Search Results

Search found 5070 results on 203 pages for 'algorithm'.

Page 87/203 | < Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >

  • Check if a string substitution rule will ever generate another string.

    - by Mgccl
    Given two strings S and T of same length. Given a set of replacement rules, that find substring A in S and replace it with string B. A and B have the same length. Is there a sequence of rule application, such that it make string S into string T? I believe there is no better way to answer this than try every single rule in every single state. Which would be exponential time. But I don't know if there are better solutions to it.

    Read the article

  • How much time should it take to find the sum of all prime numbers less than 2 million?

    - by Shahensha
    I was trying to solve this Project Euler Question. I implemented the sieve of euler as a helper class in java. It works pretty well for the small numbers. But when I input 2 million as the limit it doesn't return the answer. I use Netbeans IDE. I waited for a lot many hours once, but it still didn't print the answer. When I stopped running the code, it gave the following result Java Result: 2147483647 BUILD SUCCESSFUL (total time: 2,097 minutes 43 seconds) This answer is incorrect. Even after waiting for so much time, this isn't correct. While the same code returns correct answers for smaller limits. Sieve of euler has a very simple algo given at the botton of this page. My implementation is this: package support; import java.util.ArrayList; import java.util.List; /** * * @author admin */ public class SieveOfEuler { int upperLimit; List<Integer> primeNumbers; public SieveOfEuler(int upperLimit){ this.upperLimit = upperLimit; primeNumbers = new ArrayList<Integer>(); for(int i = 2 ; i <= upperLimit ; i++) primeNumbers.add(i); generatePrimes(); } private void generatePrimes(){ int currentPrimeIndex = 0; int currentPrime = 2; while(currentPrime <= Math.sqrt(upperLimit)){ ArrayList<Integer> toBeRemoved = new ArrayList<Integer>(); for(int i = currentPrimeIndex ; i < primeNumbers.size() ; i++){ int multiplier = primeNumbers.get(i); toBeRemoved.add(currentPrime * multiplier); } for(Integer i : toBeRemoved){ primeNumbers.remove(i); } currentPrimeIndex++; currentPrime = primeNumbers.get(currentPrimeIndex); } } public List getPrimes(){ return primeNumbers; } public void displayPrimes(){ for(double i : primeNumbers) System.out.println(i); } } I am perplexed! My questions is 1) Why is it taking so much time? Is there something wrong in what I am doing? Please suggest ways for improving my coding style, if you find something wrong.

    Read the article

  • Finding the position of the max element

    - by Faken
    Is there a standard function that returns the position(not value) of the max element of an array of values? For example: say i have an array like this: sampleArray = [1, 5, 2, 9, 4, 6, 3] I want a function that returns the integer of 3 that tells me that sampleArray[3] is the largest value in the array.

    Read the article

  • Find the set of largest contiguous rectangles to cover multiple areas

    - by joelpt
    I'm working on a tool called Quickfort for the game Dwarf Fortress. Quickfort turns spreadsheets in csv/xls format into a series of commands for Dwarf Fortress to carry out in order to plot a "blueprint" within the game. I am currently trying to optimally solve an area-plotting problem for the 2.0 release of this tool. Consider the following "blueprint" which defines plotting commands for a 2-dimensional grid. Each cell in the grid should either be dug out ("d"), channeled ("c"), or left unplotted ("."). Any number of distinct plotting commands might be present in actual usage. . d . d c c d d d d c c . d d d . c d d d d d c . d . d d c To minimize the number of instructions that need to be sent to Dwarf Fortress, I would like to find the set of largest contiguous rectangles that can be formed to completely cover, or "plot", all of the plottable cells. To be valid, all of a given rectangle's cells must contain the same command. This is a faster approach than Quickfort 1.0 took: plotting every cell individually as a 1x1 rectangle. This video shows the performance difference between the two versions. For the above blueprint, the solution looks like this: . 9 . 0 3 2 8 1 1 1 3 2 . 1 1 1 . 2 7 1 1 1 4 2 . 6 . 5 4 2 Each same-numbered rectangle above denotes a contiguous rectangle. The largest rectangles take precedence over smaller rectangles that could also be formed in their areas. The order of the numbering/rectangles is unimportant. My current approach is iterative. In each iteration, I build a list of the largest rectangles that could be formed from each of the grid's plottable cells by extending in all 4 directions from the cell. After sorting the list largest first, I begin with the largest rectangle found, mark its underlying cells as "plotted", and record the rectangle in a list. Before plotting each rectangle, its underlying cells are checked to ensure they are not yet plotted (overlapping a previous plot). We then start again, finding the largest remaining rectangles that can be formed and plotting them until all cells have been plotted as part of some rectangle. I consider this approach slightly more optimized than a dumb brute-force search, but I am wasting a lot of cycles (re)calculating cells' largest rectangles and checking underlying cells' states. Currently, this rectangle-discovery routine takes the lion's share of the total runtime of the tool, especially for large blueprints. I have sacrificed some accuracy for the sake of speed by only considering rectangles from cells which appear to form a rectangle's corner (determined using some neighboring-cell heuristics which aren't always correct). As a result of this 'optimization', my current code doesn't actually generate the above solution correctly, but it's close enough. More broadly, I consider the goal of largest-rectangles-first to be a "good enough" approach for this application. However I observe that if the goal is instead to find the minimum set (fewest number) of rectangles to completely cover multiple areas, the solution would look like this instead: . 3 . 5 6 8 1 3 4 5 6 8 . 3 4 5 . 8 2 3 4 5 7 8 . 3 . 5 7 8 This second goal actually represents a more optimal solution to the problem, as fewer rectangles usually means fewer commands sent to Dwarf Fortress. However, this approach strikes me as closer to NP-Hard, based on my limited math knowledge. Watch the video if you'd like to better understand the overall strategy; I have not addressed other aspects of Quickfort's process, such as finding the shortest cursor-path that plots all rectangles. Possibly there is a solution to this problem that coherently combines these multiple strategies. Help of any form would be appreciated.

    Read the article

  • Extracting a given number of the highest values in a List

    - by James P.
    I'm seeking to display a fixed number of items on a web page according to their respective weight (represented by an Integer). The List where these items are found can be of virtually any size. The first solution that comes to mind is to do a Collections.sort() and to get the items one by one by going through the List. Is there a more elegant solution though that could be used to prepare, say, the top eight items?

    Read the article

  • Sort months ( with strings ) algorithm

    - by Oscar Reyes
    I have this months array: ["January", "March", "December" , "October" ] And I want to have it sorted like this: ["January", "March", "October", "December" ] I'm currently thinking in a "if/else" horrible cascade but I wonder if there is some other way to do this. The bad part is that I need to do this only with "string" ( that is, without using Date object or anything like that ) What would be a good approach?

    Read the article

  • How to find validity of a string of parentheses, curly brackets and square brackets?

    - by Rajendra
    I recently came in contact with this interesting problem. You are given a string containing just the characters '(', ')', '{', '}', '[' and ']', for example, "[{()}]", you need to write a function which will check validity of such an input string, function may be like this: bool isValid(char* s); these brackets have to close in the correct order, for example "()" and "()[]{}" are all valid but "(]", "([)]" and "{{{{" are not! I came out with following O(n) time and O(n) space complexity solution, which works fine: Maintain a stack of characters. Whenever you find opening braces '(', '{' OR '[' push it on the stack. Whenever you find closing braces ')', '}' OR ']' , check if top of stack is corresponding opening bracket, if yes, then pop the stack, else break the loop and return false. Repeat steps 2 - 3 until end of the string. This works, but can we optimize it for space, may be constant extra space, I understand that time complexity cannot be less than O(n) as we have to look at every character. So my question is can we solve this problem in O(1) space?

    Read the article

  • Parsing a comma-separated list

    - by alex
    I have a comma-separated list of values, for example: strins s = "param1=true;param2=4;param3=2.0f;param4=sometext;"; I need a functions: public bool ExtractBool(string parameterName, string @params); public int ExtractInt(string parameterName, string @params); public float ExtractFloat(string parameterName, string @params); public string ExtractString(string parameterName, string @params); Is there a special functions in .net that can help me with csl ? PS: parameter names are equal within a list.

    Read the article

  • Can my tortoise vs. hare race be improved?

    - by FredOverflow
    Here is my code for detecting cycles in a linked list: do { hare = hare.next(); if (hare == back) return; hare = hare.next(); if (hare == back) return; tortoise = tortoise.next(); } while (tortoise != hare); throw new AssertionError("cyclic linkage"); Is there a way to get rid of the code duplication inside the loop? Am I right in assuming that I don't need a check after making the tortoise take a step forward? As I see it, the tortoise can never reach the end of the list before the hare (contrary to the fable). Any other ways to simplify/beautify this code?

    Read the article

  • Problems with dynamic programming

    - by xan
    I've got difficulties with understanding dynamic programming, so I decided to solve some problems. I know basic dynamic algorithms like longest common subsequence, knapsack problem, but I know them because I read them, but I can't come up with something on my own :-( For example we have subsequence of natural numbers. Every number we can take with plus or minus. At the end we take absolute value of this sum. For every subsequence find the lowest possible result. in1: 10 3 5 4; out1: 2 in2: 4 11 5 5 5; out2: 0 in3: 10 50 60 65 90 100; out3: 5 explanation for 3rd: 5 = |10+50+60+65-90-100| what it worse my friend told me that it is simple knapsack problem, but I can't see any knapsack here. Is dynamic programming something difficult or only I have big problems with it?

    Read the article

  • DFS Backtracking with java

    - by Cláudio Ribeiro
    I'm having problems with DFS backtracking in an adjacency matrix. Here's my code: (i added the test to the main in case someone wants to test it) public class Graph { private int numVertex; private int numEdges; private boolean[][] adj; public Graph(int numVertex, int numEdges) { this.numVertex = numVertex; this.numEdges = numEdges; this.adj = new boolean[numVertex][numVertex]; } public void addEdge(int start, int end){ adj[start-1][end-1] = true; adj[end-1][start-1] = true; } List<Integer> visited = new ArrayList<Integer>(); public Integer DFS(Graph G, int startVertex){ int i=0; if(pilha.isEmpty()) pilha.push(startVertex); for(i=1; i<G.numVertex; i++){ pilha.push(i); if(G.adj[i-1][startVertex-1] != false){ G.adj[i-1][startVertex-1] = false; G.adj[startVertex-1][i-1] = false; DFS(G,i); break; }else{ visited.add(pilha.pop()); } System.out.println("Stack: " + pilha); } return -1; } Stack<Integer> pilha = new Stack(); public static void main(String[] args) { Graph g = new Graph(6, 9); g.addEdge(1, 2); g.addEdge(1, 5); g.addEdge(2, 4); g.addEdge(2, 5); g.addEdge(2, 6); g.addEdge(3, 4); g.addEdge(3, 5); g.addEdge(4, 5); g.addEdge(6, 4); g.DFS(g, 1); } } I'm trying to solve the euler path problem. the program solves basic graphs but when it needs to backtrack, it just does not do it. I think the problem might be in the stack manipulations or in the recursive dfs call. I've tried a lot of things, but still can't seem to figure out why it does not backtrack. Can somebody help me ?

    Read the article

  • Generate encoding String according to creation order.

    - by Tony
    I need to generate encoding String for each item I inserted into the database. for example: x00001 for the first item x00002 for the sencond item x00003 for the third item The way I chose to do this is counting the rows. Before I insert the third item, I count against the database, I know there're already 2 rows, so the next encoding is ended with 3. But there is a problem. If I delete the second item, the forth item will not be the x00004,but x00003. I can add additional columns to table, to store the next encoding, I don't know if there's other better solutions ?

    Read the article

  • .NET Performance: Deep Recursion vs Queue

    - by JeffN825
    I'm writing a component that needs to walk large object graphs, sometimes 20-30 levels deep. What is the most performant way of walking the graph? A. Enqueueing "steps" so as to avoid deep recursion or B. A DFS (depth first search) which may step many levels deep and have a "deep" stack trace at times. I guess the question I'm asking is: Is there a performance hit in .NET for doing a DFS that causes a "deep" stack trace? If so, what is the hit? And would I better better off with some BFS by means of queueing up steps that would have been handled recursively in a DFS? Sorry if I'm being unclear. Thanks.

    Read the article

  • How do I remove the leaves of a binary tree?

    - by flopex
    I'm trying to remove all of the leaves. I know that leaves have no children, this is what I have so far. public void removeLeaves(BinaryTree n){ if (n.left == null && n.right == null){ n = null; } if (n.left != null) removeLeaves(n.left); if (n.right != null) removeLeaves(n.right); }

    Read the article

  • Is there "good" PRNG generating values without hidden state?

    - by actual
    I need some good pseudo random number generator that can be computed like a pure function from its previous output without any state hiding. Under "good" I mean: I must be able to parametrize generator in such way that running it for 2^n iterations with any parameters should cover all or almost all values between 0 and 2^n - 1, where n is the number of bits in output value. Combined generator output of n + p bits must cover all or almost all values between 0 and 2^(n + p) - 1 if I run it for 2^n iterations for every possible combination of its parameters, where p is the number of bits in parameters. For example, LCG can be computed like a pure function and it can meet first condition, but it can not meet second one. Say, we have 32-bit generator, m = 2^32 and it is constant, our p = 64 (two 32-bit parameters a and c), n + p = 96, so we must peek data by three ints from output to meet second condition. Unfortunately, condition can not be meet because of strictly alternating sequence of odd and even ints in output. To overcome this, hidden state must be introduced, but that makes function not pure and breaks first condition (period become much longer). Am I wanting too much?

    Read the article

  • Sorting 1 million 8-digit numbers in 1MB of RAM

    - by Favourite Chigozie Onwuemene
    I have a computer with 1M of RAM and no other local storage. I must use it to accept 1 million 8-digit decimal numbers over a TCP connection, sort them, and then send the sorted list out over another TCP connection. The list of numbers may contain duplicates, which I must not discard. The code will be placed in ROM, so I need not subtract the size of my code from the 1M. I already have code to drive the ethernet port and handle TCP/IP connections, and it requires 2k for its state data, including a 1k buffer via which the code will read and write data. Is there a solution to this problem?

    Read the article

  • Fast, Vectorizable method of taking floating point number modulus of special primes?

    - by caffiend
    Is there a fast method for taking the modulus of a floating point number? With integers, there are tricks for Mersenne primes, so that its possible to calculate y = x MOD 2^31 without needing division. Can any similar tricks be applied for floating point numbers? Preferably, in a way that can be converted into vector/SIMD operations, or moved into GPGPU code. The primes I'm interested in would be 2^7 and 2^31, although if there are more efficient ones for floating point numbers, those would be welcome.

    Read the article

  • Picking apples off a tree

    - by John Retallack
    I have the following problem: I am given a tree with N apples, for each apple I am given it's weight and height. I can pick apples up to a given height H, each time I pick an apple the height of every apple is increased with U. I have to find out the maximum weight of apples I can pick. 1 = N = 100000 0 < {H, U, apples' weight and height, maximum weight} < 231 Example: N=4 H=100 U=10 height weight 82 30 91 10 93 5 94 15 The answer is 45: first pick the apple with the weight of 15 then the one with the weight of 30. Could someone help me approach this problem?

    Read the article

  • Is it possible to compute the minimum of three numbers by using two comparisons at the same time?

    - by Milo Hou
    I've been trying to think up of some way that I could do two comparisons at the same time to find the greatest/least of three numbers. Arithmetic operations on them are considered "free" in this case. That is to say, the classical way of finding the greater of two, and then comparing it to the third number isn't valid in this case because one comparison depends on the result of the other. Is it possible to use two comparisons where this isn't the case? I was thinking maybe comparing the differences of the numbers somehow or their products or something, but came up with nothing. Just to reemphasize, two comparisons are still done, just that neither comparison relies on the result of the other comparison. EDIT: what about: boolA = A^2 + B^2 < C^2 boolB = A > B if boolA then max=C else if boolB then max=A else max=B

    Read the article

  • Quick way to do data lookup in PHP

    - by Ghostrider
    I have a data table with 600,000 records that is around 25 megabytes large. It is indexed by a 4 byte key. Is there a way to find a row in such dataset quickly with PHP without resorting to MySQL? The website in question is mostly static with minor PHP code and no database dependencies and therefore fast. I would like to add this data without having to use MySQL if possible. In C++ I would memory map the file and do a binary search in it. Is there a way to do something similar in PHP?

    Read the article

  • How can I store this kind of graph in neo4j for fast traversal?

    - by James
    This is a graph whose nodes exist in many connected components at once because a node's relationships are a collection of edge groups such that only one edge per edge group can be present at once. I need to be able to find all of the connected components that a node exists in. What would be the best way to store this graph in neo4j to quickly find all of the connected components that a node exists in? Is there a way to use the built in traversals to do this? Also: is there a name for this kind of graph? I'd appreciate any help/ideas. Update: Sorry for not being clear. All nodes are of the same type. Nodes have a variable number of edge groups. Exactly one edge from each edge group needs to be chosen for a particular connected component. I'm going to try to explain through example: Node x1 is related to: (x2 or x3 or x4) AND (x5 or x6) AND (x7) Node x2 is related to: (x8) AND (x9 or x10) So x1's first edge group is (x2, x3, x4), its second edge group is (x5, x6), and its third edge group is (x7). So here are a few connected components that x1 exists in: CC1: x1 is related to: x2, x5, x7 x2 is related to: x8 x9 CC2: x1 is related to: x2, x6, x7 x2 is related to: x8, x9 CC3: x1 is related to: x3, x5, x7 CC4: x1 is related to: x3, x6, x7 etc. I'm grateful for your help in this.

    Read the article

  • parsing of mathematical expressions

    - by gcc
    (in c90) (linux) input: sqrt(2 - sin(3*A/B)^2.5) + 0.5*(C*~(D) + 3.11 +B) a b /*there are values for a,b,c,d */ c d input: cos(2 - asin(3*A/B)^2.5) +cos(0.5*(C*~(D)) + 3.11 +B) a b /*there are values for a,b,c,d */ c d input: sqrt(2 - sin(3*A/B)^2.5)/(0.5*(C*~(D)) + sin(3.11) +ln(B)) /*max lenght of formula is 250 characters*/ a b /*there are values for a,b,c,d */ c /*each variable with set of floating numbers*/ d As you can see infix formula in the input depends on user. My program will take a formula and n-tuples value. Then it calculate the results for each value of a,b,c and d. If you wonder I am saying ;outcome of program is graph. /sometimes,I think i will take input and store in string. then another idea is arise " I should store formula in the struct" but i don't know how I can construct the code on the base of structure./ really, I don't know way how to store the formula in program code so that I can do my job. can you show me? /* a,b,c,d is letters cos,sin,sqrt,ln is function*/

    Read the article

< Previous Page | 83 84 85 86 87 88 89 90 91 92 93 94  | Next Page >