Search Results

Search found 1603 results on 65 pages for 'coordinate transformation'.

Page 1/65 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • C++: Error in Xcode; "Graph::Coordinate::Coordinate()", referenced from: ...

    - by Alexandstein
    In a program I am writing, I wrote for two classes (Coordinate, and Graph), with one of them taking the other as constructor arguments. When I try to compile it I get the following error for Graph.cpp: Undefined symbols: "Graph::Coordinate::Coordinate(double)", referenced from: Graph::Graph() in Graph.o Graph::Graph() in Graph.o "Graph::Coordinate::Coordinate()", referenced from: Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate, Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph(Graph::Coordinate)in Graph.o Graph::Graph() in Graph.o Graph::Graph() in Graph.o Graph::Graph() in Graph.o Graph::Graph() in Graph.o Graph::Graph() in Graph.o Graph::Graph() in Graph.o ld: symbol(s) not found collect2: ld returned 1 exit status I checked the code and couldn't find anything out of the ordinary. Here are the four class files: (Sorry if it's a lot of code to sift through.) Coordinate.h class Graph{ #include "Coordinate.h" public: Graph(); Graph(Coordinate); Graph(Coordinate, Coordinate); Graph(Coordinate, Coordinate, Coordinate); void setXSize(int); void setYSize(int); void setX(int); //int corresponds to coordinates 1, 2, or 3 void setY(int); void setZ(int); int getXSize(); int getYSize(); double getX(int); //int corresponds to coordinates 1, 2, or 3 double getY(int); double getZ(int); void outputGraph(); void animateGraph(); private: int xSize; int ySize; Coordinate coord1; Coordinate coord2; Coordinate coord3; }; Coordinate.cpp #include <iostream> #include "Coordinate.h" Coordinate::Coordinate() { xCoord = 1; yCoord = 1; zCoord = 1; xVel = 1; yVel = 1; zVel = 1; } Coordinate::Coordinate(double xCoo) { xCoord = xCoo; yCoord = 1; zCoord = 1; xVel = 1; yVel = 1; zVel = 1; } Coordinate::Coordinate(double xCoo,double yCoo) { xCoord = xCoo; yCoord = yCoo; zCoord = 1; xVel = 1; yVel = 1; zVel = 1; } Coordinate::Coordinate(double xCoo,double yCoo,double zCoo) { xCoord = xCoo; yCoord = yCoo; zCoord = zCoo; xVel = 1; yVel = 1; zVel = 1; } void Coordinate::setXCoord(double xCoo) { xCoord = xCoo; } void Coordinate::setYCoord(double yCoo) { yCoord = yCoo; } void Coordinate::setZCoord(double zCoo) { zCoord = zCoo; } void Coordinate::setXVel(double xVelo) { xVel = xVelo; } void Coordinate::setYVel(double yVelo) { yVel = yVelo; } void Coordinate::setZVel(double zVelo) { zVel = zVelo; } double Coordinate::getXCoord() { return xCoord; } double Coordinate::getYCoord() { return yCoord; } double Coordinate::getZCoord() { return zCoord; } double Coordinate::getXVel() { return xVel; } double Coordinate::GetYVel() { return yVel; } double Coordinate::GetZVel() { return zVel; } Graph.h class Graph{ #include "Coordinate.h" public: Graph(); Graph(Coordinate); Graph(Coordinate, Coordinate); Graph(Coordinate, Coordinate, Coordinate); void setXSize(int); void setYSize(int); void setX(int); //int corresponds to coordinates 1, 2, or 3 void setY(int); void setZ(int); int getXSize(); int getYSize(); double getX(int); //int corresponds to coordinates 1, 2, or 3 double getY(int); double getZ(int); void outputGraph(); void animateGraph(); private: int xSize; int ySize; Coordinate coord1; Coordinate coord2; Coordinate coord3; }; Graph.cpp #include "Graph.h" #include "Coordinate.h" #include <iostream> #include <ctime> using namespace std; Graph::Graph() { Coordinate coord1(0); } Graph::Graph(Coordinate cOne) { coord1 = cOne; xSize = 20; ySize = 20; } Graph::Graph(Coordinate cOne, Coordinate cTwo) { coord1 = cOne; coord2 = cTwo; xSize = 20; ySize = 20; } Graph::Graph(Coordinate cOne, Coordinate cTwo, Coordinate cThree) { coord1 = cOne; coord2 = cTwo; coord3 = cThree; xSize = 20; ySize = 20; } void Graph::setXSize(int size) { xSize = size; } void Graph::setYSize(int size) { ySize = size; } int Graph::getXSize() { return xSize; } int Graph::getYSize() { return ySize; } void Graph::outputGraph() { } void Graph::animateGraph() { } Thanks very much for any help!

    Read the article

  • Converting world space coordinate to screen space coordinate and getting incorrect range of values

    - by user1423893
    I'm attempting to convert from world space coordinates to screen space coordinates. I have the following code to transform my object position Vector3 screenSpacePoint = Vector3.Transform(object.WorldPosition, camera.ViewProjectionMatrix); The value does not appear to be in screen space coordinates and is not limited to a [-1, 1] range. What step have I missed out in the conversion process? EDIT: Projection Matrix Perspective(game.GraphicsDevice.Viewport.AspectRatio, nearClipPlaneZ, farClipPlaneZ); private void Perspective(float aspect_Ratio, float z_NearClipPlane, float z_FarClipPlane) { nearClipPlaneZ = z_NearClipPlane; farClipPlaneZ = z_FarClipPlane; float yZoom = 1f / (float)Math.Tan(fov * 0.5f); float xZoom = yZoom / aspect_Ratio; matrix_Projection.M11 = xZoom; matrix_Projection.M12 = 0f; matrix_Projection.M13 = 0f; matrix_Projection.M14 = 0f; matrix_Projection.M21 = 0f; matrix_Projection.M22 = yZoom; matrix_Projection.M23 = 0f; matrix_Projection.M24 = 0f; matrix_Projection.M31 = 0f; matrix_Projection.M32 = 0f; matrix_Projection.M33 = z_FarClipPlane / (nearClipPlaneZ - farClipPlaneZ); matrix_Projection.M34 = -1f; matrix_Projection.M41 = 0f; matrix_Projection.M42 = 0f; matrix_Projection.M43 = (nearClipPlaneZ * farClipPlaneZ) / (nearClipPlaneZ - farClipPlaneZ); matrix_Projection.M44 = 0f; } View Matrix // Make our view matrix Matrix.CreateFromQuaternion(ref orientation, out matrix_View); matrix_View.M41 = -Vector3.Dot(Right, position); matrix_View.M42 = -Vector3.Dot(Up, position); matrix_View.M43 = Vector3.Dot(Forward, position); matrix_View.M44 = 1f; // Create the combined view-projection matrix Matrix.Multiply(ref matrix_View, ref matrix_Projection, out matrix_ViewProj); // Update the bounding frustum boundingFrustum.SetMatrix(matrix_ViewProj);

    Read the article

  • OpenGLES rotation in fixed coordinate system

    - by Jenicek
    Hi, I'm having real trouble finding out how to rotate an object arround two axes without changing axes orientation. I need only local rotation, first arround X axis and then arround Y axis(only example, it doesn't matter how many transformations arround which axes) without transforming the whole coordinate system, only the object. The problem is that if I'm using glRotatef arround X axis, the axes are rotated also and that's what I don't want. I've red bunch of articles about it but it seems I'm still missing something. Thanks for every help. To have some sample code here, it's something like this glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRotatef(rotX, 1.0f, 0.0f, 0.0f); glRotatef(rotY, 0.0f, 1.0f, 0.0f); drawObject(); but this transforms the coordinate system also.

    Read the article

  • Transform 3D vectors between coordinate systems

    - by Nir Cig
    I've got 6 points in 3D space: A,B,C,D,E,F, that represent 4 vectors. AB is perpendicular to AC and DE is perpendicular to DF. I need to find a transformation matrix M, that transforms AB to DE and AC to DF. In other words: M·AB=DE, M·AC=DF If no scaling was involved, this could be solved with a simple rotation matrix. But since the ratios |AB|/|DE|, |AC|/|DF| might be different, I'm not sure how to proceed.

    Read the article

  • World to Pixel Transformation

    - by D00d
    My objects have a location in world coordinates (basically 1.0f is a meter). If I simply draw my objects using their world coordinates, each meter will correspond to a pixel. Obviously that's not what I want. Now, I don't want to have to apply a transformation to each and every object's position when I draw them. As I happen to be using XNA, and spritebatch allows a Matrix to be passed in as an argument in it's begin method, I was wondering if there is a way to pass the World to Pixel transformation in there. Any suggestions? So far Matrix.CreateScale(new Vector3(zoom, zoom, 1)) puts the objects in their proper spot, but it also scales up the sprites. Is there a way to transform the position without enlarging the sprite? Thanks

    Read the article

  • transformation of UML Diagrams to specification Z using xsl transformation

    - by Mona
    hi. I'm trying to transform some uml diagrams (of singleton , AbstractFactory ...) to Z specification , first i transformed my uml diagram to an xml file using starUML then i used an xsl program and saxon to transform my xml file to .tex( for Z ) , but it didnt work . if someone has an idea about how the xsl program should be written (just maybe the steps) that will be great. thanks

    Read the article

  • Transformation matrix that maps a window

    - by gbhall
    I'm currently learning OpenGL at uni, and they give us questions to help us learn (these are not worth anything), however I'm stuck on this one question and would have to travel over an hour and a half to uni for an answer. How do I do this question? Please include as many steps as you can, I want to be able to follow exactly how to do this. Find the transformation that maps a window whose lower left corner is at (1,1) and upper right corner is at (3,5) onto: The entire device screen whose dimension is (600, 500) A viewport that has lower left corner at (100,100) and upper right corner at (400,400) Edit: Damn sorry I should have added I am meant to find the matrix, so no code.

    Read the article

  • Inverse projection: question about w coordinate

    - by fayeWilly
    I have to perform in shader an inverse projection from a u/v of a render target. What I do is: Get NDC as 2*(u,v,depth) - 1 Then world space as tmp = (P*V)^-1 * (NDC,1.0); world space = tmp/tmp.w; This apparently works, but I am confused about the w division there. Why this work? Shouldn't be a multiplication by a w somewhere (as in the "forward" pipeline there is the perpsective division?) Thank you, Faye

    Read the article

  • How to get image's coordinate on JPanel

    - by Jessy
    This question is related to my previous question http://stackoverflow.com/questions/2376027/how-to-generate-cartesian-coordinate-x-y-from-gridbaglayout I have successfully get the coordinate of each pictures, however when I checked the coordinate through (System.out.println) and the placement of the images on the screen, it seems to be wrong. e.g. if on the screen it was obvious that the x point of the first picture is on cell 2 which is on coordinate of 20, but the program shows x=1. Here is part of the code: public Grid (){ setPreferredSize(new Dimension(600,600)); .... setLayout(new GridBagLayout()); GridBagConstraints gc = new GridBagConstraints(); gc.weightx = 1d; gc.weighty = 1d; gc.insets = new Insets(0, 0, 0, 0);//top, left, bottom, and right gc.fill = GridBagConstraints.BOTH; JLabel[][] label = new JLabel[ROWS][COLS]; Random rand = new Random(); // fill the panel with labels for (int i=0;i<IMAGES;i++){ ImageIcon icon = createImageIcon("myPics.jpg"); int r, c; do{ //pick random cell which is empty r = (int)Math.floor(Math.random() * ROWS); c = (int)Math.floor(Math.random() * COLS); } while (label[r][c]!=null); //randomly scale the images int x = rand.nextInt(50)+30; int y = rand.nextInt(50)+30; Image image = icon.getImage().getScaledInstance(x,y, Image.SCALE_SMOOTH); icon.setImage(image); JLabel lbl = new JLabel(icon); // Instantiate GUI components gc.gridx = r; gc.gridy = c; add(lbl, gc); //add(component, constraintObj); label[r][c] = lbl; } I checked the coordinate through this code: Component[] components = getComponents(); for (Component component : components) { System.out.println(component.getBounds()); }

    Read the article

  • Checksum Transformation

    The Checksum Transformation computes a hash value, the checksum, across one or more columns, returning the result in the Checksum output column. The transformation provides functionality similar to the T-SQL CHECKSUM function, but is encapsulated within SQL Server Integration Services, for use within the pipeline without code or a SQL Server connection. As featured in The Microsoft Data Warehouse Toolkit by Joy Mundy and Warren Thornthwaite from the Kimbal Group. Have a look at the book samples especially Sample package for custom SCD handling. All input columns are passed through the transformation unaltered, those selected are used to generate the checksum which is passed out through a single output column, Checksum. This does not restrict the number of columns available downstream from the transformation, as columns will always flow through a transformation. The Checksum output column is in addition to all existing columns within the pipeline buffer. The Checksum Transformation uses an algorithm based on the .Net framework GetHashCode method, it is not consistent with the T-SQL CHECKSUM() or BINARY_CHECKSUM() functions. The transformation does not support the following Integration Services data types, DT_NTEXT, DT_IMAGE and DT_BYTES. ChecksumAlgorithm Property There ChecksumAlgorithm property is defined with an enumeration. It was first added in v1.3.0, when the FrameworkChecksum was added. All previous algorithms are still supported for backward compatibility as ChecksumAlgorithm.Original (0). Original - Orginal checksum function, with known issues around column separators and null columns. This was deprecated in the first SQL Server 2005 RTM release. FrameworkChecksum - The hash function is based on the .NET Framework GetHash method for object types. This is based on the .NET Object.GetHashCode() method, which unfortunately differs between x86 and x64 systems. For that reason we now default to the CRC32 option. CRC32 - Using a standard 32-bit cyclic redundancy check (CRC), this provides a more open implementation. The component is provided as an MSI file, however to complete the installation, you will have to add the transformation to the Visual Studio toolbox by hand. This process has been described in detail in the related FAQ entry for How do I install a task or transform component?, just select Checksum from the SSIS Data Flow Items list in the Choose Toolbox Items window. Downloads The Checksum Transformation is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Checksum Transformation for SQL Server 2005 Checksum Transformation for SQL Server 2008 Checksum Transformation for SQL Server 2012 Version History SQL Server 2012 Version 3.0.0.27 – SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2010) SQL Server 2008 Version 2.0.0.27 – Fix for CRC-32 algorithm that inadvertently made it sort dependent. Fix for race condition which sometimes lead to the error Item has already been added. Key in dictionary: '79764919' . Fix for upgrade mappings between 2005 and 2008. (19 Oct 2010) Version 2.0.0.24 - SQL Server 2008 release. Introduces the new CRC-32 algorithm, which is consistent across x86 and x64.. The default algorithm is now CRC32. (29 Oct 2008) Version 2.0.0.6 - SQL Server 2008 pre-release. This version was released by mistake as part of the site migration, and had known issues. (20 Oct 2008) SQL Server 2005 Version 1.5.0.43 – Fix for CRC-32 algorithm that inadvertently made it sort dependent. Fix for race condition which sometimes lead to the error Item has already been added. Key in dictionary: '79764919' . (19 Oct 2010) Version 1.5.0.16 - Introduces the new CRC-32 algorithm, which is consistent across x86 and x64. The default algorithm is now CRC32. (20 Oct 2008) Version 1.4.0.0 - Installer refresh only. (22 Dec 2007) Version 1.4.0.0 - Refresh for minor UI enhancements. (5 Mar 2006) Version 1.3.0.0 - SQL Server 2005 RTM. The checksum algorithm has changed to improve cardinality when calculating multiple column checksums. The original algorithm is still available for backward compatibility. Fixed custom UI bug with Output column name not persisting. (10 Nov 2005) Version 1.2.0.1 - SQL Server 2005 IDW 15 June CTP. A user interface is provided, as well as the ability to change the checksum output column name. (29 Aug 2005) Version 1.0.0 - Public Release (Beta). (30 Oct 2004) Screenshot

    Read the article

  • Regular Expression Transformation

    The regular expression transformation exposes the power of regular expression matching within the pipeline. One or more columns can be selected, and for each column an individual expression can be applied. The way multiple columns are handled can be set on the options page. The AND option means all columns must match, whilst the OR option means only one column has to match. If rows pass their tests then rows are passed down the successful match output. Rows that fail are directed down the alternate output. This transformation is ideal for validating data through the use of regular expressions. You can enter any expression you like, or select a pre-configured expression within the editor. You can expand the list of pre-configured expressions yourself. These are stored in a Xml file, %ProgramFiles%\Microsoft SQL Server\nnn\DTS\PipelineComponents\RegExTransform.xml, where nnn represents the folder version, 90 for 2005, 100 for 2008 and 110 for 2012. If you want to use regular expressions to manipulate data, rather than just validating it, try the RegexClean Transformation. The component is provided as an MSI file, however for 2005/200 you will have to add the transformation to the Visual Studio toolbox by hand. This process has been described in detail in the related FAQ entry for How do I install a task or transform component?, just select Regular Expression Transformation in the Choose Toolbox Items window. Downloads The Regular Expression Transformation is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Regular Expression Transformation for SQL Server 2005 Regular Expression Transformation for SQL Server 2008 Regular Expression Transformation for SQL Server 2012 Version History SQL Server 2012Version 2.0.0.87 - SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2012) SQL Server 2008Version 2.0.0.87 - Release for SQL Server 2008 Integration Services. (10 Oct 2008) SQL Server 2005 Version 1.1.0.93 - Added option for you to choose AND or OR logic when multiple columns have been selected. Previously behaviour was OR only. (31 Jul 2008) Version 1.0.0.76 - Installer update and improved exception handling. (28 Jan 2008) Version 1.0.0.41 - Update for user interface stability fixes. (2 Aug 2006) Version 1.0.0.24 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. (12 Jun 2006) Version 1.0.0.9 - Public Release for SQL Server 2005 IDW 15 June CTP (29 Aug 2005) Screenshots  

    Read the article

  • Android Canvas Coordinate System

    - by Mitch
    I'm trying to find information on how to change the coordinate system for the canvas. I have some vector data I'd like to draw to a canvas using things like circles and lines, but the data's coordinate system doesn't match the canvas coordinate system. Is there a way to map the units I'm using to the screen's units? I'm drawing to an ImageView which isn't taking up the entire display. If I have to do my own calculations prior to each drawing call, how to I find the width and height of my ImageView? The getWidth() and getHeight() calls I tried seem to be returning the entire canvas size and not the size of the ImageView which isn't helpful. I see some matrix stuff, is that something that will work for me? I tried to use the "public void scale(float sx, float sy)", but that works more like a pixel level zoom rather than a vector scale function by expanding each pixel. This means if the dimensions are increased to fit the screen, the line thickness is also increased. Update: After some research I'm starting to think there's no way to change coordinate systems to something else. I'll need to map all my coordinates to the screen's pixel coordinates and do so by modifying each vector. The getWidth() and getHeight() seem to be working better for me now. I can say what was wrong, but I suspect I can't use these methods inside the constructor.

    Read the article

  • How do call this symbolic code transformation ?

    - by erric
    Hi, I often cross this kind of code transformation (or even mathematical transformation) (python example, but applies to any language) I've go a function def f(x): return x I use it into another one. def g(x): return f(x)*f(x) print g(2) leads to 4 But I want to remove the functional dependency, and I change the function g into def g(f): return f*f print g( f(2) ) leads to 4 too How do you call this kind of transformation, locally turning a function into a scalar ?

    Read the article

  • RegexClean Transformation

    Use the power of regular expressions to cleanse your data right there inside the Data Flow. This transformation includes a full user interface for simple configuration, as well as advanced features such as error output configuration. Two regular expressions are used, a match expression and a replace expression. The transformation is designed around the named capture groups or match groups, and even supports multiple expressions. This allows for rich and complex expressions to be built, all through an easy to reuse transformation where a bespoke Script Component was previously the only alternative. Some simple properties are available for each column selected – Behaviour The two behaviour modes offer similar functionality but with a difference. Replace, replaces tokens with the input, and Emit overwrites the whole string. Cascade Cascade allows you to define multiple expressions, each on a new line. The match expression will be processed into one operation per line, which are then processed in order at run-time. Multiple replace expressions can also be specified, again each on a new line. If there is no corresponding replace expression for a match expression line, then the last replace expression will be used instead. It is common to have multiple match expressions, but only a single replace expression. Match Expression The expression used to define the named capture groups. This is where you can analyse the data, and tag or name elements within it as found by the match expression. Replace Expression The replace determines the final output. It will reference the named groups from the match expression and assembles them into the final output. If you want to use regular expressions to validate data then try the Regular Expression Transformation. Quick Start Guide Select a column. A new output column is created for each selected column; there is no option for in-place replacement of column values. One input column can be used to populate multiple output columns, just select the column again in the lower grid, using the Input Columns drop-down selector. Amend the output column name and size as required. They default to the same as the input column selected. Amend the behaviour as required, the default is Replace. Amend the cascade option as required, the default is true. Finally enter your match and replace regular expressions Quick Sample #1 Parse an email address and extract the user and domain portions. Format as a web address passing the user portion as a URL parameter. This uses two match groups, user and host, which correspond to the text before the @ and after it respectively. Behaviour is Emit, and cascade of false, we only have a single match expression. Match Expression ^(?<user>[^@]+)@(?<host>.+)$ Replace Expression - http://www.${host}?user=${user} Results Sample Input Sample Output [email protected] http://www.adventure-works.com?user=zheng0 The component is provided as an MSI file, however to complete the installation, you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the RegexClean Transformation from the list. Downloads The RegexClean Transformation is available for both SQL Server 2005 and SQL Server 2008. Please choose the version to match your SQL Server version, or you can install both versions and use them side by side if you have both SQL Server 2005 and SQL Server 2008 installed. RegexClean Transformation for SQL Server 2005 RegexClean Transformation for SQL Server 2008 Version History SQL Server 2005 Version 1.0.0.105 - Public Release (28 Jan 2008) SQL Server 2005 Version 1.0.0.105 - Public Release (28 Jan 2008) Screenshot

    Read the article

  • Row Count Plus Transformation

    As the name suggests we have taken the current Row Count Transform that is provided by Microsoft in the Integration Services toolbox and we have recreated the functionality and extended upon it. There are two things about the current version that we thought could do with cleaning up Lack of a custom UI You have to type the variable name yourself In the Row Count Plus Transformation we solve these issues for you. Another thing we thought was missing is the ability to calculate the time taken between components in the pipeline. An example usage would be that you want to know how many rows flowed between Component A and Component B and how long it took. Again we have solved this issue. Credit must go to Erik Veerman of Solid Quality Learning for the idea behind noting the duration. We were looking at one of his packages and saw that he was doing something very similar but he was using a Script Component as a transformation. Our philosophy is that if you have to write or Copy and Paste the same piece of code more than once then you should be thinking about a custom component and here it is. The Row Count Plus Transformation populates variables with the values returned from; Counting the rows that have flowed through the path Returning the time in seconds between when it first saw a row come down this path and when it saw the final row. It is possible to leave both these boxes blank and the component will still work.   All input columns are passed through the transformation unaltered, you are not permitted to change or add to the inputs or outputs of this component. Optionally you can set the component to fire an event, which happens during the PostExecute phase of the execution. This can be useful to improve visibility of this information, such that it is captured in package logging, or can be used to drive workflow in the case of an error event. Properties Property Data Type Description OutputRowCountVariable String The name of the variable into which the amount of row read will be passed (Optional). OutputDurationVariable String The name of the variable into which the duration in seconds will be passed. (Optional). EventType RowCountPlusTransform.EventType The type of event to fire during post execute, included in which are the row count and duration values. RowCountPlusTransform.EventType Enumeration Name Value Description None 0 Do not fire any event. Information 1 Fire an Information event. Warning 2 Fire a Warning event. Error 3 Fire an Error event. Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. For 2005/2008 Only - Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Row Count Plus Transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations, and this component requires a minimum of SQL Server 2005 Service Pack 1. Downloads The Row Number Transformation is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Row Count Plus Transformation for SQL Server 2005 Row Count Plus Transformation for SQL Server 2008 Row Count Plus Transformation for SQL Server 2012 Version History SQL Server 2012 Version 3.0.0.6 - SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2012) SQL Server 2008 Version 2.0.0.5 - SQL Server 2008 release. (15 Oct 2008) SQL Server 2005 Version 1.1.0.43 - Bug fix for duration. For long running processes the duration second count may have been incorrect. (8 Sep 2006) Version 1.1.0.42 - SP1 Compatibility Testing. Added the ability to raise an event with the count and duration data for easier logging or workflow. (18 Jun 2006) Version 1.0.0.1 - SQL Server 2005 RTM. Made available as general public release. (20 Mar 2006) Screenshot Troubleshooting Make sure you have downloaded the version that matches your version of SQL Server. We offer separate downloads for SQL Server 2005, SQL Server 2008 and SQL Server 2012. If you get an error when you try and use the component along the lines of The component could not be added to the Data Flow task. Please verify that this component is properly installed.  ... The data flow object "Konesans ..." is not installed correctly on this computer, this usually indicates that the internal cache of SSIS components needs to be updated. This is held by the SSIS service, so you need restart the the SQL Server Integration Services service. You can do this from the Services applet in Control Panel or Administrative Tools in Windows. You can also restart the computer if you prefer. You may also need to restart any current instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Once installation is complete you need to manually add the task to the toolbox before you will see it and to be able add it to packages - How do I install a task or transform component?

    Read the article

  • Opengl Coordinate System

    - by praveen
    Say I am using an Identity Matrix for my modelViewTransformation Matrix on an Open GL ES2.0 program. The Co-ordinate system in this case is the canonical opengl co-ordinate system which extends from (-1,-1,-1) to (1,,1,1). My question is, is this coordinate system right-handed or left-handed? A broader question: Is there a document with OpenGL which can list all the mathematical conventions followed by the API?

    Read the article

  • Row Number Transformation

    The Row Number Transformation calculates a row number for each row, and adds this as a new output column to the data flow. The column number is a sequential number, based on a seed value. Each row receives the next number in the sequence, based on the defined increment value. The final row number can be stored in a variable for later analysis, and can be used as part of a process to validate the integrity of the data movement. The Row Number transform has a variety of uses, such as generating surrogate keys, or as the basis for a data partitioning scheme when combined with the Conditional Split transformation. Properties Property Data Type Description Seed Int32 The first row number or seed value. Increment Int32 The value added to the previous row number to make the next row number. OutputVariable String The name of the variable into which the final row number is written post execution. (Optional). The three properties have been configured to support expressions, or they can set directly in the normal manner. Expressions on components are only visible on the hosting Data Flow task, not at the individual component level. Sometimes the data type of the property is incorrectly set when the properties are created, see the Troubleshooting section below for details on how to fix this. Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. For 2005/2008 Only - Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Row Number transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations, and this component requires a minimum of SQL Server 2005 Service Pack 1. Downloads The Row Number Transformation  is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Row Number Transformation for SQL Server 2005 Row Number Transformation for SQL Server 2008 Row Number Transformation for SQL Server 2012 Version History SQL Server 2012 Version 3.0.0.6 - SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2012) SQL Server 2008 Version 2.0.0.5 - SQL Server 2008 release. (15 Oct 2008) SQL Server 2005 Version 1.2.0.34 – Updated installer. (25 Jun 2008) Version 1.2.0.7 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. Added the ability to reuse an existing column to hold the generated row number, as an alternative to the default of adding a new column to the output. (18 Jun 2006) Version 1.2.0.7 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. Added the ability to reuse an existing column to hold the generated row number, as an alternative to the default of adding a new column to the output. (18 Jun 2006) Version 1.0.0.0 - Public Release for SQL Server 2005 IDW 15 June CTP (29 Aug 2005) Screenshot Code Sample The following code sample demonstrates using the Data Generator Source and Row Number Transformation programmatically in a very simple package. Package package = new Package(); package.Name = "Data Generator & Row Number"; // Add the Data Flow Task Executable taskExecutable = package.Executables.Add("STOCK:PipelineTask"); // Get the task host wrapper, and the Data Flow task TaskHost taskHost = taskExecutable as TaskHost; MainPipe dataFlowTask = (MainPipe)taskHost.InnerObject; // Add Data Generator Source IDTSComponentMetaData100 componentSource = dataFlowTask.ComponentMetaDataCollection.New(); componentSource.Name = "Data Generator"; componentSource.ComponentClassID = "Konesans.Dts.Pipeline.DataGenerator.DataGenerator, Konesans.Dts.Pipeline.DataGenerator, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b"; CManagedComponentWrapper instanceSource = componentSource.Instantiate(); instanceSource.ProvideComponentProperties(); instanceSource.SetComponentProperty("RowCount", 10000); // Add Row Number Tx IDTSComponentMetaData100 componentRowNumber = dataFlowTask.ComponentMetaDataCollection.New(); componentRowNumber.Name = "FlatFileDestination"; componentRowNumber.ComponentClassID = "Konesans.Dts.Pipeline.RowNumberTransform.RowNumberTransform, Konesans.Dts.Pipeline.RowNumberTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b"; CManagedComponentWrapper instanceRowNumber = componentRowNumber.Instantiate(); instanceRowNumber.ProvideComponentProperties(); instanceRowNumber.SetComponentProperty("Increment", 10); // Connect the two components together IDTSPath100 path = dataFlowTask.PathCollection.New(); path.AttachPathAndPropagateNotifications(componentSource.OutputCollection[0], componentRowNumber.InputCollection[0]); #if DEBUG // Save package to disk, DEBUG only new Application().SaveToXml(String.Format(@"C:\Temp\{0}.dtsx", package.Name), package, null); #endif package.Execute(); foreach (DtsError error in package.Errors) { Console.WriteLine("ErrorCode : {0}", error.ErrorCode); Console.WriteLine(" SubComponent : {0}", error.SubComponent); Console.WriteLine(" Description : {0}", error.Description); } package.Dispose(); Troubleshooting Make sure you have downloaded the version that matches your version of SQL Server. We offer separate downloads for SQL Server 2005, SQL Server 2008 and SQL Server 2012. If you get an error when you try and use the component along the lines of The component could not be added to the Data Flow task. Please verify that this component is properly installed.  ... The data flow object "Konesans ..." is not installed correctly on this computer, this usually indicates that the internal cache of SSIS components needs to be updated. This is held by the SSIS service, so you need restart the the SQL Server Integration Services service. You can do this from the Services applet in Control Panel or Administrative Tools in Windows. You can also restart the computer if you prefer. You may also need to restart any current instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Once installation is complete you need to manually add the task to the toolbox before you will see it and to be able add it to packages - How do I install a task or transform component? Please also make sure you have installed a minimum of SP1 for SQL 2005. The IDtsPipelineEnvironmentService was added in SQL Server 2005 Service Pack 1 (SP1) (See  http://support.microsoft.com/kb/916940). If you get an error Could not load type 'Microsoft.SqlServer.Dts.Design.IDtsPipelineEnvironmentService' from assembly 'Microsoft.SqlServer.Dts.Design, Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91'. when trying to open the user interface, it implies that your development machine has not had SP1 applied. Very occasionally we get a problem to do with the properties not being created with the correct data type. Since there is no way to programmatically to define the data type of a pipeline component property, it can only infer it. Whilst we set an integer value as we create the property, sometimes SSIS decides to define it is a decimal. This is often highlighted when you use a property expression against the property and get an error similar to Cannot convert System.Int32 to System.Decimal. Unfortunately this is beyond our control and there appears to be no pattern as to when this happens. If you do have more information we would be happy to hear it. To fix this issue you can manually edit the package file. In Visual Studio right click the package file from the Solution Explorer and select View Code, which will open the package as raw XML. You can now search for the properties by name or the component name. You can then change the incorrect property data types highlighted below from Decimal to Int32. <component id="37" name="Row Number Transformation" componentClassID="{BF01D463-7089-41EE-8F05-0A6DC17CE633}" … >     <properties>         <property id="38" name="UserComponentTypeName" …>         <property id="41" name="Seed" dataType="System.Int32" ...>10</property>         <property id="42" name="Increment" dataType="System.Decimal" ...>10</property>         ... If you are still having issues then contact us, but please provide as much detail as possible about error, as well as which version of the the task you are using and details of the SSIS tools installed.

    Read the article

  • Split vector vs matrix notation for transformation

    - by seahorse
    Some rendering engines like Ogre prefer to use a individual vector based notation for transformations like the following Split vector notation: Net Transformation is represented by Scale vector = sx, sy, sz Transformation vector = tx, ty, tz Rotation Quaternion Vector = w,x,y,z Matrix notation: There are other engines which simply use a net combined transformation matrix. What are the advantages of the first notation over the second? Also for animation interpolation does it work in the first notation that we interpolate across the individual components and use the interpolated parts to get the net transformation? Is this another advantage?

    Read the article

  • Data Transformation Pipeline

    - by davenewza
    I have create some kind of data pipeline to transform coordinate data into more useful information. Here is the shell of pipeline: public class PositionPipeline { protected List<IPipelineComponent> components; public PositionPipeline() { components = new List<IPipelineComponent>(); } public PositionPipelineEntity Process(Position position) { foreach (var component in components) { position = component.Execute(position); } return position; } public PositionPipeline RegisterComponent(IPipelineComponent component) { components.Add(component); return this; } } Every IPipelineComponent accepts and returns the same type - a PositionPipelineEntity. Code: public interface IPipelineComponent { PositionPipelineEntity Execute(PositionPipelineEntity position); } The PositionPipelineEntity needs to have many properties, many which are unused in certain components and required in others. Some properties will also have become redundant at the end of the pipeline. For example, these components could be executed: TransformCoordinatesComponent: Parse the raw coordinate data into a Coordinate type. DetermineCountryComponent: Determine and stores country code. DetermineOnRoadComponent: Determine and store whether coordinate is on a road. Code: pipeline .RegisterComponent(new TransformCoordinatesComponent()) .RegisterComponent(new DetermineCountryComponent()) .RegisterComponent(new DetermineOnRoadComponent()); pipeline.Process(positionPipelineEntity); The PositionPipelineEntity type: public class PositionPipelineEntity { // Only relevant to the TransformCoordinatesComponent public decimal RawCoordinateLatitude { get; set; } // Only relevant to the TransformCoordinatesComponent public decimal RawCoordinateLongitude { get; set; } // Required by all components after TransformCoordinatesComponent public Coordinate CoordinateLatitude { get; set; } // Required by all components after TransformCoordinatesComponent public Coordinate CoordinateLongitude { get; set; } // Set in DetermineCountryComponent, not required anywhere. // Requires CoordinateLatitude and CoordinateLongitude (TransformCoordinatesComponent) public string CountryCode { get; set; } // Set in DetermineOnRoadComponent, not required anywhere. // Requires CoordinateLatitude and CoordinateLongitude (TransformCoordinatesComponent) public bool OnRoad { get; set; } } Problems: I'm very concerned about the dependency that a component has on properties. The way to solve this would be to create specific types for each component. The problem then is that I cannot chain them together like this. The other problem is the order of components in the pipeline matters. There is some dependency. The current structure does not provide any static or runtime checking for such a thing. Any feedback would be appreciated.

    Read the article

  • Transformation of Product Management in Telecommunications for Rapid Launch of Next Generation Products

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } The Telecom industry continues to evolve through disruptive products, uncertain markets, shorter product lifecycles and convergence of technologies. Today’s market has moved from network centric to consumer centric and focuses primarily on the customer experience. It has resulted in several product management challenges such as an increased complexity and volume of offerings, creating product variants, accelerating time-to-market, ability to provide multiple product views for varied stakeholders, leveraging OSS intelligence to BSS layer, product co-creation and increasing audit and security concerns for service providers. The document discusses how enterprise product management enabled by PLM-based product catalogue solutions helps to launch next generation products rapidly in the context of the Telecommunication Industry.   1.0.       Introduction   Figure 1: Business Scenario   Modern business demands the launch of complex products in a very short timeframe and effecting changes in the price plan faster without IT intervention. One of the key transformation initiatives companies are focusing on is in the area of product management transformation and operational efficiency improvement. As part of these initiatives, companies are investing in best- in-class COTs-based Product Management solutions developed on industry-wide standards.   The new COTs packages are planned to integrate with existing or new B/OSS systems to provide a strategic end-to-end agile solution for reduced time-to-market and order journey time. In addition, system rationalization is being undertaken to phase out legacy systems and migrate to strategic systems.   2.0.       An Overview of Product Management in Telecom   Product data in telecom is multi- dimensional and difficult to manage. It increased significantly due to the complexity of the product, product offerings on the converged network, increased volume of offerings, bundled offering structures and ever increasing regulatory requirements.   In addition, the shrinking product lifecycle in telecom makes it difficult to manage the dynamic product data. Mergers and acquisitions coupled with organic growth pose major challenges in product portfolio management. It is a roadblock in the journey towards becoming an agile organization.       Figure 2: Complexity in Product Management   Network Technology’ is the new dimension in telecom product management where the same products are realized through different networks i.e., Soiled network to Converged network. Consequently, the product solution is different.     Figure 3: Current Scenario - Pain Points in Product Management   The major business implications arising out of the current scenario are slow time-to-market and an inefficient process that affects innovation.   3.0. Transformation of Next Generation Product Management   Companies must focus on their Product Management Transformation Journey in the areas of:   ·       Management of single truth of product information across the organization/geographies which is currently managed in heterogeneous systems   ·       Management of the Intellectual Property (IP) on the product concept and partnership in the design of discrete components to integrate into the system   ·       Leveraging structured and unstructured product data within the extended enterprise to extract consumer insights and drive innovation   ·       Management of effective operational separation to comply with regulatory bodies   ·       Reuse of existing designs and add relevant features such as value-added services to enable effective product bundling     Figure 4: Next generation needs   PLM-based Enterprise Product Catalogue solutions efficiently address the above requirements and act as an enabler towards product management transformation and rapid product launch.   4.0. PLM-based Enterprise Product Management     Figure 5: PLM-based Enterprise Product Mastering   Enterprise Product Management (EPM) enables the business to manage complex product attributes of data in complex environments. Product Mastering helps create a 'single view' of the product by creating a business-driven, IT-supported environment where a global 'single truth record' is created, managed and reused.   4.1 The Business Case for Telco PLM-based solutions for Enterprise Product Management   ·       Telco PLM-based Product Mastering solutions provide a centralized authoring environment for product definition and control of all product data and rules   ·       PLM packages are designed to support multiple perspectives of product data (ordering perspective, billing perspective, provisioning perspective)   ·       Maintains relationships/links between different elements of the entire product definition   ·       Telco PLM packages are specialized in next generation lifecycle management requirements of products such as revision and state management, test and release management, role management and impact analysis)   ·       Takes into consideration all aspects of OSS product requirements compared to CRM product catalogue solutions where the product data managed is mostly order oriented and transactional     ·       New breed of Telco PLM packages are designed with 'open' standards such as SID and eTOM. They are interoperable, support integration frameworks such as subscription and notification.   ·       Telco PLM packages have developed good collaboration frameworks to integrate suppliers and partners into the product development value chain   4.2 Various Architectures/Approaches for Product Mastering using Telco PLM systems   4. 2.a Single Central Product Management (Mastering) Approach   Figure 6: Single Central Product Management (Master) Approach       This approach is implemented across verticals such as aerospace and automotive. It focuses on a physically centralized product master to which other sources are dependent on. The product definition data (Product bundles, service bundles, price plans, offers and discounts, product configuration rules and market campaigns) is created and maintained physically in a centralized environment. In addition, the product definition/authoring environment is centralized. The existing legacy product definition data available in CRM product catalogue, billing catalogue and the legacy product catalogue is migrated to the centralized PLM-based Enterprise Product Management solution.   Architectural changes must be made in the existing business landscape of applications to create and revise data because the applications have to refer to the central repository for approvals and validation of product configurations. It is achieved by modifying how the applications write data or how the applications can be adapted to use the rules to be managed and published.   Complete product configuration validation will be done in enterprise / central product catalogue and final configuration will be sent to the B/OSS system through the SOA compliant product distribution architecture. The approach/architecture enables greater control in terms of product data management and product data governance.   4.2.b Federated Product Management (Mastering) Architecture     Figure 7: Federated Product Management (Mastering) Architecture   In the federated product mastering approach, the basic unique product definition data (product id, description product hierarchy, basic price plans and simple product design rules) will be centrally created and will be maintained. And, the advanced product definition (Product bundling, promotions, offers & discount plans) will be created in respective down stream OSS systems. The advanced product definition (Product bundling, promotions, offers and discount plans) will be created in respective downstream OSS systems.   For example, basic product definitions such as attributes, product hierarchy and basic price plans will be created and maintained in Enterprise/Central product reference catalogue and distributed to downstream OSS systems. Respective downstream OSS systems build product bundles, promotions, advanced price plans over the basic product definition and master the advanced product definition. Central reference database accesses the respective other source product master data and assembles a point-in-time consolidated view of the product. The approach is typically adapted in some merger and acquisition scenarios where there is a low probability of a central physical authority managing the data. In addition, the migration effort in this case is minimal and there are no big architectural changes to the organization application landscape. However, this approach will not result in better product data management and data governance.   5.0 Customer Scenario – Before EPC deployment   A leading global telecommunications service provider wanted to launch a quad play and triple play service offering in the shortest possible lead time. The service provider was offering Broadband and VoIP services to customers. The company wanted to reuse a majority of the Broadband services and price plans and bundle them with new wireless and IPTV services for quad play and triple play. The challenges in launching the new service offerings were:       Figure 8: Triple Play Plan   ·       Broadband product data was stored in multiple product catalogues (CRM catalogue, Billing catalogue, spread sheets)   ·       Product managers spent a lot of time performing tasks involving duplication or re-keying of data. Manual effort caused errors, cost and time over-runs.   ·       No effective product and price data governance mechanism. Price change issues arising from the lack of data consistency across systems resulted in leakage of customer value and revenue.   ·       Product data had re-usability issues and was not in a structured format. It resulted in uncontrolled product portfolio creation and product management issues.   ·       Lack of enterprise product model resulted into product distribution challenges and thus delays in product launch.   ·       Designers are constrained by existing legacy product management solutions to model product/service requirements and product configuration rules such as upgrading, downgrading and cross selling.    5.1 Customer Scenario - After EPC deployment     Figure 9: SOA-based end-to-end EPC Solution   The company deployed PLM-based Enterprise Product Catalogue solutions to launch quad play service after evaluating various product catalogues. The broadband product offering, service and price data were migrated to the new system, and the product and price plan hierarchy for new offerings were created using the entities defined in the Enterprise Product Model. Supplier product catalogue data such as routers and set up boxes were loaded onto the new solution through SOA-based web service. Price plans and configuration rules were built in the new system. The validated final product configurations were extracted from the product catalogue in a SID format and were distributed to the downstream B/OSS systems through exposed SOA-based web services. The transformations required for the B/OSS system were handled using the transformation layer as part of the solution.   6.0 How PLM enabled Product Management Transformation         Figure 10: Product Management Transformation     PLM-based Product Catalogue Solution helped the customer reduce the product launch cycle time by 30% and enable transformation of Product Management for next generation services.   7.0 Conclusion   On the one hand, the telecom industry is undergoing changes due to disruptions, uncertain product markets and increased complexity of products. On the other hand, the ARPU is decreasing year-on-year. Communications Service Providers are embarking on convergence, bundled service offerings, flexibility to cross-sell and up-sell, introduce new value-added services, leverage Web 2.0 concepts and network capabilities. Consequently, large scale IT transformation initiatives to improve their ARPU supporting network and business transformations are a business imperative. Product Management has become a focus area. Companies are investing in best-in- class COTS solutions to reduce time-to-market, ensure rapid service delivery and improve operational efficiency. An efficient PLM-based enterprise product mastering solution plays a key role in achieving zero touch automation and rapid product launch.   References:   1.     Preston G.Smith, Donald G.Reineristsem, Van Nostrand Reinhold “Developing Products in Half the time”.   2.     John G. Innes, "Achieving Successful Product Change", Pitman Publishing.   3.     D T Pham and R M Setchi (16th Jan, 2001) "Authoring environment for documentation development" University of Wales Cardiff, U.K., Proceedings on Institution of Mechanical Engineers, Vol. 215, Part B.   4.     Oracle Product Hub for Communications:   http://www.oracle.com/us/products/applications/master-data-management/product-hub-082059.html  

    Read the article

  • Coordinate geometry operations in images/discrete space

    - by avd
    I have images which have line segments, rays etc. I am representing these line segments using Bresenham algorithm (means whatever coordinates I get using this algorithm between two points). Now I want to do operations such as finding intersection point between two line segments, finding the projection of one vector onto other etc... The problem is I am not working in continuous space. The line segments are being approximated using Bresenham algorithm. So I want suggestions on what are the best and most efficient ways to do this? A link to C++ library or implementation would also be good enough. Please suggest some books which deal with such problems.

    Read the article

  • XNA - Mouse coordinates to word space transformation

    - by Gabriel Butcher
    I have a pretty annoying problem. I would like to create a drawing program, using winform + XNA combo. The most important part would be to transform the mouse position into the XNA drawn grid - I was able to make it for the translations, but it only work if I don't zoom in - when I do, the coordinates simply went horrible wrong. And I have no idea what I doing wrong. I tried to transform with scaling matrix, transform with inverse scaling matrix, multiplying with zoom, but none seems to work. In the beginning (with zoom value = 1) the grid starts from (0,0,0) going to (Width, Height, 0). I was able to get coordinates based on this grid as long as the zoom value didn't changed at all. I using a custom shader, with orthographic projection matrix, identity view matrix, and the transformed world matrix. Here is the two main method: internal void Update(RenderData data) { KeyboardState keyS = Keyboard.GetState(); MouseState mouS = Mouse.GetState(); if (ButtonState.Pressed == mouS.RightButton) { camTarget.X -= (float)(mouS.X - oldMstate.X) / 2; camTarget.Y += (float)(mouS.Y - oldMstate.Y) / 2; } if (ButtonState.Pressed == mouS.MiddleButton || keyS.IsKeyDown(Keys.Space)) { zVal += (float)(mouS.Y - oldMstate.Y) / 10; zoom = (float)Math.Pow(2, zVal); } oldKState = keyS; oldMstate = mouS; world = Matrix.CreateTranslation(new Vector3(-camTarget.X, -camTarget.Y, 0)) * Matrix.CreateScale(zoom / 2); } internal PointF MousePos { get { Vector2 mousePos = new Vector2(Mouse.GetState().X, Mouse.GetState().Y); Matrix trans = Matrix.CreateTranslation(new Vector3(camTarget.X - (Width / 2), -camTarget.Y + (Height / 2), 0)); mousePos = Vector2.Transform(mousePos, trans); return new PointF(mousePos.X, mousePos.Y); } } The second method should return the coordinates of the mouse cursor based on the grid (where the (0,0) point of the grid is the top-left corner.). But is just don't work. I deleted the zoom transformation from the matrix trans, as I didnt was able to get any useful result (most of the time, the coordinates was horrible wrong, mostly many thousand when the grid's size is 500x500). Any idea, or suggestion? I trying to solve this simple problem for two days now :\

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >