparent parallax specular shader for unity. Shader "Transparent/Parallax Specular" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 0) _Shininess ("Shininess", Range (0.01, 1)) = 0.078125 _Parallax ("Height", Range (0.005, 0.08)) = 0.02 _MainTex ("Base (RGB) TransGloss (A)", 2D) = "white" {} _BumpMap ("Normalmap", 2D) = "bump" {} _ParallaxMap ("Heightmap (A)", 2D) = "black" {} } SubShader { Tags {"Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent"} LOD 600 CGPROGRAM #pragma surface surf BlinnPhong alpha #pragma exclude_renderers flash sampler2D _MainTex; sampler2D _BumpMap; sampler2D _ParallaxMap; fixed4 _Color; half _Shininess; float _Parallax; struct Input { float2 uv_MainTex; float2 uv_BumpMap; float3 viewDir; }; void surf (Input IN, inout SurfaceOutput o) { half h = tex2D (_ParallaxMap, IN.uv_BumpMap).w; float2 offset = ParallaxOffset (h, _Parallax, IN.viewDir); IN.uv_MainTex += offset; IN.uv_BumpMap += offset; fixed4 tex = tex2D(_MainTex, IN.uv_MainTex); o.Albedo = tex.rgb * _Color.rgb; o.Gloss = tex.a; o.Alpha = tex.a * _Color.a; o.Specular = _Shininess; o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)); } ENDCG } FallBack "Transparent/Bumped Specular" }

    Read the article

  • Appropriate level of granularity for component-based architecture

    - by Jon Purdy
    I'm working on a game with a component-based architecture. An Entity owns a set of Component instances, each of which has a set of Slot instances with which to store, send, and receive values. Factory functions such as Player produce entities with the required components and slot connections. I'm trying to determine the best level of granularity for components. For example, right now Position, Velocity, and Acceleration are all separate components, connected in series. Velocity and Acceleration could easily be rewritten into a uniform Delta component, or Position, Velocity, and Acceleration could be combined alongside such components as Friction and Gravity into a monolithic Physics component. Should a component have the smallest responsibility possible (at the cost of lots of interconnectivity) or should related components be combined into monolithic ones (at the cost of flexibility)? I'm leaning toward the former, but I could use a second opinion.

    Read the article

  • Error: type or namespace name 'AssemblyKeyFileAttribute' and 'AssemblyKeyFile' could not be found

    To associate an assembly with a strong key file to store it to GAC, we use should include following line after all the imports and before defing namespace. For VB.NET:  <Assembly: AssemblyKeyFile("c:\path\mykey.snk")> For C#:    [assembly: AssemblyKeyFile(@"c:\path\mykey.snk")] but, you might encounter following two errors at the time of creating Assembly for GAC. 1. The type or namespace name 'AssemblyKeyFileAttribute' could not be found (are you missing a using directive or an assembly reference?) 2. The type or namespace name 'AssemblyKeyFile' could not be found (are you missing a using directive or an assembly reference?) How to resolve these errors: Just include "System.Reflection" namespace. It resolve above two errors. span.fullpost {display:none;}

    Read the article

  • Trying to detect collision between two polygons using Separating Axis Theorem

    - by Holly
    The only collision experience i've had was with simple rectangles, i wanted to find something that would allow me to define polygonal areas for collision and have been trying to make sense of SAT using these two links Though i'm a bit iffy with the math for the most part i feel like i understand the theory! Except my implementation somewhere down the line must be off as: (excuse the hideous font) As mentioned above i have defined a CollisionPolygon class where most of my theory is implemented and then have a helper class called Vect which was meant to be for Vectors but has also been used to contain a vertex given that both just have two float values. I've tried stepping through the function and inspecting the values to solve things but given so many axes and vectors and new math to work out as i go i'm struggling to find the erroneous calculation(s) and would really appreciate any help. Apologies if this is not suitable as a question! CollisionPolygon.java: package biz.hireholly.gameplay; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import biz.hireholly.gameplay.Types.Vect; public class CollisionPolygon { Paint paint; private Vect[] vertices; private Vect[] separationAxes; CollisionPolygon(Vect[] vertices){ this.vertices = vertices; //compute edges and separations axes separationAxes = new Vect[vertices.length]; for (int i = 0; i < vertices.length; i++) { // get the current vertex Vect p1 = vertices[i]; // get the next vertex Vect p2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; // subtract the two to get the edge vector Vect edge = p1.subtract(p2); // get either perpendicular vector Vect normal = edge.perp(); // the perp method is just (x, y) => (-y, x) or (y, -x) separationAxes[i] = normal; } paint = new Paint(); paint.setColor(Color.RED); } public void draw(Canvas c, int xPos, int yPos){ for (int i = 0; i < vertices.length; i++) { Vect v1 = vertices[i]; Vect v2 = vertices[i + 1 == vertices.length ? 0 : i + 1]; c.drawLine( xPos + v1.x, yPos + v1.y, xPos + v2.x, yPos + v2.y, paint); } } /* consider changing to a static function */ public boolean intersects(CollisionPolygon p){ // loop over this polygons separation exes for (Vect axis : separationAxes) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // loop over the other polygons separation axes Vect[] sepAxesOther = p.getSeparationAxes(); for (Vect axis : sepAxesOther) { // project both shapes onto the axis Vect p1 = this.minMaxProjection(axis); Vect p2 = p.minMaxProjection(axis); // do the projections overlap? if (!p1.overlap(p2)) { // then we can guarantee that the shapes do not overlap return false; } } // if we get here then we know that every axis had overlap on it // so we can guarantee an intersection return true; } /* Note projections wont actually be acurate if the axes aren't normalised * but that's not necessary since we just need a boolean return from our * intersects not a Minimum Translation Vector. */ private Vect minMaxProjection(Vect axis) { float min = axis.dot(vertices[0]); float max = min; for (int i = 1; i < vertices.length; i++) { float p = axis.dot(vertices[i]); if (p < min) { min = p; } else if (p > max) { max = p; } } Vect minMaxProj = new Vect(min, max); return minMaxProj; } public Vect[] getSeparationAxes() { return separationAxes; } public Vect[] getVertices() { return vertices; } } Vect.java: package biz.hireholly.gameplay.Types; /* NOTE: Can also be used to hold vertices! Projections, coordinates ect */ public class Vect{ public float x; public float y; public Vect(float x, float y){ this.x = x; this.y = y; } public Vect perp() { return new Vect(-y, x); } public Vect subtract(Vect other) { return new Vect(x - other.x, y - other.y); } public boolean overlap(Vect other) { if( other.x <= y || other.y >= x){ return true; } return false; } /* used specifically for my SAT implementation which i'm figuring out as i go, * references for later.. * http://www.gamedev.net/page/resources/_/technical/game-programming/2d-rotated-rectangle-collision-r2604 * http://www.codezealot.org/archives/55 */ public float scalarDotProjection(Vect other) { //multiplier = dot product / length^2 float multiplier = dot(other) / (x*x + y*y); //to get the x/y of the projection vector multiply by x/y of axis float projX = multiplier * x; float projY = multiplier * y; //we want to return the dot product of the projection, it's meaningless but useful in our SAT case return dot(new Vect(projX,projY)); } public float dot(Vect other){ return (other.x*x + other.y*y); } }

    Read the article

  • Marketing: Angry Birds - How it's done

    - by John
    Why do some apps, like Angry Birds, dominate the market while other cool/fun/addicting apps are never heard of? I'm trying to figure out the best marketing strategy, or best way to sell an app to mass market. Does anybody have any ideas or things they noticed about the marketing of major blockbuster apps, like Angry Birds, why they get so popular and stay at the top of charts. Thanks for any ideas, comments ...

    Read the article

  • Parent variable inheritance methods Unity3D/C#

    - by Timothy Williams
    I'm creating a system where there is a base "Hero" class and each hero inherits from that with their own stats and abilities. What I'm wondering is, how could I call a variable from one of the child scripts in the parent script (something like maxMP = MP) or call a function in a parent class that is specified in each child class (in the parent update is alarms() in the child classes alarms() is specified to do something.) Is this possible at all? Or not? Thanks.

    Read the article

  • how to create texture for modelmesh?

    - by Berend
    Is there a possibiltiy to create a texture from a meshpart in xna. By getting a flat version of the mesh. So I can create a texture for it and edit that texture(via rendertarget)? I need to get the texture(wich is not yet a texture) so I can put another texture on it. I can create a texture and put it on a certain mesh. But I just cant figure out how I can create a texture with the right size. I also already found out i can use text2dproj in hlsl. But when i do this i get a gray stripe in the look. Is there a better solution?

    Read the article

  • Collisions between moving ball and polygons

    - by miguelSantirso
    I know this is a very typical problem and that there area a lot of similar questions, but I have been looking for a while and I have not found anything that fits what I want. I am developing a 2D game in which I need to perform collisions between a ball and simple polygons. The polygons are defined as an array of vertices. I have implemented the collisions with the bounding boxes of the polygons (that was easy) and I need to refine that collision in the cases where the ball collides with the bounding box. The ball can move quite fast and the polygons are not too big so I need to perform continuous collisions. I am looking for a method that allows me to detect if the ball collides with a polygon and, at the same time, calculate the new direction for the ball after bouncing in the polygon. (I am using XNA, in case that helps)

    Read the article

  • Is there a maximum delay an UDP packet can have?

    - by Jens Nolte
    I am currently implementing a real-time network protocol for a multiplayer game using UDP. I am not having any technical difficulties, but as I always have to care about late UDP packets I am wondering just how late they can arrive. I have researched the topic and have not found any mention of it, so I assume there is no technical limitation, but I wonder if common network/internet architecture (or hardware) gives an effective limitation of how late a UDP packet can be delivered.

    Read the article

  • Examples of good Javascript/HTML5 based games

    - by Zuch
    Now that Flash is largely being replaced with HTML5 elements (video, audio, canvas, etc.) are there any good examples of web-based games built on completely open standards (meaning Javascript, HTML and CSS)? I see a lot of examples of pure HTML5 implementations of what was once only in Flash (like stuff here: http://www.html5rocks.com/) but not many games, a domain which still seem dominated by Flash. I'm curious what's possible and what the limitations are.

    Read the article

  • Transform coordinates from 3d to 2d without matrix or built in methods

    - by Thomas
    Not to long ago i started to create a small 3D engine in javascript to combine this with an html5 canvas. One of the issues I run into is how can you transform 3d to 2d coords. Since I cannot use matrices or built in transformation methods I need another way. I've tried implementing the next explanation + pseudo code: http://freespace.virgin.net/hugo.elias/routines/3d_to_2d.htm Unfortunately no luck there. I've replace all the input variables with data from my own camera and object classes. I have the following data: An object with a rotation, position vector and an array of 4 3d coords (its just a plane) a camera with a position and rotation vector the viewport - a square 600 x 600 surface. The example uses a zoom factor which I've set as 1 Most hits on google use either matrix calculations or don't implement camera rotation. Basic transformation should be like this: screen.x = x / z * zoom screen.y = y / z * zoom Can anyone point me in the right direction or explain to me howto achieve this? edit: Thanks for all your posts, I haven't been able to apply all this to my project yet but I hope to do this soon.

    Read the article

  • Where to store shaders

    - by Mark Ingram
    I have an OpenGL renderer which has a Scene member variable. The Scene object can contain N SceneObjects. I use these SceneObjects for storing the vertex position and any transforms. My question is, where should shaders be stored in this arrangement? I guess they need to be in a central location because multiple objects can use the same shader. But then each object needs access to the shader because it needs to set attributes into the shader. Does anyone have any advice?

    Read the article

  • How do I implement collision detection with a sprite walking up a rocky-terrain hill?

    - by detectivecalcite
    I'm working in SDL and have bounding rectangles for collisions set up for each frame of the sprite's animation. However, I recently stumbled upon the issue of putting together collisions for characters walking up and down hills/slopes with irregularly curved or rocky terrain - what's a good way to do collisions for that type of situation? Per-pixel? Loading up the points of the incline and doing player-line collision checking? Should I use bounding rectangles in general or circle collision detection?

    Read the article

< Previous Page | 588 589 590 591 592 593 594 595 596 597 598 599  | Next Page >