Search Results

Search found 9254 results on 371 pages for 'approach'.

Page 89/371 | < Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >

  • Simple Excel Export with EPPlus

    - by Jesse Taber
    Originally posted on: http://geekswithblogs.net/GruffCode/archive/2013/10/30/simple-excel-export-with-epplus.aspxAnyone I’ve ever met who works with an application that sits in front of a lot of data loves it when they can get that data exported to an Excel file for them to mess around with offline. As both developer and end user of a little website project that I’ve been working on, I found myself wanting to be able to get a bunch of the data that the application was collecting into an Excel file. The great thing about being both an end user and a developer on a project is that you can build the features that you really want! While putting this feature together I came across the fantastic EPPlus library. This library is certainly very well known and popular, but I was so impressed with it that I thought it was worth a quick blog post. This library is extremely powerful; it lets you create and manipulate Excel 2007/2010 spreadsheets in .NET code with a high degree of flexibility. My only gripe with the project is that they are not touting how insanely easy it is to build a basic Excel workbook from a simple data source. If I were running this project the approach I’m about to demonstrate in this post would be front and center on the landing page for the project because it shows how easy it really is to get started and serves as a good way to ease yourself in to some of the more advanced features. The website in question uses RavenDB, which means that we’re dealing with POCOs to model the data throughout all layers of the application. I love working like this so when it came time to figure out how to export some of this data to an Excel spreadsheet I wanted to find a way to take an IEnumerable<T> and just have it dumped to Excel with each item in the collection being modeled as a single row in the Excel worksheet. Consider the following class: public class Employee { public int Id { get; set; } public string Name { get; set; } public decimal HourlyRate { get; set; } public DateTime HireDate { get; set; } } Now let’s say we have a collection of these represented as an IEnumerable<Employee> and we want to be able to output it to an Excel file for offline querying/manipulation. As it turns out, this is dead simple to do with EPPlus. Have a look: public void ExportToExcel(IEnumerable<Employee> employees, FileInfo targetFile) { using (var excelFile = new ExcelPackage(targetFile)) { var worksheet = excelFile.Workbook.Worksheets.Add("Sheet1"); worksheet.Cells["A1"].LoadFromCollection(Collection: employees, PrintHeaders: true); excelFile.Save(); } } That’s it. Let’s break down what’s going on here: Create a ExcelPackage to model the workbook (Excel file). Note that the ‘targetFile’ value here is a FileInfo object representing the location on disk where I want the file to be saved. Create a worksheet within the workbook. Get a reference to the top-leftmost cell (addressed as A1) and invoke the ‘LoadFromCollection’ method, passing it our collection of Employee objects. Behind the scenes this is reflecting over the properties of the type provided and pulling out any public members to become columns in the resulting Excel output. The ‘PrintHeaders’ parameter tells EPPlus to grab the name of the property and put it in the first row. Save the Excel file All of the heavy lifting here is being done by the ‘LoadFromCollection’ method, and that’s a good thing. Now, this was really easy to do, but it has some limitations. Using this approach you get a very plain, un-styled Excel worksheet. The column widths are all set to the default. The number format for all cells is ‘General’ (which proves particularly interesting if you have a DateTime property in your data source). I’m a “no frills” guy, so I wasn’t bothered at all by trading off simplicity for style and formatting. That said, EPPlus has tons of samples that you can download that illustrate how to apply styles and formatting to cells and a ton of other advanced features that are way beyond the scope of this post.

    Read the article

  • Silverlight Grid Layout is pain

    - by brainbox
     I think one of the biggest mistake of Silverlight and WPF is its Grid layout.Imagine you have a data form with 2 columns and 5 rows. You need to place new row after the first one. As a result you need to rewrite Grid.Rows and Grid.Columns in all rows belows. But the worst thing of such approach is that it is static. So you need predefine all your rows and columns. As a result creating of simple dynamic datagrid or dataform become impossible... So the question if why best practices of HTML and Adobe Flex were dropped????If anybody have tried to port Flex Grid layout to silverlight please mail me or drop a comment.

    Read the article

  • An Alphabet of Eponymous Aphorisms, Programming Paradigms, Software Sayings, Annoying Alliteration

    - by Brian Schroer
    Malcolm Anderson blogged about “Einstein’s Razor” yesterday, which reminded me of my favorite software development “law”, the name of which I can never remember. It took much Wikipedia-ing to find it (Hofstadter’s Law – see below), but along the way I compiled the following list: Amara’s Law: We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run. Brook’s Law: Adding manpower to a late software project makes it later. Clarke’s Third Law: Any sufficiently advanced technology is indistinguishable from magic. Law of Demeter: Each unit should only talk to its friends; don't talk to strangers. Einstein’s Razor: “Make things as simple as possible, but not simpler” is the popular paraphrase, but what he actually said was “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience”, an overly complicated quote which is an obvious violation of Einstein’s Razor. (You can tell by looking at a picture of Einstein that the dude was hardly an expert on razors or other grooming apparati.) Finagle's Law of Dynamic Negatives: Anything that can go wrong, will—at the worst possible moment. - O'Toole's Corollary: The perversity of the Universe tends towards a maximum. Greenspun's Tenth Rule: Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp. (Morris’s Corollary: “…including Common Lisp”) Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law. Issawi’s Omelet Analogy: One cannot make an omelet without breaking eggs - but it is amazing how many eggs one can break without making a decent omelet. Jackson’s Rules of Optimization: Rule 1: Don't do it. Rule 2 (for experts only): Don't do it yet. Kaner’s Caveat: A program which perfectly meets a lousy specification is a lousy program. Liskov Substitution Principle (paraphrased): Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it Mason’s Maxim: Since human beings themselves are not fully debugged yet, there will be bugs in your code no matter what you do. Nils-Peter Nelson’s Nil I/O Rule: The fastest I/O is no I/O.    Occam's Razor: The simplest explanation is usually the correct one. Parkinson’s Law: Work expands so as to fill the time available for its completion. Quentin Tarantino’s Pie Principle: “…you want to go home have a drink and go and eat pie and talk about it.” (OK, he was talking about movies, not software, but I couldn’t find a “Q” quote about software. And wouldn’t it be cool to write a program so great that the users want to eat pie and talk about it?) Raymond’s Rule: Computer science education cannot make anybody an expert programmer any more than studying brushes and pigment can make somebody an expert painter.  Sowa's Law of Standards: Whenever a major organization develops a new system as an official standard for X, the primary result is the widespread adoption of some simpler system as a de facto standard for X. Turing’s Tenet: We shall do a much better programming job, provided we approach the task with a full appreciation of its tremendous difficulty, provided that we respect the intrinsic limitations of the human mind and approach the task as very humble programmers.  Udi Dahan’s Race Condition Rule: If you think you have a race condition, you don’t understand the domain well enough. These rules didn’t exist in the age of paper, there is no reason for them to exist in the age of computers. When you have race conditions, go back to the business and find out actual rules. Van Vleck’s Kvetching: We know about as much about software quality problems as they knew about the Black Plague in the 1600s. We've seen the victims' agonies and helped burn the corpses. We don't know what causes it; we don't really know if there is only one disease. We just suffer -- and keep pouring our sewage into our water supply. Wheeler’s Law: All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection. Wheeler also said “Compatibility means deliberately repeating other people's mistakes.”. The Wrong Road Rule of Mr. X (anonymous): No matter how far down the wrong road you've gone, turn back. Yourdon’s Rule of Two Feet: If you think your management doesn't know what it's doing or that your organisation turns out low-quality software crap that embarrasses you, then leave. Zawinski's Law of Software Envelopment: Every program attempts to expand until it can read mail. Zawinski is also responsible for “Some people, when confronted with a problem, think 'I know, I'll use regular expressions.' Now they have two problems.” He once commented about X Windows widget toolkits: “Using these toolkits is like trying to make a bookshelf out of mashed potatoes.”

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Sending Big Files with WCF

    - by Sean Feldman
    I had to look into a project that submits large files to WCF service. Implementation is based on data chunking. This is a good approach when your client and server are not both based on WCF, bud different technologies. The problem with something like this is that chunking (either you wish it or not) complicates the overall solution. Alternative would be streaming. In WCF to WCF scenario, this is a piece of cake. When client is Java, it becomes a bit more challenging (has anyone implemented Java client streaming data to WCF service?). What I really liked about .NET implementation with WCF, is that sending header info along with stream was dead simple, and from the developer point of view looked like it’s all a part of the DTO passed into the service. [ServiceContract] public interface IFileUpload { [OperationContract] void UploadFile(SendFileMessage message); } Where SendFileMessage is [MessageContract] public class SendFileMessage { [MessageBodyMember(Order = 1)] public Stream FileData; [MessageHeader(MustUnderstand = true)] public FileTransferInfo FileTransferInfo; }

    Read the article

  • O' Reilly Deal of the Day 26/Jun/2012 - Developer's Guide to Collections in Microsoft® .NET

    - by TATWORTH
    Today's 50% off Deal of the Day at http://shop.oreilly.com/product/0790145317193.do?code=MSDEAL is Developer's Guide to Collections in Microsoft® .NET "Put .NET collections to work—and manage issues with GUI data binding, threading, data querying, and storage. Led by a data collection expert, you'll gain task-oriented guidance, exercises, and extensive code samples to tackle common problems and improve application performance. This one-stop reference is designed for experienced Microsoft Visual Basic® and C# developers—whether you’re already using collections or just starting out." I am reviewing this book. Here are my initial comments:The code is well illustrated by diagrams. The approach is practical. The code is well commented, however the C# code samples would be better had they been fully Style Cop compliant.I recommend this book to all C# and VB.NET Development teams. I concur with the author who states that the book is not for learning C# or VB.NET, however it is an excellent book for C# or VB.NET developers to extend their knowledge of the Dot Net framework.

    Read the article

  • O&rsquo;Reilly offer to 05:00 PT 12/Aug/2014 - Ivor Horton's Beginning Visual C++ 2013

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/05/orsquoreilly-offer-to-0500-pt-12aug2014---ivor-hortons-beginning.aspxUntil 05:00 PT 12/Aug/2014, O’Reilly at http://shop.oreilly.com/product/9781118845714.do?code=WKCPPS are offering 50% off Ivor Horton's Beginning Visual C++ 2013. “This latest edition of the bestselling book on the C++ language follows the proven approach that has made all of Ivor Horton’s C++ books so popular. Horton provides a comprehensive introduction to both the Standard C++ language, and to Visual C++. The book—thoroughly updated for the 2013 release—shows readers how to build real-world applications using Visual C++. No previous programming experience is required. The author uses numerous step-by-step programming examples to guide readers through the ins and outs of C++ development.”

    Read the article

  • Introducing the ADF Desktop Integration Troubleshooting Guide

    - by Juan Camilo Ruiz
    Since the addition of ADF Desktop Integration to the ADF Framework, a number of customers internal and external, have started extending their applications in use cases around integration with MS Excel. In an effor to share the knowledge collected since the product came out, we are happy to launch the ADF Desktop Integration Troubleshooting Guide, where usera can find an active collection of best practices to figuring out how to best approach issues while using ADF Desktop Integration. Be sure to bookmark this link and make sure to check it out, plenty of scenarios are covered and more will be added as we continue identifying them. 

    Read the article

  • Upgrading ASP.NET AJAX 1.0 Websites to .NET 4.5

    - by Lijo
    I have an existing website in ASP.Net 2.0 that uses ASP.Net Ajax 1.0. This is developed using Visual Studio 2005. Now, we are planning to upgrade this to .Net 4.5 and VS2013. When I made a search, I could see that there are blogs about upgrading projects with Ajax 1.0 to .Net 3.5 version. However I could not find useful links for upgrading to .Net 4.5. Do we have any useful links for that? Or is it an unworkable approach? Note: As of now we have not purchased VS2013 and servers for this. Purchase depends on the feasibility study. Hence I cannot test it myself, at present. Upgrading ASP.NET AJAX 1.0 Websites and Web Applications to .NET Framework 3.5 How To: Upgrade an ASP.NET AJAX 1.0 Web Project to .NET Framework 3.5

    Read the article

  • "What Happens in Vegas…" - Oracle to Present at Gartner AADI Conference

    - by Bruce Tierney
    “What Happens in Vegas, Stays in Vegas”…with the exception of insights to help you jumpstart your cloud integration and mobile enablement including these three highlights from the upcoming Oracle session “Simplifying Integration - The Cloud and Mobile Prerequisite”: How To Simplify Complex Application Infrastructures – Strategies for how to simplify while expanding on-premise to integrate with SaaS applications, Oracle Cloud, and mobile enablement. Presented by Tim Hall, Oracle’s Senior Director of Product Management Customer Case Study On Cloud Integration And Mobile App Enablement – Hear BMC present tips on how they used Oracle SOA Suite to integrate with Salesforce, Eloqua, WebEx, and more than 10 other SaaS applications. Also covered will be their smartphone and tablet enablement implementation. Oracle’s Integration Solution – A brief overview of how Oracle’s core integration products provide a unified approach to the many components of integration and mobile enablement. Image: BMC's Cloud Integration using Oracle SOA Suite Stop by the Oracle booth to chat with us and join the Oracle Session on Wed. Nov 28th at 9:45 a.m. For more information about Gartner Application Architecture, Development & Integration (AADI) conference at Caesar’s Palace November 27-29 2012, see this link

    Read the article

  • Human vs human android chess game design

    - by Plejo
    First of all I am total amateur in game development and sorry for my poor English. I want to make android human vs human chess game. So I am wondering how to design it? scenario 1: User connect to server, find opponent and send moves to server using socket, so match is running on a server side. I think this is not good idea because move should be validated on client side - or do I have to validate moves on client side? I do not think this is good solution because game is seperated. scenario 2: Using hole punching technique so server is needed only for connection between players, so game is running on android devices. which approach do you suggest? Or is there any better solution? Which server is best to use?

    Read the article

  • PowerShell Try Catch Finally

    - by PointsToShare
    PowerShell Try Catch Finally I am a relative novice to PowerShell and tried (pun intended) to use the “Try Catch Finally” in my scripts. Alas the structure that we love and use in C# (or even – shudder of shudders - in VB) does not always work in PowerShell. It turns out that it works only when the error is a terminating error (whatever that means). Well, you can turn all your errors to the terminating kind by simply setting - $ErrorActionPreference = "Stop", And later resetting it back to “Continue”, which is its normal setting. Now, the lazy approach is to start all your scripts with: $ErrorActionPreference = "Stop" And ending all of them with: $ErrorActionPreference = "Continue" But this opens you to trouble because should your script have an error that you neglected to catch (it even happens to me!), your session will now have all its errors as “terminating”. Obviously this is not a good thing, so instead let’s put these two setups in the beginning of each Try block and in the Finally block as seen below: That’s All Folks!!

    Read the article

  • Simplified INotifyPropertyChanged Implementation with WeakReference Support and Typed Property Acces

    - by Daniel Cazzulino
    I've grown a bit tired of implementing INotifyPropertyChanged. I've tried ways to improve it before (like this "ViewModel" custom tool which even generates strong-typed event accessors). But my fellow Clarius teammate Mariano thought it was overkill and didn't like that tool much. He mentioned an alternative approach also, which I didn't like too much because it relied on the consumer changing his typical interaction with the object events, but also because it has a substantial design flaw that causes handlers not to be called at all after a garbage collection happens. A very simple unit test will showcase this bug....Read full article

    Read the article

  • P2P synchronization: can a player update fields of other players?

    - by CherryQu
    I know that synchronization is a huge topic, so I have minimized the problem to this example case. Let's say, Alice and Bob are playing a P2P game, fighting against each other. If Alice hits Bob, how should I do the network component to make Bob's HP decrease? I can think of two approaches: Alice perform a Bob.HP--, then send Bob's reduced HP to Bob. Alice send a "I just hit Bob" signal to Bob. Bob checks it, and reduce its own HP, then send his new HP to everyone including Alice. I think the second approach is better because I don't think a player in a P2P game should be able to modify other players' private fields. Otherwise cheating would be too easy, right? My philosophy is that in a P2P game especially, a player's attributes and all attributes of its belonging objects should only be updated by the player himself. However, I can't prove that this is right. Could someone give me some evidence? Thanks :)

    Read the article

  • How to render axometric/isometric tiles that are a 2d array in logic, but inclined 45º visually?

    - by TheLima
    I am making a tile-based strategy game which i plan to have 2.5D visuals in an axometric/isometric fashion. Right now i'm programming it's logic and rendering it as a literal 2-dimensional array (perfect squares, like an isometric top-down-view). In short, i have something like this: And i want to turn it to something like this: Do i keep going on the 2d-array logic? Is it all just a change in rendering behavior, as i'm thinking it is? or 2d-array is the wrong approach for my objective and I should change before it's too late? What are the ways of doing it, anyways? How should i apply the 2.5D axometric/isometric view (45º rotation to the side, and 45º rotation upwards)?

    Read the article

  • Gartner PCC Summit, Baltimore - Oracle's Take

    - by [email protected]
    Back from last week's trip to the Gartner PCC Summit in Baltimore, Andy MacMillan and Ajay Gandhi share their impressions of the conference. According to Andy and Ajay: Interest in the sector is increasing - attendance at this year's conference was up by more than 50 percent The discussion at the conference this year shifted from a focus on what the tools are to how the tools can transform organizations and help build businesses Conference attendees were interested in taking a platform approach and looking to bring multiple tools together to solve problems and simplify business processes. If you are interested in learning more about the Bureau of Indian Affairs' deployment showcased in Ajay's session at the Gartner PCC Summit, come back soon - a detailed post is on its way.

    Read the article

  • Java Transaction Service without the application server

    - by johnny
    Is it possible to have a Java standalone application (no application server attached) that exposes some operations that a client can call and be the one to manage the transactions? I was thinking this application to expose JNDI resources and get a hold of a java:comp/UserTransaction from there, get also a bean from there and call methods A, B and C on it and coordinate the transaction from the client? The application I'm writing isn't complex enough so that I need a big application server around it so I'm thinking to have a standalone JTS inside it that the client could interact with from a transactions point of view. I don't have much experience with distributed transactions and don't really know how to tackle the issue. Is it even possible? Am I getting myself into something beyond what a mere mortal (programmer) can handle? How can I approach this?

    Read the article

  • Oracle presentations at the CIPS ICE Conference, November 5 - 7, Edmonton, Alberta, Canada

    - by Darin Pendergraft
    Oracle will be presenting at the CIPS ICE conference the last week of October in Calgary and the first week of November in Edmonton. Here is a list of the presentations for Edmonton: SHAW Conference Centre • Session Title: Identity and Access Management Integrated; Analyzing the Platform vs Point Solution Approach • Speaker: Darin Pendergraft • Monday, November 5th @ 10:45 AM - 12:00 PM • Session Title: Is Your IT Security Strategy Putting Your Institution at Risk? • Speaker: Spiros Angelopoulos • Monday, November 5th @ 1:45 PM - 3:00 PM Three sessions under the TRAIN: Practical Knowledge Track • Monday, November 5th @ 10:45 AM, 1:45 PM, 3:30 PM • Title: What's new in the Java Platform   Presenter: Donald Smith • Title: Java Enterprise Edition 6   Presenter: Shaun Smith • Title: The Road Ahead for Java SE, JavaFX and Java EE    Presenters: Donald Smith and Shaun Smith To learn more about the conference, and to see the other sessions go to the conference website.

    Read the article

  • Understanding and developing web services

    - by Pankaj Upadhyay
    This question is in conjuction with How would you approach developing a Hotel Reservation System? The solution to a system with different interfaces(or clients i should say) is to go with developing a Web service and have other systems interact with it. I never had the requirement for developing a Web service so i am bit short on it. All i understand is that A web service is a system or application that performs some operations which may include modifying, sending or receiving data over a network using HTTP protocol. (Let me know if the understanding is wrong) Now, from the other question it's clearly understood that i need to develop a web service but i have no idea as to how should i go about it. My language of choice is C# and .NET Framework. Question:: How do we develop a webservice and which tools,technology and framework should i use for the same using C# language?? Question:: How can i interact with this from a desktop WPF application, Website and Mobile app

    Read the article

  • Dynamic Permissions for roles in Asp.NET mvc

    - by Muhammad Adeel Zahid
    Hello, we have been developing a web application in asp.net mvc. we have scenarios where many actions on web page are dependent upon role of a specific user. For example a memo page has actions of edit, forward, approve, flag etc. these actions are granted to different roles and may be revoked at some later stage. what is the best approach to implement such scenarios in Asp.net mvc framework. i have heard about windows workflow foundation but really have no idea how it works. i m open to any suggestions. regards

    Read the article

  • Using VS12 to create and manage an Azure-SQL DB (simple tasks)

    - by Konrad Viltersten
    On occasion, I'm in a project where I need to store some information in an external DB. Usually, I create one in Azure and run some scripts that I adapt (the usual create table, create login etc.). It just struck me that there might (and definitely should) be a tool in VS that allows me to create a project for my DB, pull out some boxes to create a model of a DB schema, execute a script or two on it (possibly virtual or temporary) and then somehow push it up the cloud. Haven't found such a tool. Is there one and how do I get to it? NB. I'm not looking for an optimized or well structured schema (that's what the DB pros are for at a later stage). I'm not a DB guy nor do I aspire to become one (too old, hehe). I'll probably be satisfied with a Q&D approach.

    Read the article

  • What principles does your software engineering or development organization follow?

    - by user11347
    What principles does your software engineering or development organization follow? I am very interested in seeing a list of principles from someone who works at a company where these principles are discussed, published, followed, etc. The closest I have seen to a principles-based engineering organization are companies which are agile and follow the agile principles. Here is a list of Marick's values/challenges: http://www.agilejourneyman.com/2010/02/4-challenges-and-5-guiding-values-of.html I am looking for pointers to more stuff like this. Ideally, I'd like to hear from people who have actually implemented a principles-based approach in their organization.

    Read the article

  • Why lock-free data structures just aren't lock-free enough

    - by Alex.Davies
    Today's post will explore why the current ways to communicate between threads don't scale, and show you a possible way to build scalable parallel programming on top of shared memory. The problem with shared memory Soon, we will have dozens, hundreds and then millions of cores in our computers. It's inevitable, because individual cores just can't get much faster. At some point, that's going to mean that we have to rethink our architecture entirely, as millions of cores can't all access a shared memory space efficiently. But millions of cores are still a long way off, and in the meantime we'll see machines with dozens of cores, struggling with shared memory. Alex's tip: The best way for an application to make use of that increasing parallel power is to use a concurrency model like actors, that deals with synchronisation issues for you. Then, the maintainer of the actors framework can find the most efficient way to coordinate access to shared memory to allow your actors to pass messages to each other efficiently. At the moment, NAct uses the .NET thread pool and a few locks to marshal messages. It works well on dual and quad core machines, but it won't scale to more cores. Every time we use a lock, our core performs an atomic memory operation (eg. CAS) on a cell of memory representing the lock, so it's sure that no other core can possibly have that lock. This is very fast when the lock isn't contended, but we need to notify all the other cores, in case they held the cell of memory in a cache. As the number of cores increases, the total cost of a lock increases linearly. A lot of work has been done on "lock-free" data structures, which avoid locks by using atomic memory operations directly. These give fairly dramatic performance improvements, particularly on systems with a few (2 to 4) cores. The .NET 4 concurrent collections in System.Collections.Concurrent are mostly lock-free. However, lock-free data structures still don't scale indefinitely, because any use of an atomic memory operation still involves every core in the system. A sync-free data structure Some concurrent data structures are possible to write in a completely synchronization-free way, without using any atomic memory operations. One useful example is a single producer, single consumer (SPSC) queue. It's easy to write a sync-free fixed size SPSC queue using a circular buffer*. Slightly trickier is a queue that grows as needed. You can use a linked list to represent the queue, but if you leave the nodes to be garbage collected once you're done with them, the GC will need to involve all the cores in collecting the finished nodes. Instead, I've implemented a proof of concept inspired by this intel article which reuses the nodes by putting them in a second queue to send back to the producer. * In all these cases, you need to use memory barriers correctly, but these are local to a core, so don't have the same scalability problems as atomic memory operations. Performance tests I tried benchmarking my SPSC queue against the .NET ConcurrentQueue, and against a standard Queue protected by locks. In some ways, this isn't a fair comparison, because both of these support multiple producers and multiple consumers, but I'll come to that later. I started on my dual-core laptop, running a simple test that had one thread producing 64 bit integers, and another consuming them, to measure the pure overhead of the queue. So, nothing very interesting here. Both concurrent collections perform better than the lock-based one as expected, but there's not a lot to choose between the ConcurrentQueue and my SPSC queue. I was a little disappointed, but then, the .NET Framework team spent a lot longer optimising it than I did. So I dug out a more powerful machine that Red Gate's DBA tools team had been using for testing. It is a 6 core Intel i7 machine with hyperthreading, adding up to 12 logical cores. Now the results get more interesting. As I increased the number of producer-consumer pairs to 6 (to saturate all 12 logical cores), the locking approach was slow, and got even slower, as you'd expect. What I didn't expect to be so clear was the drop-off in performance of the lock-free ConcurrentQueue. I could see the machine only using about 20% of available CPU cycles when it should have been saturated. My interpretation is that as all the cores used atomic memory operations to safely access the queue, they ended up spending most of the time notifying each other about cache lines that need invalidating. The sync-free approach scaled perfectly, despite still working via shared memory, which after all, should still be a bottleneck. I can't quite believe that the results are so clear, so if you can think of any other effects that might cause them, please comment! Obviously, this benchmark isn't realistic because we're only measuring the overhead of the queue. Any real workload, even on a machine with 12 cores, would dwarf the overhead, and there'd be no point worrying about this effect. But would that be true on a machine with 100 cores? Still to be solved. The trouble is, you can't build many concurrent algorithms using only an SPSC queue to communicate. In particular, I can't see a way to build something as general purpose as actors on top of just SPSC queues. Fundamentally, an actor needs to be able to receive messages from multiple other actors, which seems to need an MPSC queue. I've been thinking about ways to build a sync-free MPSC queue out of multiple SPSC queues and some kind of sign-up mechanism. Hopefully I'll have something to tell you about soon, but leave a comment if you have any ideas.

    Read the article

  • New Horizons now less than 6 Au from Pluto

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/22/new-horizons-now-less-than-6-au-from-pluto.aspxThe New Horizons space craft as of 13:00 hrs UTC yesterday is now within 6 AU of  its next target - Pluto. While this is still a long way yet from Pluto, it is the closest spacecraft to Pluto. Closest approach is now some 752 days away on 14 July 2015.There are very interesting articles on the investigation work the New Horizons team has done to plan the path of New Horizons through the Plutonian system:http://pluto.jhuapl.edu/overview/piPerspective.phphttp://pluto.jhuapl.edu/news_center/news/20130614.phpWell done New Horizons team!

    Read the article

  • How do I do TDD on embedded devices?

    - by Darth
    I'm not new to programming and I've even worked with some low level C and ASM on AVR, but I really can't get my head around a larger-scale embedded C project. Being degenerated by the Ruby's philosophy of TDD/BDD, I'm unable to understand how people write and test code like this. I'm not saying it's a bad code, I just don't understand how this can work. I wanted to get more into some low level programming, but I really have no idea how to approach this, since it looks like a completely different mindset that I'm used to. I don't have trouble understanding pointer arithmetics, or how allocating memory works, but when I see how complex C/C++ code looks compared to Ruby, it just seems impossibly hard. Since I already ordered myself an Arduino board, I'd love to get more into some low level C and really understand how to do things properly, but it seems like none of the rules of high level languages apply. Is it even possible to do TDD on embedded devices or when developing drivers or things like custom bootloader, etc.?

    Read the article

< Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >