Search Results

Search found 11979 results on 480 pages for 'game of thrones'.

Page 261/480 | < Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >

  • Texturing a mesh generated from voxel data

    - by Minja
    I have implemented the Marching Cubes algorithm to display an isosurface based on voxel data. Currently, it is displayed with triplanar texturing. I'm working with unity, so I have a material with the triplanar shader attached. Now, the whole isosurface is rendered using this material. And thats my problem: I want the texture to represent the voxel data. I'm storing a material value for every point in the grid, and based on this value, I want the texture of the isosurface to change. Sadly, I have no clue how to do this. So if the voxel is sand, I want sand to be displayed; if it's stone, then there should be stone. Right now, everything is displayed as sand. Thanks in advance!

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • How can I implement 2D cel shading in XNA?

    - by Artii
    So I was just wondering on how to give a scene I am rendering a hand drawn look (like say Crayon Physics). I don't really want to preprocess the sprites and was thinking of using a shader. Cel shading supplies the effect I want to achieve, but I am only aware of the 3D instances for it. So I wanted to ask if anyone knew a way to get this effect in 2D, or if cel shading would work just as fine on 2D scenes?

    Read the article

  • Where can I find free or buy "next-gen" 3D Assets?

    - by Valmond
    Usually I buy 3D Assets from sites like turbosquid.com or similar. My problem is that I have lately implemented glow, normal maps, specular (and specular power) maps and reflection maps and I can't find any models that use those techniques. So where can I find / buy "next gen" assets (at least models/items with a normal map)? I have checked for similar posts but those I found are about either free only or 2D or 'ordinary' 3D so I hope this is not a duplicate.

    Read the article

  • Workflow with Flash Pro CS6 and FlashDevelop: Using fla and swc to store assets

    - by Arthur Wulf White
    I am using this tutorial: http://www.flashdevelop.org/wikidocs/index.php?title=AS3:FlexAndFlashCS3Workflow In the past older versions of Flash Pro I was able to complete these steps: right-click on the symbol in the Library panel, select "Linkage..." dialog, check "Export for ActionScript" and fill in the symbol name (ie. MySymbol_design or assets.MySymbol_design), do not change the base class (ie. flash.display.MovieClip). Right now, I am stuck at that part. Any hints? What I wish to do is: Use fla for the artist to store assets. Publish to swc Extract the assets in FlashDevelop by creating an instance of their class. ... How is this done in CS6? To clear things up, this is what I see when I right click a Flash symbol:

    Read the article

  • XNA - Finding boundaries in isometric tilemap

    - by Yheeky
    I have an issue with my 2D isometric engine. I'm using my own 2D camera class which works with matrices and need to find the tilemaps boundaries so the user always sees the map. Currently my map size is 100x100 (with 128x128 tiles) so the calculation (e.g. for the right boundary) is: var maxX = (TileMap.MapWidth + 1) * (TileMap.TileWidth / 2) - ViewSize.X; var maxX = (100 + 1) * (128 / 2) - 1360; // = 5104 pixels. This works fine while having scale factor of 1.0f but not for any other zoom factor. When I zoom out to 0.9f the right border should be at approx. 4954. I´m using the following code for transformation but I always get a wrong value: var maxXVector = new Vector2(maxX, 0); var maxXTransformed = Vector2.Transform(maxXVector, tempTransform).X; The result is 4593. Does anyone of you have an idea what I´m during wrong? Thanks for your help! Yheeky

    Read the article

  • How can I view an R32G32B32 texture?

    - by bobobobo
    I have a texture with R32G32B32 floats. I create this texture in-program on D3D11, using DXGI_FORMAT_R32G32B32_FLOAT. Now I need to see the texture data for debug purposes, but it will not save to anything but dds, showing the error in debug output, "Can't find matching WIC format, please save this file to a DDS". So, I write it to DDS but I can't open it now! The DirectX texture tool says "An error occurred trying to open that file". I know the texture is working because I can read it in the GPU and the colors seem correct. How can I view an R32G32B32 texture in an image viewer?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Frustum culling with third person camera

    - by Christian Frantz
    I have a third person camera that contains two matrices: view and projection, and two Vector3's: camPosition and camTarget. I've read up on frustum culling and it makes it seem easy enough for a first person camera, but how would I implement this for a third person camera? I need to take into effect the objects I can see behind me too. How would I implement this into my camera class so it runs at the same time as my update method? public void CameraUpdate(Matrix objectToFollow) { camPosition = objectToFollow.Translation + (objectToFollow.Backward *backward) + (objectToFollow.Up * up); camTarget = objectToFollow.Translation; view = Matrix.CreateLookAt(camPosition, camTarget, Vector3.Up); } Can I just create another method within the class which creates a bounding sphere with a value from my camera and then uses the culling based on that? And if so, which value am I using to create the bounding sphere from? After this is implemented, I'm planning on using occlusion culling for the faces of my objects adjacent to other objects. Will using just one or the other make a difference? Or will both of them be better? I'm trying to keep my framerate as high as possible

    Read the article

  • Unity GUI not in build, but works fine in editor

    - by Darren
    I have: GUITexture attached to an object A script that has GUIStyles created for the Textfield and Buttons that are created in OnGUI(). This script is attached to the same object in number 1 3 GUIText objects each separate from the above. A script that enables the GUITexture and the script in number 1 and 2 respectively This is how it is supposed to work: When I cross the finish line, number 4 script enables number 1 GUITexture component and number 2 script component. The script component uses one of number 3's GUIText objects to show you your best lap time, and also makes a GUI.Textfield for name entry and 2 GUI.Buttons for "Submit" and "Skip". If you hit "Submit" the script will submit the time. No matter which button you press, The remaining 2 GUIText objects from number 3 will show you the top 10 best times. For some reason, when I run it in editor, everything works 100%, but when I'm in different kinds of builds, the results vary. When I am in a webplayer, The GUITexture and the textfield and buttons appear, but the textfield and buttons are plain and have no evidence of GUIStyles. When I click one of the buttons, the score gets submitted but I do not get the fastest times showing. When I am in a standalone build, the GUITexture shows up, but nothing else does. If I remove the GUIStyle parameter of the GUI.Textfield and GUI.Button, they show up. Why am I getting these variations and how can I fix it? Code below: void Start () { Names.text = ""; Times.text = ""; YourBestTime.text = "Your Best Lap: " + bestTime + "\nEnter your name:"; //StartCoroutine(GetTimes("Test")); } void Update() { if (!ShowButtons && !GettingTimes) { StartCoroutine(GetTimes()); GettingTimes = true; } } IEnumerator GetTimes () { Debug.Log("Getting times"); YourBestTime.text = "Loading Best Lap Times"; WWW times_get = new WWW(GetTimesUrl); yield return times_get; WWW names_get = new WWW(GetNamesUrl); yield return names_get; if(times_get.error != null || names_get.error != null) { print("There was an error retrieiving the data: " + names_get.error + times_get.error); } else { Times.text = times_get.text; Names.text = names_get.text; YourBestTime.text = "Your Best Lap: " + bestTime; } } IEnumerator PostLapTime (string Name, string LapTime) { string hash= MD5.Md5Sum(Name + LapTime + secretKey); string bestTime_url = SubmitTimeUrl + "&Name=" + WWW.EscapeURL(Name) + "&LapTime=" + LapTime + "&hash=" + hash; Debug.Log (bestTime_url); // Post the URL to the site and create a download object to get the result. WWW hs_post = new WWW(bestTime_url); //label = "Submitting..."; yield return hs_post; // Wait until the download is done if (hs_post.error != null) { print("There was an error posting the lap time: " + hs_post.error); //label = "Error: " + hs_post.error; //show = false; } else { Debug.Log("Posted: " + hs_post.text); ShowButtons = false; PostingTime = false; } } void OnGUI() { if (ShowButtons) { //makes text box nameString = GUI.TextField( new Rect((Screen.width/2)-111, (Screen.height/2)-130, 222, 25), nameString, 20, TextboxStyle); if (GUI.Button( new Rect( (Screen.width/2-74.0f), (Screen.height/2)- 90, 64, 32), "Submit", ButtonStyle)) { //SUBMIT TIME if (nameString == "") { nameString = "Player"; } if (!PostingTime) { StartCoroutine(PostLapTime(nameString, bestTime)); PostingTime = true; } } else if (GUI.Button( new Rect( (Screen.width/2+10.0f), (Screen.height/2)- 90, 64, 32), "Skip", ButtonStyle)) { ShowButtons = false; } } } }

    Read the article

  • Nothing drawing on screen OpenGL with GLSL

    - by codemonkey
    I hate to be asking this kind of question here, but I am at a complete loss as to what is going wrong, so please bear with me. I am trying to render a single cube (voxel) in the center of the screen, through OpenGL with GLSL on Mac I begin by setting up everything using glut glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA|GLUT_ALPHA|GLUT_DOUBLE|GLUT_DEPTH); glutInitWindowSize(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); glutCreateWindow("Cubez-OSX"); glutReshapeFunc(reshape); glutDisplayFunc(render); glutIdleFunc(idle); _electricSheepEngine=new ElectricSheepEngine(DEFAULT_WINDOW_WIDTH, DEFAULT_WINDOW_HEIGHT); _electricSheepEngine->initWorld(); glutMainLoop(); Then inside the engine init camera & projection matrices: cameraPosition=glm::vec3(2,2,2); cameraTarget=glm::vec3(0,0,0); cameraUp=glm::vec3(0,0,1); glm::vec3 cameraDirection=glm::normalize(cameraPosition-cameraTarget); cameraRight=glm::cross(cameraDirection, cameraUp); cameraRight.z=0; view=glm::lookAt(cameraPosition, cameraTarget, cameraUp); lensAngle=45.0f; aspectRatio=1.0*(windowWidth/windowHeight); nearClippingPlane=0.1f; farClippingPlane=100.0f; projection=glm::perspective(lensAngle, aspectRatio, nearClippingPlane, farClippingPlane); then init shaders and check compilation and bound attributes & uniforms to be correctly bound (my previous question) These are my two shaders, vertex: #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } and fragment: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } init the cube: setPosition(glm::vec3(0,0,0)); struct voxelData data[]={ //front face {{-1.0, -1.0, 1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, 1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, 1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, 1.0}, {0.0, 1.0, 1.0}}, //back face {{-1.0, -1.0, -1.0}, {0.0, 0.0, 1.0}}, {{ 1.0, -1.0, -1.0}, {0.0, 1.0, 1.0}}, {{ 1.0, 1.0, -1.0}, {0.0, 0.0, 1.0}}, {{-1.0, 1.0, -1.0}, {0.0, 1.0, 1.0}} }; glGenBuffers(1, &modelVerticesBufferObject); glBindBuffer(GL_ARRAY_BUFFER, modelVerticesBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); const GLubyte indices[] = { // Front 0, 1, 2, 2, 3, 0, // Back 4, 6, 5, 4, 7, 6, // Left 2, 7, 3, 7, 6, 2, // Right 0, 4, 1, 4, 1, 5, // Top 6, 2, 1, 1, 6, 5, // Bottom 0, 3, 7, 0, 7, 4 }; glGenBuffers(1, &modelFacesBufferObject); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, modelFacesBufferObject); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); and then the render call: glClearColor(0.52, 0.8, 0.97, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); //use the shader glUseProgram(shaderProgram); //enable attributes in program glEnableVertexAttribArray(shaderAttribute_position); glEnableVertexAttribArray(shaderAttribute_color); //model matrix using model position vector glm::mat4 mvp=projection*view*voxel->getModelMatrix(); glUniformMatrix4fv(shaderAttribute_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_position, // attribute 3, // number of elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements 0 // offset of first element ); glBindBuffer(GL_ARRAY_BUFFER, voxel->modelVerticesBufferObject); glVertexAttribPointer(shaderAttribute_color, // attribute 3, // number of colour elements per vertex, here (x,y) GL_FLOAT, // the type of each element GL_FALSE, // take our values as-is sizeof(struct voxelData), // coord every (sizeof) elements (GLvoid *)(offsetof(struct voxelData, color3D)) // offset of colour data ); //draw the model by going through its elements array glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, voxel->modelFacesBufferObject); int bufferSize; glGetBufferParameteriv(GL_ELEMENT_ARRAY_BUFFER, GL_BUFFER_SIZE, &bufferSize); glDrawElements(GL_TRIANGLES, bufferSize/sizeof(GLushort), GL_UNSIGNED_SHORT, 0); //close up the attribute in program, no more need glDisableVertexAttribArray(shaderAttribute_position); glDisableVertexAttribArray(shaderAttribute_color); but on screen all I get is the clear color :$ I generate my model matrix using: modelMatrix=glm::translate(glm::mat4(1.0), position); which in debug turns out to be for the position of (0,0,0): |1, 0, 0, 0| |0, 1, 0, 0| |0, 0, 1, 0| |0, 0, 0, 1| Sorry for such a question, I know it is annoying to look at someone's code, but I promise I have tried to debug around and figure it out as much as I can, and can't come to a solution Help a noob please? EDIT: Full source here, if anyone wants

    Read the article

  • New way of integrating Openfeint in Cocos2d-x 0.12.0

    - by Ef Es
    I am trying to implement OpenFeint for Android in my cocos2d-x project. My approach so far has been creating a button that calls a static java method in class Bridge using jnihelper functions (jnihelper only accepts statics). Bridge has one singleton attribute of type OFAndroid, that is the class dynamically calling the Openfeint Api methods, and every method in the bridge just forwards it to the OFAndroid object. What I am trying to do now is to initialize the openfeint libraries in the main java class that is the one calling the static C++ libraries. My problem right now is that the initializing function void com.openfeint.api.OpenFeint.initialize(Context ctx, OpenFeintSettings settings, OpenFeintDelegate delegate) is not accepting the context parameter that I am giving him, which is a "this" reference to the main class. Main class extends from Cocos2dxActivity but I don't have any other that extends from Application. Any suggestions on fixing it or how to improve the architecture? EDIT: I am trying a new solution. Make the bridge class into an Application child, is called from Main object, initializes OpenFeint when created and it can call the OpenFeint functions instead of needing an additional class. The problem is I still get the error. 03-30 14:39:22.661: E/AndroidRuntime(9029): Caused by: java.lang.NullPointerException 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.content.ContextWrapper.getPackageManager(ContextWrapper.java:85) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.validateManifest(OpenFeintInternal.java:885) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.initializeWithoutLoggingIn(OpenFeintInternal.java:829) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.initialize(OpenFeintInternal.java:852) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.api.OpenFeint.initialize(OpenFeint.java:47) 03-30 14:39:22.661: E/AndroidRuntime(9029): at nurogames.fastfish.NuroFeint.onCreate(NuroFeint.java:23) 03-30 14:39:22.661: E/AndroidRuntime(9029): at nurogames.fastfish.FastFish.onCreate(FastFish.java:47) 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1069) 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2751)

    Read the article

  • Finding direction of travel in a world with wrapped edges

    - by crazy
    I need to find the shortest distance direction from one point in my 2D world to another point where the edges are wrapped (like asteroids etc). I know how to find the shortest distance but am struggling to find which direction it's in. The shortest distance is given by: int rows = MapY; int cols = MapX; int d1 = abs(S.Y - T.Y); int d2 = abs(S.X - T.X); int dr = min(d1, rows-d1); int dc = min(d2, cols-d2); double dist = sqrt((double)(dr*dr + dc*dc)); Example of the world : : T : :--------------:--------- : : : S : : : : : : T : : : :--------------: In the diagram the edges are shown with : and -. I've shown a wrapped repeat of the world at the top right too. I want to find the direction in degrees from S to T. So the shortest distance is to the top right repeat of T. but how do I calculate the direction in degreed from S to the repeated T in the top right? I know the positions of both S and T but I suppose I need to find the position of the repeated T however there more than 1. The worlds coordinates system starts at 0,0 at the top left and 0 degrees for the direction could start at West. It seems like this shouldn’t be too hard but I haven’t been able to work out a solution. I hope somone can help? Any websites would be appreciated.

    Read the article

  • Light shaped like a line

    - by Michael
    I am trying to figure out how line-shaped lights fit into the standard point light/spotlight/directional light scheme. The way I see it, there are two options: Seed the line with regular point lights and just deal with the artifacts. Easy, but seems wasteful. Make the line some kind of emissive material and apply a bloom effect. Sounds like it could work, but I can't test it in my engine yet. Is there a standard way to do this? Or for non-point lights in general?

    Read the article

  • IrrKlang with Ogre

    - by Vinnie
    I'm trying to set up sound in my Ogre3D project. I have installed irrKlang 1.4.0 and added it's include and lib directories to my projects VC++ Include and Library directories, but I'm still getting a Linker error when I attempt to build. Any suggestions? (Error 4007 error LNK2019: unresolved external symbol "__declspec(dllimport) class irrklang::ISoundEngine * __cdecl irrklang::createIrrKlangDevice(enum irrklang::E_SOUND_OUTPUT_DRIVER,int,char const *,char const *)" (_imp?createIrrKlangDevice@irrklang@@YAPAVISoundEngine@1@W4E_SOUND_OUTPUT_DRIVER@1@HPBD1@Z) referenced in function "public: __thiscall SoundManager::SoundManager(void)" (??0SoundManager@@QAE@XZ)

    Read the article

  • Rotating an object about a point (2D) using box2d

    - by noob
    i just started developing using box2d on flixel and i realise the pivot point of the rotation of an object in box2d is set to the center of an object. i had read on forums and i found out that SetAsBox can change the pivot point of the object, however, i cannot seem to get it work to rotate about a point. what i would like to achieve is to rotate an object about a point like earth revolving around the sun. any one can help me with it? really thanks a lot and sorry for the bad english

    Read the article

  • Why do the order of uniforms gets changed by the compiler?

    - by Aybe
    I have the following shader, everything works fine when setting the value of one of the matrices but I've discovered that getting a value back is incorrect for View and Projection, they are in reverse order. #version 430 precision highp float; layout (location = 0) uniform mat4 Model; layout (location = 1) uniform mat4 View; layout (location = 2) uniform mat4 Projection; layout (location = 0) in vec3 in_position; layout (location = 1) in vec4 in_color; out vec4 out_color; void main(void) { gl_Position = Projection * View * Model * vec4(in_position, 1.0); out_color = in_color; } When querying their location they are effectively reversed, I did a small test by renaming View to Piew which puts it before Projection if sorted alphabetically and the order is correct. Now if I do remove layout (location = ...) from the uniforms, the problem disappears !? I am starting to think that this is a driver bug as explained in the wiki. Do you know why the order of the uniforms is changed whenever the shader is compiled ? (using an AMD HD7850)

    Read the article

  • How many vertices are needed to draw reasonably good-looking terrain?

    - by bobbaluba
    I have some pretty expensive code in my terrain vertex shader, and I am trying to figure out if it will still be fast enough. I haven't yet developed a level-of-detail system for my terrain rendering, but I can easily benchmark my code by just drawing mock triangles. My problem is, how do I know how many vertices to test with? Are there for example rendering engines that will tell me how many terrain vertices are currently on-screen? Or maybe it is possible to create a formula that will give me an estimate based on screen resolution?

    Read the article

  • What are the maths behind 'Raiden 2' purple laser?

    - by Aybe
    The path of the laser is affected by user input and enemies present on the screen. Here is a video, at 5:00 minutes the laser in question is shown : Raiden II (PS) - 1 Loop Clear - Part 2 UPDATE Here is a test using Inkscape, ship is at bottom, the first 4 enemies are targeted by the plasma. There seems to be a sort of pattern. I moved the ship first, then the handle from it to form a 45° angle, then while trying to fit the curve I found a pattern of parallel handles and continued so until I reached the last enemy. Update, 5/26/2012 : I started an XNA project using beziers, there is still some work needed, will update the question next week. Stay tuned ! Update : 5/30/2012 : It really seems that they are using Bézier curves, I think I will be able to replicate/imitate a plasma of such grade. There are two new topics I discovered since last time : Arc length, Runge's phenomenon, first one should help in having a linear movement possible over a Bézier curve, second should help in optimizing the number of vertices. Next time I will put a video so you can see the progress 8-)

    Read the article

  • Why does Unity3D crash in VirtualBox?

    - by FakeRainBrigand
    I'm running Unity3D in a virtual instance of Windows, using the Virtual Box software on Linux. I have guest additions installed with DirectX support. I've tried using Windows XP SP3 32-bit, and Windows 7 64bit. My host is Ubuntu 12.04 64bit. I installed and registered Unity on both. It loads up fine, and then crashes my entire VirtualBox instance (equivalent of a computer shutting off with no warning).

    Read the article

  • Cocos2d and Body with few collision shapes using chipmunk

    - by Eimantas
    I'm using Cocos2d (0.99.5) with chipmunk physics engine. Currently I'm trying to place a body into space which is combined from few circle shapes. Let's say I have a corresponding sprite image with displays atom (nucleus + 3 electrons around it. Something like this without orbit lines). In it's simplest form - only one circle shape at the center should be enough which would detect collisions from other objects with nucleus. Now I'd like to add other circle shapes for each electron. How can I do that? Now when I add those shapes to the body and add the body into chipmunk space - the shapes (together with the body/sprite) start flickering and spinning with no recognizable pattern (or reason for that matter).

    Read the article

  • Automated texture mapping

    - by brandon
    I have a set of seamless tiling textures. I want to be able to take an arbitrary model and create a UV map with these properties: No stretching (all textures tile appropriately so there is no stretching and sheering of the texture) The textures display on the correct axis relative to the model it's mapping to (if you look at the example, you can see some of the letters on the front are tilted, the y axis of the texture should be matching up with the y axis of the object. Some other faces have upside down letters too) the texture is as continuous as possible on the surface of the model (if two faces are adjacent, the texture continues on the adjacent face where it left off) the model is closed (all faces are completely enclosed by other faces) A few notes. This mapping will occur before triangulation. I realize there are ways to do this by hand and it's probably a hard problem to automatically map textures in general, but since these textures are seamless and I just need uniform coverage it seems like an easier problem. I'm looking for an algorithmic approach to this that I can apply in general, not a tool that does it. What approach would work for this, is there an existing one? (I assume so)

    Read the article

  • Double sides face with two normals

    - by Marnix
    I think this isn't possible, but I just want to check this: Is it possible to create a face in opengl that has two normals? So: I want the inside and outside of some cilinder to be drawn, but I want the lights to do as expected and not calculate it for the normal given. I was trying to do this with backface culling off, so I would have both faces, but the light was wrongly calculated of course. Is this possible, or do I have to draw an inside and an outside? So draw twice?

    Read the article

  • Picture rendered from above and below using an Orthographic camera do not match

    - by Roy T.
    I'm using an orthographic camera to render slices of a model (in order to voxelize it). I render each slice both from above and below in order to determine what is inside each slice. I am using an orthographic camera The model I render is a simple 'T' shape constructed from two cubes. The cubes have the same dimensions and have the same Y (height) coordinate. See figure 1 for a render of it in Blender. I render this model once directly from above and once directly from below. My expectation was that I would get exactly the same image (except for mirroring over the y-axis). However when I render using a very low resolution render target (25x25) the position (in pixels) of the 'T' is different when rendered from above as opposed to rendered from below. See figure 2 and 3. The pink blocks are not part of the original rendering but I've added them so you can easily count/see the differences. Figure 2: the T rendered from above Figure 3: the T rendered from below This is probably due to what I've read about pixel and texel coordinates which might be biased to the top-left as seen from the camera. Since I'm using the same 'up' vector for both of my camera's my bias only shows on the x-axis. I've tried to change the position of the camera and it's look-at by, what I thought, should be half a pixel. I've tried both shifting a single camera and shifting both cameras and while I see some effect I am not able to get a pixel-by-pixel perfect copy from both camera's. Here I initialize the camera and compute, what I believe to be, half pixel. boundsDimX and boundsDimZ is a slightly enlarged bounding box around the model which I also use as the width and height of the view volume of the orthographic camera. Matrix projection = Matrix.CreateOrthographic(boundsDimX, boundsDimZ, 0.5f, sliceHeight + 0.5f); Vector3 halfPixel = new Vector3(boundsDimX / (float)renderTarget.Width, 0, boundsDimY / (float)renderTarget.Height) * 0.5f; This is the code where I set the camera position and camera look ats // Position camera if (downwards) { float cameraHeight = bounds.Max.Y + 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, // possibly adjust by half a pixel? cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight - 1.0f, cameraPosition.Z); } else { float cameraHeight = bounds.Max.Y - 0.501f - (sliceHeight * i); Vector3 cameraPosition = new Vector3 ( boundsCentre.X, cameraHeight, boundsCentre.Z ); camera.Position = cameraPosition; camera.LookAt = new Vector3(cameraPosition.X, cameraHeight + 1.0f, cameraPosition.Z); } Main Question Now you've seen all the problems and code you can guess it. My main question is. How do I align both camera's so that they each render exactly the same image (mirrored along the Y axis)? Figure 1 the original model rendered in blender

    Read the article

  • Why does my sprite glitch when moving? [closed]

    - by rphello101
    Using Slick 2D/Java, I'm using the mouse to rotate a sprite and WASD to move it (A and D are used to strafe). I finally got the directional keys and rotation to work in sync, but I'm having problems with sporadic movement. It seems that the move speed is not always set to the value I have it at. Sometimes the sprite with just shoot across the screen. Furthermore, it seems that at 0 degrees, when the left key is pressed, the sprite moves backwards, not to the left. There also seems to be quite a bit of glitching when two keys are pressed, like left and up. Anyone see anything obvious? Here is the rotational code: int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x+sprite.image.getWidth()/2; int pY = sprite.y+sprite.image.getHeight()/2; double mAng; if(mX!=pX){ mAng = Math.toDegrees(Math.atan2(mY - pY, mX - pX)); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=90; else mAng=270; } sprite.angle = mAng; sprite.image.setRotation((float) mAng); Movement code: Input input = gc.getInput(); Vector2f direction = new Vector2f(); Vector2f velocity = new Vector2f(); Vector2f left; Vector2f right; direction.x = (float) Math.cos(Math.toRadians(sprite.angle)); direction.y = (float) Math.sin(Math.toRadians(sprite.angle)); if(direction.length()>0) direction = direction.normalise(); left = new Vector2f(-direction.y, direction.x); right = new Vector2f(direction.y, -direction.x); velocity.x = (float) (direction.x * sprite.moveSpeed); velocity.y = (float) (direction.y * sprite.moveSpeed); if(input.isKeyDown(sprite.up)){ sprite.x += velocity.x*delta; sprite.y += velocity.y*delta; }if (input.isKeyDown(sprite.down)){ sprite.x -= velocity.x*delta; sprite.y -= velocity.y*delta; }if (input.isKeyDown(sprite.left)){ sprite.x += left.x * sprite.moveSpeed * delta; sprite.y += left.y * sprite.moveSpeed * delta; }if (input.isKeyDown(sprite.right)){ sprite.x += right.x * sprite.moveSpeed * delta; sprite.y += right.y * sprite.moveSpeed * delta; }

    Read the article

< Previous Page | 257 258 259 260 261 262 263 264 265 266 267 268  | Next Page >