Search Results

Search found 58197 results on 2328 pages for 'application state'.

Page 1/2328 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Maintaining State in Mud Engine

    - by Johnathon Sullinger
    I am currently working on a Mud Engine and have started implementing my state engine. One of the things that has me troubled is maintaining different states at once. For instance, lets say that the user has started a tutorial, which requires specific input. If the user types "help" I want to switch in to a help state, so they can get the help they need, then return them to the original state once exiting the help. my state system uses a State Manager to manage the state per user: public class StateManager { /// <summary> /// Gets the current state. /// </summary> public IState CurrentState { get; private set; } /// <summary> /// Gets the states available for use. /// </summary> /// <value> public List<IState> States { get; private set; } /// <summary> /// Gets the commands available. /// </summary> public List<ICommand> Commands { get; private set; } /// <summary> /// Gets the mob that this manager controls the state of. /// </summary> public IMob Mob { get; private set; } public void Initialize(IMob mob, IState initialState = null) { this.Mob = mob; if (initialState != null) { this.SwitchState(initialState); } } /// <summary> /// Performs the command. /// </summary> /// <param name="message">The message.</param> public void PerformCommand(IMessage message) { if (this.CurrentState != null) { ICommand command = this.CurrentState.GetCommand(message); if (command is NoOpCommand) { // NoOperation commands indicate that the current state is not finished yet. this.CurrentState.Render(this.Mob); } else if (command != null) { command.Execute(this.Mob); } else if (command == null) { new InvalidCommand().Execute(this.Mob); } } } /// <summary> /// Switches the state. /// </summary> /// <param name="state">The state.</param> public void SwitchState(IState state) { if (this.CurrentState != null) { this.CurrentState.Cleanup(); } this.CurrentState = state; if (state != null) { this.CurrentState.Render(this.Mob); } } } Each of the different states that the user can be in, is a Type implementing IState. public interface IState { /// <summary> /// Renders the current state to the players terminal. /// </summary> /// <param name="player">The player to render to</param> void Render(IMob mob); /// <summary> /// Gets the Command that the player entered and preps it for execution. /// </summary> /// <returns></returns> ICommand GetCommand(IMessage command); /// <summary> /// Cleanups this instance during a state change. /// </summary> void Cleanup(); } Example state: public class ConnectState : IState { /// <summary> /// The connected player /// </summary> private IMob connectedPlayer; public void Render(IMob mob) { if (!(mob is IPlayer)) { throw new NullReferenceException("ConnectState can only be used with a player object implementing IPlayer"); } //Store a reference for the GetCommand() method to use. this.connectedPlayer = mob as IPlayer; var server = mob.Game as IServer; var game = mob.Game as IGame; // It is not guaranteed that mob.Game will implement IServer. We are only guaranteed that it will implement IGame. if (server == null) { throw new NullReferenceException("LoginState can only be set to a player object that is part of a server."); } //Output the game information mob.Send(new InformationalMessage(game.Name)); mob.Send(new InformationalMessage(game.Description)); mob.Send(new InformationalMessage(string.Empty)); //blank line //Output the server MOTD information mob.Send(new InformationalMessage(string.Join("\n", server.MessageOfTheDay))); mob.Send(new InformationalMessage(string.Empty)); //blank line mob.StateManager.SwitchState(new LoginState()); } /// <summary> /// Gets the command. /// </summary> /// <param name="message">The message.</param> /// <returns>Returns no operation required.</returns> public Commands.ICommand GetCommand(IMessage message) { return new NoOpCommand(); } /// <summary> /// Cleanups this instance during a state change. /// </summary> public void Cleanup() { // We have nothing to clean up. return; } } With the way that I have my FSM set up at the moment, the user can only ever have one state at a time. I read a few different posts on here about state management but nothing regarding keeping a stack history. I thought about using a Stack collection, and just pushing new states on to the stack then popping them off as the user moves out from one. It seems like it would work, but I'm not sure if it is the best approach to take. I'm looking for recommendations on this. I'm currently swapping state from within the individual states themselves as well which I'm on the fence about if it makes sense to do there or not. The user enters a command, the StateManager passes the command to the current State and lets it determine if it needs it (like passing in a password after entering a user name), if the state doesn't need any further commands, it returns null. If it does need to continue doing work, it returns a No Operation to let the state manager know that the state still requires further input from the user. If null is returned, the state manager will then go find the appropriate state for the command entered by the user. Example state requiring additional input from the user public class LoginState : IState { /// <summary> /// The connected player /// </summary> private IPlayer connectedPlayer; private enum CurrentState { FetchUserName, FetchPassword, InvalidUser, } private CurrentState currentState; /// <summary> /// Renders the current state to the players terminal. /// </summary> /// <param name="mob"></param> /// <exception cref="System.NullReferenceException"> /// ConnectState can only be used with a player object implementing IPlayer /// or /// LoginState can only be set to a player object that is part of a server. /// </exception> public void Render(IMob mob) { if (!(mob is IPlayer)) { throw new NullReferenceException("ConnectState can only be used with a player object implementing IPlayer"); } //Store a reference for the GetCommand() method to use. this.connectedPlayer = mob as IPlayer; var server = mob.Game as IServer; // Register to receive new input from the user. mob.ReceivedMessage += connectedPlayer_ReceivedMessage; if (server == null) { throw new NullReferenceException("LoginState can only be set to a player object that is part of a server."); } this.currentState = CurrentState.FetchUserName; switch (this.currentState) { case CurrentState.FetchUserName: mob.Send(new InputMessage("Please enter your user name")); break; case CurrentState.FetchPassword: mob.Send(new InputMessage("Please enter your password")); break; case CurrentState.InvalidUser: mob.Send(new InformationalMessage("Invalid username/password specified.")); this.currentState = CurrentState.FetchUserName; mob.Send(new InputMessage("Please enter your user name")); break; } } /// <summary> /// Receives the players input. /// </summary> /// <param name="sender">The sender.</param> /// <param name="e">The e.</param> void connectedPlayer_ReceivedMessage(object sender, IMessage e) { // Be good memory citizens and clean ourself up after receiving a message. // Not doing this results in duplicate events being registered and memory leaks. this.connectedPlayer.ReceivedMessage -= connectedPlayer_ReceivedMessage; ICommand command = this.GetCommand(e); } /// <summary> /// Gets the Command that the player entered and preps it for execution. /// </summary> /// <param name="command"></param> /// <returns>Returns the ICommand specified.</returns> public Commands.ICommand GetCommand(IMessage command) { if (this.currentState == CurrentState.FetchUserName) { this.connectedPlayer.Name = command.Message; this.currentState = CurrentState.FetchPassword; } else if (this.currentState == CurrentState.FetchPassword) { // find user } return new NoOpCommand(); } /// <summary> /// Cleanups this instance during a state change. /// </summary> public void Cleanup() { // If we have a player instance, we clean up the registered event. if (this.connectedPlayer != null) { this.connectedPlayer.ReceivedMessage -= this.connectedPlayer_ReceivedMessage; } } Maybe my entire FSM isn't wired up in the best way, but I would appreciate input on what would be the best to maintain a stack of state in a MUD game engine, and if my states should be allowed to receive the input from the user or not to check what command was entered before allowing the state manager to switch states. Thanks in advance.

    Read the article

  • Using the Items collection for state management

    - by nikolaosk
    I have explained some of the state mechanisms that we have in our disposal for preserving state in ASP.Net applications in various posts in this blog. You can have a look at this post , this post , this post and this one .My last post was on Application state management and you can read it here . In this post I will show you how to preserve state using the Items collection. Many developers do not know that we have this option as well for state management. With Items state we can pass data between...(read more)

    Read the article

  • Memento with optional state?

    - by Korey Hinton
    EDIT: As pointed out by Steve Evers and pdr, I am not correctly implementing the Memento pattern, my design is actually State pattern. Menu Program I built a console-based menu program with multiple levels that selects a particular test to run. Each level more precisely describes the operation. At any level you can type back to go back one level (memento). Level 1: Server Type? [1] Server A [2] Server B Level 2: Server environment? [1] test [2] production Level 3: Test type? [1] load [2] unit Level 4: Data Collection? [1] Legal docs [2] Corporate docs Level 4.5 (optional): Load Test Type [2] Multi TIF [2] Single PDF Level 5: Command Type? [1] Move [2] Copy [3] Remove [4] Custom Level 6: Enter a keyword [setup, cleanup, run] Design States PROBLEM: Right now the STATES enum is the determining factor as to what state is BACK and what state is NEXT yet it knows nothing about what the current memento state is. Has anyone experienced a similar issue and found an effective way to handle mementos with optional state? static enum STATES { SERVER, ENVIRONMENT, TEST_TYPE, COLLECTION, COMMAND_TYPE, KEYWORD, FINISHED } Possible Solution (Not-flexible) In reference to my code below, every case statement in the Menu class could check the state of currentMemo and then set the STATE (enum) accordingly to pass to the Builder. However, this doesn't seem flexible very flexible to change and I'm struggling to see an effective way refactor the design. class Menu extends StateConscious { private State state; private Scanner reader; private ServerUtils utility; Menu() { state = new State(); reader = new Scanner(System.in); utility = new ServerUtils(); } // Recurring menu logic public void startPromptingLoop() { List<State> states = new ArrayList<>(); states.add(new State()); boolean redoInput = false; boolean userIsDone = false; while (true) { // get Memento from last loop Memento currentMemento = states.get(states.size() - 1) .saveMemento(); if (currentMemento == null) currentMemento = new Memento.Builder(0).build(); if (!redoInput) System.out.println(currentMemento.prompt); redoInput = false; // prepare Memento for next loop Memento nextMemento = null; STATES state = STATES.values()[states.size() - 1]; // get user input String selection = reader.nextLine(); switch (selection) { case "exit": reader.close(); return; // only escape case "quit": nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); states.clear(); break; case "back": nextMemento = new Memento.Builder(previous(state), currentMemento, selection).build(); if (states.size() <= 1) { states.remove(0); } else { states.remove(states.size() - 1); states.remove(states.size() - 1); } break; case "1": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "2": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "3": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "4": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; default: if (state.equals(STATES.CATEGORY)) { String command = selection; System.out.println("Executing " + command + " command on: " + currentMemento.type + " " + currentMemento.environment); utility.executeCommand(currentMemento.nickname, command); userIsDone = true; states.clear(); nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); } else if (state.equals(STATES.KEYWORD)) { nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); states.clear(); nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); } else { redoInput = true; System.out.println("give it another try"); continue; } break; } if (userIsDone) { // start the recurring menu over from the beginning for (int i = 0; i < states.size(); i++) { if (i != 0) { states.remove(i); // remove all except first } } reader = new Scanner(System.in); this.state = new State(); userIsDone = false; } if (!redoInput) { this.state.restoreMemento(nextMemento); states.add(this.state); } } } }

    Read the article

  • Alternative to Game State System?

    - by Ricket
    As far as I can tell, most games have some sort of "game state system" which switches between the different game states; these might be things like "Intro", "MainMenu", "CharacterSelect", "Loading", and "Game". On the one hand, it totally makes sense to separate these into a state system. After all, they are disparate and would otherwise need to be in a large switch statement, which is obviously messy; and they certainly are well represented by a state system. But at the same time, I look at the "Game" state and wonder if there's something wrong about this state system approach. Because it's like the elephant in the room; it's HUGE and obvious but nobody questions the game state system approach. It seems silly to me that "Game" is put on the same level as "Main Menu". Yet there isn't a way to break up the "Game" state. Is a game state system the best way to go? Is there some different, better technique to managing, well, the "game state"? Is it okay to have an intro state which draws a movie and listens for enter, and then a loading state which loops on the resource manager, and then the game state which does practically everything? Doesn't this seem sort of unbalanced to you, too? Am I missing something?

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

  • How does a "Variables introduce state"?

    - by kunj2aan
    I was reading the "C++ Coding Standards" and this line was there: Variables introduce state, and you should have to deal with as little state as possible, with lifetimes as short as possible. Doesn't anything that mutates eventually manipulate state? What does "you should have to deal with little state as possible" mean? In an impure language such as C++, isn't state management really what you are doing? And what are other ways to "deal with as little state as possible" other than limiting variable lifetime?

    Read the article

  • IIS 7 and ASP.NET State Service Configuration

    - by Shawn
    We have 2 web servers load balanced and we wanted to get away from sticky sessions for obvious reasons. Our attempted approach is to use the ASP.NET State service on one of the boxes to store the session state for both. I realize that it's best to have a server dedicated to storing sessions but we don't have the resources for that. I've followed these instructions to no avail. The session still isn't being shared between the two servers. I'm not receiving any errors. I have the same machine key for both servers, and I've set the application ID to a unique value that matches between the two servers. Any suggestions on how I can troubleshoot this issue? Update: I turned on the session state service on my local machine and pointed both servers to the ip address on my local machine and it worked as expected. The session was shared between both servers. This leads me to believe that the problem might be that I'm not using a standalone server as my state service. Perhaps the problem is because I am using the ip address 127.0.0.1 on one server and then using a different ip address on the other server. Unfortunately when I try to use the network ip address as opposed to localhost the connection doesn't seem to work from the host server. Any insight on whether my suspicions are correct would be appreciated.

    Read the article

  • State management using the Application class in ASP.Net applications

    - by nikolaosk
    I have explained some of the state mechanisms that we have in our disposal for preserving state in ASP.Net applications in various posts in this blog. You can have a look at this post , this post , this post and this one . I have not presented yet an example in using the Application class/object for preserving state within our application. Application state is available globally in an application.The way we access Application State is through the HttpApplication object's Application property. Let...(read more)

    Read the article

  • State pattern: Why doesn't the context class implement or inherit the State abstract interface/class

    - by Ricket
    I'm reading about the State pattern. I have only just begun, so of course I begin by reading the entire Wikipedia article on it. I noticed that both of the examples in the article have some base abstract class or Java interface for a generic State's methods/functions. Then there are some states which inherit from the base and implement those methods/functions in different ways. Then there's a Context class which has a private member of type State and which, at any time, can be equal to an instance of one of the implementations. That context class also implements the same methods, and passes them onto the current state instance, and then has an additional method to change the state (or depending on design I understand the change of state could be a reaction to one of the implemented methods). Why doesn't this context class specifically "extend" or "implement" the generic State base class/interface?

    Read the article

  • Using both IIS6 and IIS7 with the same SQL State Server

    - by Josef
    We are trying to use new IIS7 (32bit, Classic Mode) webs in addition to our IIS6 webs with one SQL State Server for ASP.NET Session Handling. Unfortunately the number of transactions per seconds in the State Servers spikes (10 times+) as soon as we add the new IIS7 web to the farm. Are there any known issues with the described setup?

    Read the article

  • In a state machine, is it a good idea to separate states and transitions?

    - by codablank1
    I have implemented a small state machine in this way (in pseudo code): class Input {} class KeyInput inherits Input { public : enum { Key_A, Key_B, ..., } } class GUIInput inherits Input { public : enum { Button_A, Button_B, ..., } } enum Event { NewGame, Quit, OpenOptions, OpenMenu } class BaseState { String name; Event get_event (Input input); void handle (Event e); //event handling function } class Menu inherits BaseState{...} class InGame inherits BaseState{...} class Options inherits BaseState{...} class StateMachine { public : BaseState get_current_state () { return current_state; } void add_state (String name, BaseState state) { statesMap.insert(name, state);} //raise an exception if state not found BaseState get_state (String name) { return statesMap.find(name); } //raise an exception if state or next_state not found void add_transition (Event event, String state_name, String next_state_name) { BaseState state = get_state(state_name); BaseState next_state = get_state(next_state_name); transitionsMap.insert(pair<event, state>, next_state); } //raise exception if couple not found BaseState get_next_state(Event event, BaseState state) { return transitionsMap.find(pair<event, state>); } void handle(Input input) { Event event = current_state.get_event(input) current_state.handle(event); current_state = get_next_state(event, current_state); } private : BaseState current_state; map<String, BaseState> statesMap; //map of all states in the machine //for each couple event/state, this map stores the next state map<pair<Event, BaseState>, BaseState> transitionsMap; } So, before getting the transition, I need to convert the key input or GUI input to the proper event, given the current state; thus the same key 'W' can launch a new game in the 'Menu' state or moving forward a character in the 'InGame' state; Then I get the next state from the transitionsMap and I update the current state Does this configuration seem valid to you ? Is it a good idea to separate states and transitions ? And I have some kind of trouble to represent a 'null state' or a 'null event'; What initial value can I give to the current state and which one should be returned by get_state if it fails ?

    Read the article

  • Oracle Enterprise Manager 11g Application Management Suite for Oracle E-Business Suite Now Available

    - by chung.wu
    Oracle Enterprise Manager 11g Application Management Suite for Oracle E-Business Suite is now available. The management suite combines features that were available in the standalone Application Management Pack for Oracle E-Business Suite and Application Change Management Pack for Oracle E-Business Suite with Oracle's market leading real user monitoring and configuration management capabilities to provide the most complete solution for managing E-Business Suite applications. The features that were available in the standalone management packs are now packaged into Oracle E-Business Suite Plug-in 4.0, which is now fully certified with Oracle Enterprise Manager 11g Grid Control. This latest plug-in extends Grid Control with E-Business Suite specific management capabilities and features enhanced change management support. In addition, this latest release of Application Management Suite for Oracle E-Business Suite also includes numerous real user monitoring improvements. General Enhancements This new release of Application Management Suite for Oracle E-Business Suite offers the following key capabilities: Oracle Enterprise Manager 11g Grid Control Support: All components of the management suite are certified with Oracle Enterprise Manager 11g Grid Control. Built-in Diagnostic Ability: This release has numerous major enhancements that provide the necessary intelligence to determine if the product has been installed and configured correctly. There are diagnostics for Discovery, Cloning, and User Monitoring that will validate if the appropriate patches, privileges, setups, and profile options have been configured. This feature improves the setup and configuration time to be up and operational. Lifecycle Automation Enhancements Application Management Suite for Oracle E-Business Suite provides a centralized view to monitor and orchestrate changes (both functional and technical) across multiple Oracle E-Business Suite systems. In this latest release, it provides even more control and flexibility in managing Oracle E-Business Suite changes.Change Management: Built-in Diagnostic Ability: This latest release has numerous major enhancements that provide the necessary intelligence to determine if the product has been installed and configured correctly. There are diagnostics for Customization Manager, Patch Manager, and Setup Manager that will validate if the appropriate patches, privileges, setups, and profile options have been configured. Enhancing the setup time and configuration time to be up and operational. Customization Manager: Multi-Node Custom Application Registration: This feature automates the process of registering and validating custom products/applications on every node in a multi-node EBS system. Public/Private File Source Mappings and E-Business Suite Mappings: File Source Mappings & E-Business Suite Mappings can be created and marked as public or private. Only the creator/owner can define/edit his/her own mappings. Users can use public mappings, but cannot edit or change settings. Test Checkout Command for Versions: This feature allows you to test/verify checkout commands at the version level within the File Source Mapping page. Prerequisite Patch Validation: You can specify prerequisite patches for Customization packages and for Release 12 Oracle E-Business Suite packages. Destination Path Population: You can now automatically populate the Destination Path for common file types during package construction. OAF File Type Support: Ability to package Oracle Application Framework (OAF) customizations and deploy them across multiple Oracle E-Business Suite instances. Extended PLL Support: Ability to distinguish between different types of PLLs (that is, Report and Forms PLL files). Providing better granularity when managing PLL objects. Enhanced Standard Checker: Provides greater and more comprehensive list of coding standards that are verified during the package build process (for example, File Driver exceptions, Java checks, XML checks, SQL checks, etc.) HTML Package Readme: The package Readme is in HTML format and includes the file listing. Advanced Package Search Capabilities: The ability to utilize more criteria within the advanced search package (that is, Public, Last Updated by, Files Source Mapping, and E-Business Suite Mapping). Enhanced Package Build Notifications: More detailed information on the results of a package build process. Better, more detailed troubleshooting guidance in the event of build failures. Patch Manager:Staged Patches: Ability to run Patch Manager with no external internet access. Customer can download Oracle E-Business Suite patches into a shared location for Patch Manager to access and apply. Supports highly secured production environments that prohibit external internet connections. Support for Superseded Patches: Automatic check for superseded patches. Allows users to easily add superseded patches into the Patch Run. More comprehensive and correct Patch Runs. Removes many manual and laborious tasks, frees up Apps DBAs for higher value-added tasks. Automatic Primary Node Identification: Users can now specify which is the "primary node" (that is, which node hosts the Shared APPL_TOP) during the Patch Run interview process, available for Release 12 only. Setup Manager:Preview Extract Results: Ability to execute an extract in "proof mode", and examine the query results, to determine accuracy. Used in conjunction with the "where" clause in Advanced Filtering. This feature can provide better and more accurate fine tuning of extracts. Use Uploaded Extracts in New Projects: Ability to incorporate uploaded extracts in new projects via new LOV fields in package construction. Leverages the Setup Manager repository to access extracts that have been uploaded. Allows customer to reuse uploaded extracts to provision new instances. Re-use Existing (that is, historical) Extracts in New Projects: Ability to incorporate existing extracts in new projects via new LOV fields in package construction. Leverages the Setup Manager repository to access point-in-time extracts (snapshots) of configuration data. Allows customer to reuse existing extracts to provision new instances. Allows comparative historical reporting of identical APIs, executed at different times. Support for BR100 formats: Setup Manager can now automatically produce reports in the BR100 format. Native support for industry standard formats. Concurrent Manager API Support: General Foundation now provides an API for management of "Concurrent Manager" configuration data. Ability to migrate Concurrent Managers from one instance to another. Complete the setup once and never again; no need to redefine the Concurrent Managers. User Experience Management Enhancements Application Management Suite for Oracle E-Business Suite includes comprehensive capabilities for user experience management, supporting both real user and synthetic transaction based user monitoring techniques. This latest release of the management suite include numerous improvements in real user monitoring support. KPI Reporting: Configurable decimal precision for reporting of KPI and SLA values. By default, this is two decimal places. KPI numerator and denominator information. It is now possible to view KPI numerator and denominator information, and to have it available for export. Content Messages Processing: The application content message facility has been extended to distinguish between notifications and errors. In addition, it is now possible to specify matching rules that can be used to refine a selected content message specification. Note this is only available for XPath-based (not literal) message contents. Data Export: The Enriched data export facility has been significantly enhanced to provide improved performance and accessibility. Data is no longer stored within XML-based files, but is now stored within the Reporter database. However, it is possible to configure an alternative database for its storage. Access to the export data is through SQL. With this enhancement, it is now more easy than ever to use tools such as Oracle Business Intelligence Enterprise Edition to analyze correlated data collected from real user monitoring and business data sources. SNMP Traps for System Events: Previously, the SNMP notification facility was only available for KPI alerting. It has now been extended to support the generation of SNMP traps for system events, to provide external health monitoring of the RUEI system processes. Performance Improvements: Enhanced dashboard performance. The dashboard facility has been enhanced to support the parallel loading of items. In the case of dashboards containing large numbers of items, this can result in a significant performance improvement. Initial period selection within Data Browser and reports. The User Preferences facility has been extended to allow you to specify the initial period selection when first entering the Data Browser or reports facility. The default is the last hour. Performance improvement when querying the all sessions group. Technical Prerequisites, Download and Installation Instructions The Linux version of the plug-in is available for immediate download from Oracle Technology Network or Oracle eDelivery. For specific information regarding technical prerequisites, product download and installation, please refer to My Oracle Support note 1224313.1. The following certifications are in progress: * Oracle Solaris on SPARC (64-bit) (9, 10) * HP-UX Itanium (11.23, 11.31) * HP-UX PA-RISC (64-bit) (11.23, 11.31) * IBM AIX on Power Systems (64-bit) (5.3, 6.1)

    Read the article

  • iptables rules keep showing up

    - by Omriko
    I just installed an ubuntu precise server, after a few weird communications issues I checked the iptables list and found: Chain INPUT (policy DROP) target prot opt source destination ACCEPT all -- anywhere anywhere ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED ACCEPT tcp -- 10.0.0.0/24 anywhere tcp spts:1024:65535 dpt:ssh state NEW ACCEPT icmp -- anywhere anywhere state NEW ACCEPT icmp -- anywhere anywhere state NEW ACCEPT icmp -- anywhere anywhere state NEW ACCEPT icmp -- anywhere anywhere state NEW DROP tcp -- anywhere anywhere tcp dpt:10520 state NEW DROP udp -- anywhere anywhere udp spts:1:65535 dpt:31337 state NEW DROP udp -- anywhere anywhere udp spts:1:65535 dpt:31338 state NEW DROP udp -- anywhere anywhere udp spts:1:65535 dpt:54320 state NEW DROP udp -- anywhere anywhere udp spts:1:65535 dpt:54321 state NEW DROP tcp -- anywhere anywhere tcp dpt:12345 state NEW DROP tcp -- anywhere anywhere tcp dpt:12346 state NEW DROP tcp -- anywhere anywhere tcp dpt:20034 state NEW DROP tcp -- anywhere anywhere tcp dpt:16600 state NEW DROP tcp -- anywhere anywhere tcp dpt:16660 state NEW DROP tcp -- anywhere anywhere tcp dpt:65000 state NEW DROP udp -- anywhere anywhere udp dpt:34555 state NEW DROP udp -- anywhere anywhere udp dpt:35555 state NEW DROP udp -- anywhere anywhere udp spts:netbios-ns:netbios-dgm dpts:netbios-ns:netbios-dgm state NEW DROP tcp -- anywhere anywhere tcp spts:1024:65535 dpt:netbios-ssn state NEW DROP tcp -- anywhere anywhere tcp spts:1024:65535 dpt:microsoft-ds state NEW DROP udp -- anywhere anywhere udp spt:microsoft-ds dpt:microsoft-ds state NEW DROP udp -- anywhere anywhere udp spts:1024:65535 dpt:microsoft-ds state NEW DROP tcp -- anywhere anywhere tcp spts:1024:65535 dpt:loc-srv state NEW DROP tcp -- anywhere anywhere tcp spts:1024:65535 dpt:5000 state NEW DROP tcp -- anywhere anywhere tcp spts:1024:65535 dpts:1025:1029 state NEW DROP udp -- anywhere anywhere udp spts:1:65535 dpt:loc-srv state NEW ACCEPT tcp -- anywhere anywhere tcp spts:1024:65535 dpt:28082 state NEW DROP all -- anywhere anywhere state NEW Chain FORWARD (policy DROP) target prot opt source destination Chain OUTPUT (policy DROP) target prot opt source destination ACCEPT all -- anywhere anywhere ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED ACCEPT tcp -- anywhere anywhere tcp spts:tcpmux:65535 dpts:tcpmux:65535 state NEW ACCEPT udp -- anywhere anywhere udp dpts:1:65535 state NEW ACCEPT icmp -- anywhere anywhere state NEW ACCEPT tcp -- anywhere anywhere tcp spts:1024:65535 dpt:28082 state NEW DROP all -- anywhere anywhere state NEW I tried to wipe the rules, I disabled UFW, Ive rewritten and saved iptables rules according to this guide, but every minute or so the old rules return.... I checked crontab for scheduled tasks, there is nothing in there but still these rules appear every minute... please help!

    Read the article

  • Designing a state machine in C++

    - by skyeagle
    I have a little problem that involves modelling a state machine. I have managed to do a little bit of knowledge engineering and 'reverse engineer' a set of primitive deterministic rules that determine state as well as state transitions. I would like to know what the best practises are regarding: How to rigorously test my states and state transitions to make sure that the system cannot end up in an undeetermined state. How to enforce state transition requirements (for example, it should be impossible to go directly from stateFoo to StateFooBar, i.e. to embue each state with 'knowlege' about the states it can transition to. Ideally, I would like to use clean, pattern based design, with templates wherever possible. I do need somewhere to start though and I would be grateful for any pointers (no pun intended), that are sent my way.

    Read the article

  • Communication between state machines with hidden transitions

    - by slartibartfast
    The question emerged for me in embedded programming but I think it can be applied to quite a number of general networking situations e.g. when a communication partner fails. Assume we have an application logic (a program) running on a computer and a gadget connected to that computer via e.g. a serial interface like RS232. The gadget has a red/green/blue LED and a button which disables the LED. The LEDs color can be driven by software commands over the serial interface and the state (red/green/blue/off) is read back and causes a reaction in the application logic. Asynchronous behaviour of the application logic with regard to the LED color down to a certain delay (depending on the execution cycle of the application) is tolerated. What we essentially have is a resource (the LED) which can not be reserved and handled atomically by software because the (organic) user can at any time press the button to interfere/break the software attempt to switch the LED color. Stripping this example from its physical outfit I dare to say that we have two communicating state machines A (application logic) and G (gadget) where G executes state changes unbeknownst to A (and also the other way round, but this is not significant in our example) and only A can be modified at a reasonable price. A needs to see the reaction and state of G in one piece of information which may be (slightly) outdated but not inconsistent with respect to the short time window when this information was generated on the side of G. What I am looking for is a concise method to handle such a situation in embedded software (i.e. no layer/framework like CORBA etc. available). A programming technique which is able to map the complete behaviour of both participants on classical interfaces of a classical programming language (C in this case). To complicate matters (or rather, to generalize), a simple high frequency communication cycle of A to G and back (IOW: A is rapidly polling G) is out of focus because of technical restrictions (delay of serial com, A not always active, etc.). What I currently see as a general solution is: the application logic A as one thread of execution an adapter object (proxy) PG (presenting G inside the computer), together with the serial driver as another thread a communication object between the two (A and PG) which is transactionally safe to exchange The two execution contexts (threads) on the computer may be multi-core or just interrupt driven or tasks in an RTOS. The com object contains the following data: suspected state (written by A): effectively a member of the power set of states in G (in our case: red, green, blue, off, red_or_green, red_or_blue, red_or_off...etc.) command data (written by A): test_if_off, switch_to_red, switch_to_green, switch_to_blue operation status (written by PG): operation_pending, success, wrong_state, link_broken new state (written by PG): red, green, blue, off The idea of the com object is that A writes whichever (set of) state it thinks G is in, together with a command. (Example: suspected state="red_or_green", command: "switch_to_blue") Notice that the commands issued by A will not work if the user has switched off the LED and A needs to know this. PG will pick up such a com object and try to send the command to G, receive its answer (or a timeout) and set the operation status and new state accordingly. A will take back the oject once it is no longer at operation_pending and can react to the outcome. The com object could be separated of course (into two objects, one for each direction) but I think it is convenient in nearly all instances to have the command close to the result. I would like to have major flaws pointed out or hear an entirely different view on such a situation.

    Read the article

  • Multi-Threaded Application vs. Single Threaded Application

    Why would we use a multi threaded application vs. a single threaded application? First we must define multithreading. Multithreading is a feature of an operating system that allows programs to run subcomponents or threads in parallel. Typically most applications only need to use one thread because they do not perform time consuming tasks. The use of multiple threads allows an application to distribute long running tasks so that they can be executed in parallel. This gives the user the perceived appearance that the application is working faster due to the fact that while one thread is waiting on an IO process the remaining tasks can make use of the available CPU. The allows working threads to execute in tandem so that they can be competed sooner. Multithreading Benefits Improved responsiveness — Users usually report improved responsiveness compared to single thread applications. Faster applications — Multiple threads can lead to improved application performance. Prioritization — Threads can be assigned a priority which would allow higher priority tasks to take precedence over lower priority tasks. Single Threading Benefits Programming and debugging —These activities are easier compared to multithreaded applications due to the reduced complexity Less Overhead — Threads add overhead to an application When developing multi-threaded applications, the following must be considered. Deadlocks occur when two threads hold a monitor that the other one requires. In essence each task is blocking the other and both tasks are waiting for the other monitor to be released. This forces an application to hang or deadlock. Resource allocation is used to prevent deadlocks because the system determines if approving the resource request will render the system in an unsafe state. An unsafe state could result in a deadlock. The system only approves requests that will lead to safe states. Thread Synchronization is used when multiple threads use the same instance of an object. The threads accessing the object can then be locked and then synchronized so that each task can interact with the static object on at a time.

    Read the article

  • Sending state diffs (deltas) and unreliable connections

    - by spaceOwl
    We're building a realtime multiplayer game, in which each player is responsible for reporting its state on every iteration of the game loop. The state updates are broadcasted using unreliable UDP. To minimize state data sending, we've come up with a system that will send only deltas (whatever state data that was changed). This method however is flawed, since a lost packet will mean that other players will not receive the delta, making the game behave in an unexpected way. For example: Assume that state is comprised of: { positionX, positionY, health } Frame 1 - positionX changed --> send a packet with positionX only. Frame 2 - health changed // lost ! Frame 3 - positionY changed --> send a packet with positionY only. // Other players don't know about health change. How can one overcome this issue then? sending the entire data is not always feasible.

    Read the article

  • Constructs for wrapping a hardware state machine

    - by Henry Gomersall
    I am using a piece of hardware with a well defined C API. The hardware is stateful, with the relevant API calls needing to be in the correct order for the hardware to work properly. The API calls themselves will always return, passing back a flag that advises whether the call was successful, or if not, why not. The hardware will not be left in some ill defined state. In effect, the API calls advise indirectly of the current state of the hardware if the state is not correct to perform a given operation. It seems to be a pretty common hardware API style. My question is this: Is there a well established design pattern for wrapping such a hardware state machine in a high level language, such that consistency is maintained? My development is in Python. I ideally wish the hardware state machine to be abstracted to a much simpler state machine and wrapped in an object that represents the hardware. I'm not sure what should happen if an attempt is made to create multiple objects representing the same piece of hardware. I apologies for the slight vagueness, I'm not very knowledgeable in this area and so am fishing for assistance of the description as well!

    Read the article

  • How to design application for scaling the application?

    - by Muhammad
    I have one application which handles hardware events connected on the same computer's PCIe slots. The maximum number of PCIe slots on motherboard are two. I have utilized both slots. Now for scaling the application I need either more PCIe slots in same computer or I use another computer. So consider I am using another computer with same application and hardware connected on the PCIe Slots. Now my problem is that I want to design application over it which can access both computers hardware devices and does the process on it. The processed data should be send back to the respective PC's hardware. Please refer the attached diagram for expansion.

    Read the article

  • Looking for reading material on application architecture with web UI

    - by toong
    I'm looking for articles (or other reading material) on the topic of fat client applications with a web UI layer. Open-source projects that use this architecture would be very interesting too. Such an application would embed one (or more) browser-window(s) (chromiumembedded for example). You would need bidirectional communication between your web-UI and your domain model/services. I think this allows quick prototyping the UI, a clean separation between logic and UI and potentially easier portability across platforms (compared to WinForms for example). But that is just my view, I was looking for the view of people who have been on that road. An example of an application using a web-ui layer is Light Table. Unfortunately it is not open source (at this point?).

    Read the article

  • How to recover from finite-state-machine breakdown?

    - by Earl Grey
    My question may seems very scientific but I think it's a common problem and seasoned developers and programmers hopefully will have some advice to avoid the problem I mention in title. Btw., what I describe bellow is a real problem I am trying to proactively solve in my iOS project, I want to avoid it at all cost. By finite state machine I mean this I have a UI with a few buttons, several session states relevant to that UI and what this UI represents, I have some data which values are partly displayed in the UI, I receive and handle some external triggers (represented by callbacks from sensors). I made state diagrams to better map the relevant scenarios that are desirable and alowable in that UI and application. As I slowly implement the code, the app starts to behave more and more like it should. However, I am not very confident that it is robust enough. My doubts come from watching my own thinking and implementation process as it goes. I was confident that I had everything covered, but it was enough to make a few brute tests in the UI and I quickly realized that there are still gaps in the behavior ..I patched them. However, as each component depends and behaves based on input from some other component, a certain input from user or some external source trigers a chain of events, state changes..etc. I have several components and each behave like this Trigger received on input - trigger and its sender analyzed - output something (a message, a state change) based on analysis The problem is, this is not completely selfcontained, and my components (a database item, a session state, some button's state)...COULD be changed, influenced, deleted, or otherwise modified, outside the scope of the event-chain or desirable scenario. (phone crashes, battery is empty phone turn of suddenly) This will introduce a nonvalid situation into the system, from which the system potentially COULD NOT BE ABLE to recover. I see this (althought people do not realize this is the problem) in many of my competitors apps that are on apple store, customers write things like this "I added three documents, and after going there and there, i cannot open them, even if a see them." or "I recorded videos everyday, but after recording a too log video, I cannot turn of captions on them.., and the button for captions doesn't work".. These are just shortened examples, customers often describe it in more detail..from the descriptions and behavior described in them, I assume that the particular app has a FSM breakdown. So the ultimate question is how can I avoid this, and how to protect the system from blocking itself? EDIT I am talking in the context of one viewcontroller's view on the phone, I mean one part of the application. I Understand the MVC pattern, I have separate modules for distinct functionality..everything I describe is relevant to one canvas on the UI.

    Read the article

  • how to process document state transition?

    - by brick
    Imagine there is an application (ASP.NET MVC) that processes some documents. The document must be revised several times by different group of users. state/role rules: simple user can only publish document; (priority: low) userGroup1 can switch it to next state or reject it; (priority: higher) userGroup2 can confirm previous state and switch it to next gradual state or reject it; (priority: highest) How to implement such a workflow in ASP.NET MVC? How to impelement UI, views so that group with lower priority can both visually/technically perform only allowed transitions? Can I somehow extend that system: link? Do I need extras like service bus, event sourcing for that?

    Read the article

  • Throwing exception from a property when my object state is invalid

    - by Rumi P.
    Microsoft guidelines say: "Avoid throwing exceptions from property getters", and I normally follow that. But my application uses Linq2SQL, and there is the case where my object can be in invalid state because somebody or something wrote nonsense into the database. Consider this toy example: [Table(Name="Rectangle")] public class Rectangle { [Column(Name="ID", IsPrimaryKey = true, IsDbGenerated = true)] public int ID {get; set;} [Column(Name="firstSide")] public double firstSide {get; set;} [Column(Name="secondSide")] public double secondSide {get; set;} public double sideRatio { get { return firstSide/secondSide; } } } Here, I could write code which ensures that my application never writes a Rectangle with a zero-length side into the database. But no matter how bulletproof I make my own code, somebody could open the database with a different application and create an invalid Rectangle, especially one with a 0 for secondSide. (For this example, please forget that it is possible to design the database in a way such that writing a side length of zero into the rectangle table is impossible; my domain model is very complex and there are constraints on model state which cannot be expressed in a relational database). So, the solution I am gravitating to is to change the getter to: get { if(firstSide > 0 && secondSide > 0) return firstSide/secondSide; else throw new System.InvalidOperationException("All rectangle sides should have a positive length"); } The reasoning behind not throwing exceptions from properties is that programmers should be able to use them without having to make precautions about catching and handling them them. But in this case, I think that it is OK to continue to use this property without such precautions: if the exception is thrown because my application wrote a non-zero rectangle side into the database, then this is a serious bug. It cannot and shouldn't be handled in the application, but there should be code which prevents it. It is good that the exception is visibly thrown, because that way the bug is caught. if the exception is thrown because a different application changed the data in the database, then handling it is outside of the scope of my application. So I can't do anything about it if I catch it. Is this a good enough reasoning to get over the "avoid" part of the guideline and throw the exception? Or should I turn it into a method after all? Note that in the real code, the properties which can have an invalid state feel less like the result of a calculation, so they are "natural" properties, not methods.

    Read the article

  • UPK Content State

    - by peter.maravelias
    State is an editable property for communicating the status of a document in the UPK library. This is particularly helpful when working with other authors in a development team. Authors can assign a state to any document using the values that are defined in the master list. The default master list of State values includes Not Started, Draft, In Review, and Final (in the language installed on the server). Administrators can customize the list by adding, deleting, or renaming the values as well as sequencing the values as they will appear on the assignment list from the Properties pane. Let us know if or how you are using UPK Content States in your development efforts!

    Read the article

  • extrapolating object state based on updates

    - by user494461
    I have a networked multi-user collaborative application. To maintain a consistent virtual world, I send updates for objects from a master peer to a guest peer. The update state contains x,y,z coordinates of object center and his rotation matrix(CHAI3d api used a 3x3 matrix) with 30Hz frequency. I want to reduce this update rate and want to send with a reduced update rate. I want a predictor on both peers. When the predicted value is outside, say a error value of 10% in comparison to master peers objects original state the master peer triggers a state update. Now for position I used velocity,position updates so that the guest peer can extrapolate position. Like velocity for position what parameter should I use for rotation extrapolition?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >