Search Results

Search found 16473 results on 659 pages for 'game logic'.

Page 262/659 | < Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >

  • How to apply numerical integration on a graph layout

    - by Cumatru
    I've done some basic 1 D integration, but i can't wrap my head around things and apply it to my graph layout. So, consider the picture below: if i drag the red node to the right, i'm forcing his position to my mouse position the other nodes will "follow" him, but how ? For Verlet, to compute the newPosition, i need the acceleration for every node and the currentPosition. That is what i don't understand. How to i compute the acceleration and the currentPosition ? The currentPosition will be the position of the RedNode ? If yes, doesn't that means that they will all overlap ? http://i.stack.imgur.com/NCKmO.jpg

    Read the article

  • Using XNA's XML content pipeline to read arrays of objects with different subtypes

    - by Mcguirk
    Using XNA's XML content importer, is it possible to read in an array of objects with different subtypes? For instance, assume these are my class definitions: public abstract class MyBaseClass { public string MyBaseData; } public class MySubClass0 : MyBaseClass { public int MySubData0; } public class MySubClass1 : MyBaseClass { public bool MySubData1; } And this is my XML file: <XnaContent> <Asset Type="MyBaseClass[]"> <Item> <!-- I want this to be an instance of MySubClass0 --> <MyBaseData>alpha</MyBaseData> <MySubData0>314</MySubData0> </Item> <Item> <!-- I want this to be an instance of MySubClass1 --> <MyBaseData>bravo</MyBaseData> <MySubData1>true</MySubData1> </Item> </Asset> </XnaContent> How do I specify that I want the first Item to be an instance of MySubclass0 and the second Item to be an instance of MySubclass1?

    Read the article

  • How to implement Undo and Redo feature in as3

    - by Swati Singh
    I am going to create an application in that i have to implement an Undo and Redo feature. In the application there will be multiple objects located on stage and user can customize the position of the objects. But when user clicks on Undo the object go back to their default position and after clicking on redo object will move on the new position. So my question is how can i apply these feature in my application? Is there any library or any third party classes? Can some one help me? Thanks in advance.

    Read the article

  • Sprite Kit - containsPoint for SKPhysicsBody?

    - by gj15987
    I have a ball bouncing around the screen. I can pick it up and drag it onto a "bucket". When my touches finish, I use the containsPoint function to check and see if I have dropped the ball onto the bucket. This works fine, however, I actually want to check whether the ball is dropped onto the bucket node's physics body because my "bucket" is actually just an oval, and so I've applied a physics body which is the same shape as the oval, so that the white space around the oval isn't included in the physics simulation. I can't seem to find a "containsPoint" function for physics bodies. Can anyone advise on how I'd check for this? To summarise, I want to drop a node, onto a specific part of another node (or its physics body) and trigger an event. Thanks in advance.

    Read the article

  • Animations in FBX exported from Maya are anchored in the wrong place

    - by Simon P Stevens
    We are trying to export a model and animation from Maya into Unity3d. In Maya, the model is anchored (pivot point) at the feet (and the body moves up and down). However after we have performed the FBX export, and imported the file into Unity the model is now appears to be anchored by the waist/head and the feet move. These example videos probably help explain the problem more clearly: Example video - Maya - Correct Example video - Unity - Wrong We have also noticed that if we take the FBX file and import it back into Maya we have exactly the same problem. It seems to be that the constraints no longer work after the FBX is reimported back to Maya, which just kills the connection between the joints and the control objects. When we exported the FBX we have tried checking the 'bake animations' check box. The fact that the same problem exist when importing the FBX back into both Maya and Unity suggests that the source of the problem is most likely with the Maya FBX export. Has anyone encountered this problem before and have any ideas how to fix it?

    Read the article

  • 45° Slopes in a Tile based 2D platformer

    - by xNidhogg
    I want to have simple 45° slopes in my tile based platformer, however I just cant seem to get the algorithm down. Please take a look at the code and video, maybe I'm missing the obvious? //collisionRectangle is the collision rectangle of the player with //origin at the top left and width and height //wantedPosition is the new position the player will be set to. //this is determined elsewhere by checking the bottom center point of the players rect if(_leftSlope || _rightSlope) { //Test bottom center point var calculationPoint = new Vector2(collisionRectangle.Center.X, collisionRectangle.Bottom); //Get the collision rectangle of the tile, origin is top-left Rectangle cellRect = _tileMap.CellWorldRectangle( _tileMap.GetCellByPixel(calculationPoint)); //Calculate the new Y coordinate depending on if its a left or right slope //CellSize = 8 float newY = _leftSlope ? (calculationPoint.X % CellSize) + cellRect.Y : (-1 * (calculationPoint.X % CellSize) - CellSize) + cellRect.Y; //reset variables so we dont jump in here next frame _leftSlope = false; _rightSlope = false; //now change the players Y according to the difference of our calculation wantedPosition.Y += newY - calculationPoint.Y; } Video of what it looks like: http://youtu.be/EKOWgD2muoc

    Read the article

  • Collision filtering by object, team

    - by Bill Zimmerman
    Hi, I am looking for a good method to determine which objects will be considered for collision with other objects. My current idea is that each object has the following properties: alwaysCollidesWith = [list of objects that will always trigger a collision check] neverCollidesWith = [lost of objects that will never be considered] teamCollidesWith = [list of objects that will be checked, provided they belong to a different team] For example: -projectiles never have to be checked for collisions with other projectiles -players are always checked for collisions with players, regardless of team -projectiles are only considered for collisions if they collide with another teams players Does anyone see any weaknesses with this approach? Can anyone recommend a better approach?

    Read the article

  • Why does setting a geometry shader cause my sprites to vanish?

    - by ChaosDev
    My application has multiple screens with different tasks. Once I set a geometry shader to the device context for my custom terrain, it works and I get the desired results. But then when I get back to the main menu, all sprites and text disappear. These sprites don't dissappear when I use pixel and vertex shaders. The sprites are being drawn through D3D11, of course, with specified view and projection matrices as well an input layout, vertex, and pixel shader. I'm trying DeviceContext->ClearState() but it does not help. Any ideas? void gGeometry::DrawIndexedWithCustomEffect(gVertexShader*vs,gPixelShader* ps,gGeometryShader* gs=nullptr) { unsigned int offset = 0; auto context = mp_D3D->mp_Context; //set topology context->IASetPrimitiveTopology(m_Topology); //set input layout context->IASetInputLayout(mp_inputLayout); //set vertex and index buffers context->IASetVertexBuffers(0,1,&mp_VertexBuffer->mp_Buffer,&m_VertexStride,&offset); context->IASetIndexBuffer(mp_IndexBuffer->mp_Buffer,mp_IndexBuffer->m_DXGIFormat,0); //send constant buffers to shaders context->VSSetConstantBuffers(0,vs->m_CBufferCount,vs->m_CRawBuffers.data()); context->PSSetConstantBuffers(0,ps->m_CBufferCount,ps->m_CRawBuffers.data()); if(gs!=nullptr) { context->GSSetConstantBuffers(0,gs->m_CBufferCount,gs->m_CRawBuffers.data()); context->GSSetShader(gs->mp_D3DGeomShader,0,0);//after this call all sprites disappear } //set shaders context->VSSetShader( vs->mp_D3DVertexShader, 0, 0 ); context->PSSetShader( ps->mp_D3DPixelShader, 0, 0 ); //draw context->DrawIndexed(m_indexCount,0,0); } //sprites void gSpriteDrawer::Draw(gTexture2D* texture,const RECT& dest,const RECT& source, const Matrix& spriteMatrix,const float& rotation,Vector2d& position,const Vector2d& origin,const Color& color) { VertexPositionColorTexture* verticesPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; unsigned int TriangleVertexStride = sizeof(VertexPositionColorTexture); unsigned int offset = 0; float halfWidth = ( float )dest.right / 2.0f; float halfHeight = ( float )dest.bottom / 2.0f; float z = 0.1f; int w = texture->Width(); int h = texture->Height(); float tu = (float)source.right/(w); float tv = (float)source.bottom/(h); float hu = (float)source.left/(w); float hv = (float)source.top/(h); Vector2d t0 = Vector2d( hu+tu, hv); Vector2d t1 = Vector2d( hu+tu, hv+tv); Vector2d t2 = Vector2d( hu, hv+tv); Vector2d t3 = Vector2d( hu, hv+tv); Vector2d t4 = Vector2d( hu, hv); Vector2d t5 = Vector2d( hu+tu, hv); float ex=(dest.right/2)+(origin.x); float ey=(dest.bottom/2)+(origin.y); Vector4d v4Color = Vector4d(color.r,color.g,color.b,color.a); VertexPositionColorTexture vertices[] = { { Vector3d( dest.right-ex, -ey, z),v4Color, t0}, { Vector3d( dest.right-ex, dest.bottom-ey , z),v4Color, t1}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t2}, { Vector3d( -ex, dest.bottom-ey , z),v4Color, t3}, { Vector3d( -ex, -ey , z),v4Color, t4}, { Vector3d( dest.right-ex, -ey , z),v4Color, t5}, }; auto mp_context = mp_D3D->mp_Context; // Lock the vertex buffer so it can be written to. mp_context->Map(mp_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); // Get a pointer to the data in the vertex buffer. verticesPtr = (VertexPositionColorTexture*)mappedResource.pData; // Copy the data into the vertex buffer. memcpy(verticesPtr, (void*)vertices, (sizeof(VertexPositionColorTexture) * 6)); // Unlock the vertex buffer. mp_context->Unmap(mp_vertexBuffer, 0); //set vertex shader mp_context->IASetVertexBuffers( 0, 1, &mp_vertexBuffer, &TriangleVertexStride, &offset); //set texture mp_context->PSSetShaderResources( 0, 1, &texture->mp_SRV); //set matrix to shader mp_context->UpdateSubresource(mp_matrixBuffer, 0, 0, &spriteMatrix, 0, 0 ); mp_context->VSSetConstantBuffers( 0, 1, &mp_matrixBuffer); //draw sprite mp_context->Draw( 6, 0 ); }

    Read the article

  • Triangle - Rectangle Intersection in 2D

    - by Kevin Boyd
    I had previously asked this for 3D but now I changed my strategy and would like to do the intersection in 2D. The Rectangle is axis aligned and will always be in a fixed position, and has a constant shape and size, basically I want to clip the red areas of the triangles that extend outside the bounds of the rectangle The triangles could be in any position, shape or size, I my code I have a loop where I check the triangles one by one however I am still clueless about the math. I have identified 5 cases of triangle rectangle intersection as shown here. How do I find the intersection points of the triangle and the rectangle?

    Read the article

  • cocos2d fragment shader transparency

    - by fiddler
    I'm playing with custom fragment shaders for a CCSprite (see http://www.raywenderlich.com/4428/how-to-mask-a-sprite-with-cocos2d-2-0). But I can't figure out why I get a white color whith the following line: gl_FragColor = vec4(1.0,1.0,1.0,0.0); Whereas I have a transparent color with this: gl_FragColor = vec4(0.0,0.0,0.0,0.0); Shouln't I have a transparent sprite in both cases ? (alpha channel is null, right ?)

    Read the article

  • libgdx spite position relative to body

    - by While-E
    Apologies if this is a reiteration, as I couldn't find another discussion of this over the past couple days. Issue: I'm using libgdx and box2d, and I'm currently updating the sprite's position to the body's current position every render call. Using a debugRenderer to see the bodies, I see that there is fairly noticeable lag between the movement/position of the body and the sprite that is being moved relative to it. Question: Is this lag normal, possibly to perform collisions ahead of time? If not, should I be manipulating/relating the positions differently? Thanks in advance! [Solution] This was a coding error on my part. Pointed out by a good reply below, I was updating the position of the sprite relative to the body and then stepping the physics. Thus never actually setting the sprite to the body's CURRENT position. Thanks!

    Read the article

  • Playing NSF music in FMOD.net

    - by Tesserex
    So, as the title says, I want to be able to play NSF files using FMOD, because my project already uses FMOD and I'd rather not replace it. This will involve figuring out how existing players and emulators work and porting it. I haven't yet found an existing player that uses FMOD. My starting point is the MyNes source from http://sourceforge.net/projects/mynes/. There are two big steps between here and what I'm looking for. MyNes plays from a ROM, not NSF. So, I have to rip out the APU and get it to play NSF files. The MyNes APU uses SlimDX, so I have to convert that to FMOD.NET. I am really stuck about how to go about either of these, because I'm not that familiar with audio formats and it's hard finding resources online. So here are a few questions: From what I can tell from the NSF spec at http://kevtris.org/nes/nsfspec.txt, it's just contains the relevant memory section of the ROM, plus the header. If anyone can verify or correct this that would be great. The emulator APU uses data from the rest of the emulator to play, including things like cycle counts. I'm not sure what replaces this in a standalone player. Can't I just load all the music data at once into a stream and play it? Joining #1 and #2, does the header data from the NSF substitute for some of the ROM data in the emulator code? Using FMOD, will I be following the usercreatedsound example for loading a stream? And does this format count as PCM? Specifically MyNes says PCM8. Any tips on loading / playing the stream in FMOD are appreciated. As an aside, I don't really understand the loading / playing sections of the spec I linked at all. It seems to apply to 6502 systems / emulators only and not to my situation. I know it's a long shot for anyone here to have enough experience in this area to help, but anything you can provide is definitely appreciated. A link to an existing .NET library that does this would be even better, but I don't believe one exists.

    Read the article

  • How to achieve best performance in DirectX 9.0 while rendering on multiple monitors

    - by Vibhore Tanwer
    I am new to DirectX, and trying to learn best practice. Please suggest what are the best practices for rendering on multiple monitors different things at the same time? how can I boost performance of application? I have gone through this article http://msdn.microsoft.com/en-us/library/windows/desktop/bb147263%28v=vs.85%29.aspx . I am making use of some pixel shaders to achieve some effects. At most 4 effect(4 shader effects) can be applied at same time. What are the best practices to achieve best performance with DirectX 9.0. I read somewhere that DirectX 11 provides support for parallel rendering, but I am not able to get any working sample for DirectX 11.0. Please help me with this, Any help would be of great value. Thanks

    Read the article

  • What is the Xbox360's D3DRS_VIEWPORTENABLE equivalent on WinXP D3D9?

    - by Jim Buck
    I posted this on StackOverlow, but of course it should be posted here. I am maintaining a multiplatform codebase for Xbox360 and WinXP. I am seeing an issue on the XP side that appears to be related to D3DRS_VIEWPORTENABLE on the Xbox360 version not having an equivalent on WinXP D3D9. This article had an interesting idea, but the only way to construct an identity matrix is to supply negative numbers to D3DVIEWPORT9::X and D3DVIEWPORT9::Height, but they are unsigned numbers. (I tried to put in negative numbers anyway, but nothing interesting happened.) So, how does one emulate the behavior of D3DRS_VIEWPORTENABLE under WinXP/D3D9? (For clarity, the result I'm seeing is that a 2d screen-aligned quad works fine on Xbox360 but is offset/stretched on WinXP. In fact, the (0, 0) starts in the center of the screen on WinXP instead of in the lower-left corner like on the Xbox360 as a result of applying the viewport transform.) Update: I didn't have an Xbox360 devkit at the time I wrote up this question, but I've since gotten one. I commented out the disabling of the D3DRS_VIEWPORTENABLE state, and the exact same behavior resulted on the Xbox360 as on the WinXP build. So, there must be some DirectX magic to bridge the gap here for emulating D3DRS_VIEWPORTENABLE being turned off on WinXP.

    Read the article

  • What are reasons for Unity3D's owners to force rich guys buying Pro version?

    - by mhambra
    Well, I have to say that Unity is a really nice thing that can save one a dozen of hours on coding (letting instantly work on gameplay). But what's the idea of forcing (EULA) any party, which made over 100k last fiscal year, to purchase Pro instead of using normal edition!? It feels that this kind of licensing provides hidden benefits to rich guys over me, poor sloven, who can afford buying $3.5k license but obviously will not receive any additional cookies from it. And, by the way, anyone estimated how much Unity's source + Playstation + Xbox license will cost?

    Read the article

  • Help implementing virtual d-pad

    - by Moshe
    Short Version: I am trying to move a player around on a tilemap, keeping it centered on its tile, while smoothly controlling it with SneakyInput virtual Joystick. My movement is jumpy and hard to control. What's a good way to implement this? Long Version: I'm trying to get a tilemap based RPG "layer" working on top of cocos2d-iphone. I'm using SneakyInput as the input right now, but I've run into a bit of a snag. Initially, I followed Steffen Itterheim's book and Ray Wenderlich's tutorial, and I got jumpy movement working. My player now moves from tile to tile, without any animation whatsoever. So, I took it a step further. I changed my player.position to a CCMoveTo action. Combined with CCfollow, my player moves pretty smoothly. Here's the problem, though: Between each CCMoveTo, the movement stops, so there's a bit of a jumpiness introduced between movements. To deal with that, I changed my CCmoveTo into a CCMoveBy, and instead of running it once, I decided to have it CCRepeatForever. My plan was to stop the repeating action whenever the player changed directions or released the d-pad. However, when the movement stops, the player is not necessarily centered along the tiles, as it should be. To correctly position the player, I use a CCMoveTo and get the closest position that would put the player back into the proper position. This reintroduces an earlier problem of jumpiness between actions. What is the correct way to implement a smooth joystick while smoothly animating the player and keeping it on the "grid" of tiles? Edit: It turns out that this was caused by a "Bug Fix" in the cocos2d engine.

    Read the article

  • Billboard shader without distortion

    - by Nick Wiggill
    I use the standard approach to billboarding within Unity that is OK, but not ideal: transform.LookAt(camera). The problem is that this introduces distortion toward the edges of the viewport, especially as the field of view angle grows larger. This is unlike the perfect billboarding you'd see in eg. Doom when seeing an enemy from any angle and irrespective of where they are located in screen space. Obviously, there are ways to blit an image directly to the viewport, centred around a single vertex, but I'm not hot on shaders. Does anyone have any samples of this approach (GLSL if possible), or any suggestions as to why it isn't typically done this way (vs. the aforementioned quad transformation method)? EDIT: I was confused, thanks Nathan for the heads up. Of course, Causing the quads to look at the camera does not cause them to be parallel to the view plane -- which is what I need.

    Read the article

  • OpenGL 3.0+ framebuffer to texture/images

    - by user827992
    I need a way to capture what is rendered on screen, i have read about glReadPixels but it looks really slow. Can you suggest a more efficient or just an alternative way for just copying what is rendered by OpenGL 3.0+ to the local RAM and in general to output this in a image or in a data stream? How i can achieve the same goal with OpenGL ES 2.0 ? EDIT: i just forgot: with this OpenGL functions how i can be sure that I'm actually reading a complete frame, meaning that there is no overlapping between 2 frames or any nasty side effect I'm actually reading the frame that comes right next to the previous one so i do not lose frames

    Read the article

  • Need help revolving a 2D array

    - by Brett
    Pretty much all I'm trying to do is revolve my 2D Array by its container. I'm using this array for a background and I seem to be having problems with it revolving. public class TileTransformer : GridConstants { public Tile[,] Tiles; ContentManager Content; public TileTransformer(ContentManager content) { Content = content; } public Tile[,] Wraping(Tile[,] tiles,Point shift) { Tiles = tiles; for (int x = shift.X; x < 0; x++)//Left shift { for (int X = 0; X < GridWidth; X++) { for (int Y = 0; Y < GridHeight; Y++) { if (X + 1 >GridWidth-1) { Tiles[0, Y].Container =tiles[X, Y].Container; } else { Tiles[X+1, Y].Container =tiles[X, Y].Container; } } } } for (int x = shift.X; x > 0; x--)//right shift { for (int X = 0; X < GridWidth; X++) { for (int Y = 0; Y< GridHeight; Y++) { if (X-1==-1) { Tiles[GridWidth-1, Y].Container =tiles[0, Y].Container; } else { Tiles[X - 1, Y].Container =tiles[X, Y].Container; } } } } for (int y = shift.Y; y > 0; y--)//shift up { for (int X = 0; X < GridWidth; X++) { for (int Y = 0; Y < GridHeight; Y++) { if (Y - 1 == -1) { Tiles[X, GridHeight-1].Container = tiles[X, Y].Container; } else { Tiles[X, Y - 1].Container = tiles[X, Y].Container; } } } } for (int y = shift.Y; y < 0; y++)//shift down { for (int X = 0; X < GridWidth; X++) { for (int Y = 0; Y < GridHeight; Y++) { if (Y + 1 == GridHeight) { Tiles[X, 0].Container = tiles[X, Y].Container; } else { Tiles[X, Y + 1].Container = tiles[X, Y].Container; } } } } return Tiles; } Now the Problems that I'm having is either when I shift up or left it seems the whole array is cleared back to the default state. Also when I'm revolving the array it appears to stretch it upon the sides of the screen that it is shifting towards.

    Read the article

  • Is the new windows 8 sdk usable with visual c++ express 2010 on windows 7?

    - by JohnB
    This is inspired by and related to Is the June 2010 DX SDK really the latest? asked recently but it's a different question. I won't likely be purchasing the full visual studio 2012 for C++, I intend to use the free visual c++ express 2012 that targets desktop applications when it is released so for now I'm using visual c++ express 2010 running on windows 7. The latest directx11 sdk is the one included in the windows 8 SDK now, it's not a separate release any more. So my question is, can I use the windows 8 SDK to build directx11 programs that work on windows 7 using visual studio express 2010 running on windows 7. Or do I need to stick to the final DirectX SDK release for now?

    Read the article

  • Optimizing collision engine bottleneck

    - by Vittorio Romeo
    Foreword: I'm aware that optimizing this bottleneck is not a necessity - the engine is already very fast. I, however, for fun and educational purposes, would love to find a way to make the engine even faster. I'm creating a general-purpose C++ 2D collision detection/response engine, with an emphasis on flexibility and speed. Here's a very basic diagram of its architecture: Basically, the main class is World, which owns (manages memory) of a ResolverBase*, a SpatialBase* and a vector<Body*>. SpatialBase is a pure virtual class which deals with broad-phase collision detection. ResolverBase is a pure virtual class which deals with collision resolution. The bodies communicate to the World::SpatialBase* with SpatialInfo objects, owned by the bodies themselves. There currenly is one spatial class: Grid : SpatialBase, which is a basic fixed 2D grid. It has it's own info class, GridInfo : SpatialInfo. Here's how its architecture looks: The Grid class owns a 2D array of Cell*. The Cell class contains two collection of (not owned) Body*: a vector<Body*> which contains all the bodies that are in the cell, and a map<int, vector<Body*>> which contains all the bodies that are in the cell, divided in groups. Bodies, in fact, have a groupId int that is used for collision groups. GridInfo objects also contain non-owning pointers to the cells the body is in. As I previously said, the engine is based on groups. Body::getGroups() returns a vector<int> of all the groups the body is part of. Body::getGroupsToCheck() returns a vector<int> of all the groups the body has to check collision against. Bodies can occupy more than a single cell. GridInfo always stores non-owning pointers to the occupied cells. After the bodies move, collision detection happens. We assume that all bodies are axis-aligned bounding boxes. How broad-phase collision detection works: Part 1: spatial info update For each Body body: Top-leftmost occupied cell and bottom-rightmost occupied cells are calculated. If they differ from the previous cells, body.gridInfo.cells is cleared, and filled with all the cells the body occupies (2D for loop from the top-leftmost cell to the bottom-rightmost cell). body is now guaranteed to know what cells it occupies. For a performance boost, it stores a pointer to every map<int, vector<Body*>> of every cell it occupies where the int is a group of body->getGroupsToCheck(). These pointers get stored in gridInfo->queries, which is simply a vector<map<int, vector<Body*>>*>. body is now guaranteed to have a pointer to every vector<Body*> of bodies of groups it needs to check collision against. These pointers are stored in gridInfo->queries. Part 2: actual collision checks For each Body body: body clears and fills a vector<Body*> bodiesToCheck, which contains all the bodies it needs to check against. Duplicates are avoided (bodies can belong to more than one group) by checking if bodiesToCheck already contains the body we're trying to add. const vector<Body*>& GridInfo::getBodiesToCheck() { bodiesToCheck.clear(); for(const auto& q : queries) for(const auto& b : *q) if(!contains(bodiesToCheck, b)) bodiesToCheck.push_back(b); return bodiesToCheck; } The GridInfo::getBodiesToCheck() method IS THE BOTTLENECK. The bodiesToCheck vector must be filled for every body update because bodies could have moved meanwhile. It also needs to prevent duplicate collision checks. The contains function simply checks if the vector already contains a body with std::find. Collision is checked and resolved for every body in bodiesToCheck. That's it. So, I've been trying to optimize this broad-phase collision detection for quite a while now. Every time I try something else than the current architecture/setup, something doesn't go as planned or I make assumption about the simulation that later are proven to be false. My question is: how can I optimize the broad-phase of my collision engine maintaining the grouped bodies approach? Is there some kind of magic C++ optimization that can be applied here? Can the architecture be redesigned in order to allow for more performance? Actual implementation: SSVSCollsion Body.h, Body.cpp World.h, World.cpp Grid.h, Grid.cpp Cell.h, Cell.cpp GridInfo.h, GridInfo.cpp

    Read the article

  • XNA `tex2Dlod` always returns transparent black

    - by feralin
    I want to sample a texture in a vertex shader, so at first I just tried using float2 texcoords = ...; color = tex2D(texture, texcoords); But apparently I cannot use tex2D in a vertex shader, and must use tex2Dlod. So then I changed the above code to color = tex2Dlod(texture, float4(texcoords, 0, 0)); But now color is always float4(0, 0, 0, 0) (i.e. transparent black). Why is this, and how can I fix it? EDIT: I know for a fact that the texture does not contain just transparent black pixels.

    Read the article

  • formula for replicating glTexGen in opengl es 2.0 glsl

    - by visualjc
    I also posted this on the main StackExchange, but this seems like a better place, but for give me for the double post if it shows up twice. I have been trying for several hours to implement a GLSL replacement for glTexGen with GL_OBJECT_LINEAR. For OpenGL ES 2.0. In Ogl GLSL there is the gl_TextureMatrix that makes this easier, but thats not available on OpenGL ES 2.0 / OpenGL ES Shader Language 1.0 Several sites have mentioned that this should be "easy" to do in a GLSL vert shader. But I just can not get it to work. My hunch is that I'm not setting the planes up correctly, or I'm missing something in my understanding. I've pored over the web. But most sites are talking about projected textures, I'm just looking to create UV's based on planar projection. The models are being built in Maya, have 50k polygons and the modeler is using planer mapping, but Maya will not export the UV's. So I'm trying to figure this out. I've looked at the glTexGen manpage information: g = p1xo + p2yo + p3zo + p4wo What is g? Is g the value of s in the texture2d call? I've looked at the site: http://www.opengl.org/wiki/Mathematics_of_glTexGen Another size explains the same function: coord = P1*X + P2*Y + P3*Z + P4*W I don't get how coord (an UV vec2 in my mind) is equal to the dot product (a scalar value)? Same problem I had before with "g". What do I set the plane to be? In my opengl c++ 3.0 code, I set it to [0, 0, 1, 0] (basically unit z) and glTexGen works great. I'm still missing something. My vert shader looks basically like this: WVPMatrix = World View Project Matrix. POSITION is the model vertex position. varying vec4 kOutBaseTCoord; void main() { gl_Position = WVPMatrix * vec4(POSITION, 1.0); vec4 sPlane = vec4(1.0, 0.0, 0.0, 0.0); vec4 tPlane = vec4(0.0, 1.0, 0.0, 0.0); vec4 rPlane = vec4(0.0, 0.0, 0.0, 0.0); vec4 qPlane = vec4(0.0, 0.0, 0.0, 0.0); kOutBaseTCoord.s = dot(vec4(POSITION, 1.0), sPlane); kOutBaseTCoord.t = dot(vec4(POSITION, 1.0), tPlane); //kOutBaseTCoord.r = dot(vec4(POSITION, 1.0), rPlane); //kOutBaseTCoord.q = dot(vec4(POSITION, 1.0), qPlane); } The frag shader precision mediump float; uniform sampler2D BaseSampler; varying mediump vec4 kOutBaseTCoord; void main() { //gl_FragColor = vec4(kOutBaseTCoord.st, 0.0, 1.0); gl_FragColor = texture2D(BaseSampler, kOutBaseTCoord.st); } I've tried texture2DProj in frag shader Here are some of the other links I've looked up http://www.gamedev.net/topic/407961-texgen-not-working-with-glsl-with-fixed-pipeline-is-ok/ Thank you in advance.

    Read the article

  • Popular genres in Asian (non-Japanese) markets?

    - by mummey
    Hello, From time-to-time I've wondered what kind of games are popular in Asia (India, China, Korea, Singapore, etc...). I hear about developers in the US and UK who outsource work there, but what goes into the games they make for themselves? Related, you hear these days about how Japanese developers have been marketing their games more for American audiences these days (with mixed success). In what ways could American developers aim their development toward Asian audiences?

    Read the article

  • Minecraft Style Chunk building problem

    - by David Torrey
    I'm having some problems with speed in my chunk engine. I timed it out, and in its current state it takes a total ~5 seconds per chunk to fill each face's list. I have a check to see if each face of a block is visible and if it is not visible, it skips it and moves on. I'm using a dictionary (unordered map) because it makes sense memorywise to just not have an entry if there is no block. I've tracked my problem down to testing if there is an entry, and accessing an entry if it does exist. If I remove the tests to see if there is an entry in the dictionary for an adjacent block, or if the block type itself is seethrough, it runs within about 2-4 milliseconds. so here's my question: Is there a faster way to check for an entry in a dictionary than .ContainsKey()? As an aside, I tried TryGetValue() and it doesn't really help with the speed that much. If I remove the ContainsKey() and keep the test where it does the IsSeeThrough for each block, it halves the time, but it's still about 2-3 seconds. It only drops to 2-4ms if I remove BOTH checks. Here is my code: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Runtime.InteropServices; using OpenTK; using OpenTK.Graphics.OpenGL; using System.Drawing; namespace Anabelle_Lee { public enum BlockEnum { air = 0, dirt = 1, } [StructLayout(LayoutKind.Sequential,Pack=1)] public struct Coordinates<T1> { public T1 x; public T1 y; public T1 z; public override string ToString() { return "(" + x + "," + y + "," + z + ") : " + typeof(T1); } } public struct Sides<T1> { public T1 left; public T1 right; public T1 top; public T1 bottom; public T1 front; public T1 back; } public class Block { public int blockType; public bool SeeThrough() { switch (blockType) { case 0: return true; } return false ; } public override string ToString() { return ((BlockEnum)(blockType)).ToString(); } } class Chunk { private Dictionary<Coordinates<byte>, Block> mChunkData; //stores the block data private Sides<List<Coordinates<byte>>> mVBOVertexBuffer; private Sides<int> mVBOHandle; //private bool mIsChanged; private const byte mCHUNKSIZE = 16; public Chunk() { } public void InitializeChunk() { //create VBO references #if DEBUG Console.WriteLine ("Initializing Chunk"); #endif mChunkData = new Dictionary<Coordinates<byte> , Block>(); //mIsChanged = true; GL.GenBuffers(1, out mVBOHandle.left); GL.GenBuffers(1, out mVBOHandle.right); GL.GenBuffers(1, out mVBOHandle.top); GL.GenBuffers(1, out mVBOHandle.bottom); GL.GenBuffers(1, out mVBOHandle.front); GL.GenBuffers(1, out mVBOHandle.back); //make new list of vertexes for each face mVBOVertexBuffer.top = new List<Coordinates<byte>>(); mVBOVertexBuffer.bottom = new List<Coordinates<byte>>(); mVBOVertexBuffer.left = new List<Coordinates<byte>>(); mVBOVertexBuffer.right = new List<Coordinates<byte>>(); mVBOVertexBuffer.front = new List<Coordinates<byte>>(); mVBOVertexBuffer.back = new List<Coordinates<byte>>(); #if DEBUG Console.WriteLine("Chunk Initialized"); #endif } public void GenerateChunk() { #if DEBUG Console.WriteLine("Generating Chunk"); #endif for (byte i = 0; i < mCHUNKSIZE; i++) { for (byte j = 0; j < mCHUNKSIZE; j++) { for (byte k = 0; k < mCHUNKSIZE; k++) { Random blockLoc = new Random(); Coordinates<byte> randChunk = new Coordinates<byte> { x = i, y = j, z = k }; mChunkData.Add(randChunk, new Block()); mChunkData[randChunk].blockType = blockLoc.Next(0, 1); } } } #if DEBUG Console.WriteLine("Chunk Generated"); #endif } public void DeleteChunk() { //delete VBO references #if DEBUG Console.WriteLine("Deleting Chunk"); #endif GL.DeleteBuffers(1, ref mVBOHandle.left); GL.DeleteBuffers(1, ref mVBOHandle.right); GL.DeleteBuffers(1, ref mVBOHandle.top); GL.DeleteBuffers(1, ref mVBOHandle.bottom); GL.DeleteBuffers(1, ref mVBOHandle.front); GL.DeleteBuffers(1, ref mVBOHandle.back); //clear all vertex buffers ClearPolyLists(); #if DEBUG Console.WriteLine("Chunk Deleted"); #endif } public void UpdateChunk() { #if DEBUG Console.WriteLine("Updating Chunk"); #endif ClearPolyLists(); //prepare buffers //for every entry in mChunkData map foreach(KeyValuePair<Coordinates<byte>,Block> feBlockData in mChunkData) { Coordinates<byte> checkBlock = new Coordinates<byte> { x = feBlockData.Key.x, y = feBlockData.Key.y, z = feBlockData.Key.z }; //check for polygonson the left side of the cube if (checkBlock.x > 0) { //check to see if there is a key for current x - 1. if not, add the vector if (!IsVisible(checkBlock.x - 1, checkBlock.y, checkBlock.z)) { //add polygon AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.left); } } else { //polygon is far left and should be added AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.left); } //check for polygons on the right side of the cube if (checkBlock.x < mCHUNKSIZE - 1) { if (!IsVisible(checkBlock.x + 1, checkBlock.y, checkBlock.z)) { //add poly AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.right); } } else { //poly for right add AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.right); } if (checkBlock.y > 0) { //check to see if there is a key for current x - 1. if not, add the vector if (!IsVisible(checkBlock.x, checkBlock.y - 1, checkBlock.z)) { //add polygon AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.bottom); } } else { //polygon is far left and should be added AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.bottom); } //check for polygons on the right side of the cube if (checkBlock.y < mCHUNKSIZE - 1) { if (!IsVisible(checkBlock.x, checkBlock.y + 1, checkBlock.z)) { //add poly AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.top); } } else { //poly for right add AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.top); } if (checkBlock.z > 0) { //check to see if there is a key for current x - 1. if not, add the vector if (!IsVisible(checkBlock.x, checkBlock.y, checkBlock.z - 1)) { //add polygon AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.back); } } else { //polygon is far left and should be added AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.back); } //check for polygons on the right side of the cube if (checkBlock.z < mCHUNKSIZE - 1) { if (!IsVisible(checkBlock.x, checkBlock.y, checkBlock.z + 1)) { //add poly AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.front); } } else { //poly for right add AddPoly(checkBlock.x, checkBlock.y, checkBlock.z, mVBOHandle.front); } } BuildBuffers(); #if DEBUG Console.WriteLine("Chunk Updated"); #endif } public void RenderChunk() { } public void LoadChunk() { #if DEBUG Console.WriteLine("Loading Chunk"); #endif #if DEBUG Console.WriteLine("Chunk Deleted"); #endif } public void SaveChunk() { #if DEBUG Console.WriteLine("Saving Chunk"); #endif #if DEBUG Console.WriteLine("Chunk Saved"); #endif } private bool IsVisible(int pX,int pY,int pZ) { Block testBlock; Coordinates<byte> checkBlock = new Coordinates<byte> { x = Convert.ToByte(pX), y = Convert.ToByte(pY), z = Convert.ToByte(pZ) }; if (mChunkData.TryGetValue(checkBlock,out testBlock )) //if data exists { if (testBlock.SeeThrough() == true) //if existing data is not seethrough { return true; } } return true; } private void AddPoly(byte pX, byte pY, byte pZ, int BufferSide) { //create temp array GL.BindBuffer(BufferTarget.ArrayBuffer, BufferSide); if (BufferSide == mVBOHandle.front) { //front face mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.front.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ + 1) }); } else if (BufferSide == mVBOHandle.right) { //back face mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.back.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ) }); } else if (BufferSide == mVBOHandle.top) { //left face mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.left.Add(new Coordinates<byte> { x = (byte)(pX), y = (byte)(pY + 1), z = (byte)(pZ) }); } else if (BufferSide == mVBOHandle.bottom) { //right face mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ + 1) }); mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY) , z = (byte)(pZ) }); mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.right.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); } else if (BufferSide == mVBOHandle.front) { //top face mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ + 1) }); mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY + 1), z = (byte)(pZ) }); mVBOVertexBuffer.top.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY + 1), z = (byte)(pZ) }); } else if (BufferSide == mVBOHandle.back) { //bottom face mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY), z = (byte)(pZ + 1) }); mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY), z = (byte)(pZ) }); mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY), z = (byte)(pZ) }); mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY), z = (byte)(pZ) }); mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX + 1), y = (byte)(pY), z = (byte)(pZ + 1) }); mVBOVertexBuffer.bottom.Add(new Coordinates<byte> { x = (byte)(pX) , y = (byte)(pY), z = (byte)(pZ + 1) }); } } private void BuildBuffers() { #if DEBUG Console.WriteLine("Building Chunk Buffers"); #endif GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.front); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.front.Count), mVBOVertexBuffer.front.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.back); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.back.Count), mVBOVertexBuffer.back.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.left); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.left.Count), mVBOVertexBuffer.left.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.right); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.right.Count), mVBOVertexBuffer.right.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.top); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.top.Count), mVBOVertexBuffer.top.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer, mVBOHandle.bottom); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(Marshal.SizeOf(new Coordinates<byte>()) * mVBOVertexBuffer.bottom.Count), mVBOVertexBuffer.bottom.ToArray(), BufferUsageHint.StaticDraw); GL.BindBuffer(BufferTarget.ArrayBuffer,0); #if DEBUG Console.WriteLine("Chunk Buffers Built"); #endif } private void ClearPolyLists() { #if DEBUG Console.WriteLine("Clearing Polygon Lists"); #endif mVBOVertexBuffer.top.Clear(); mVBOVertexBuffer.bottom.Clear(); mVBOVertexBuffer.left.Clear(); mVBOVertexBuffer.right.Clear(); mVBOVertexBuffer.front.Clear(); mVBOVertexBuffer.back.Clear(); #if DEBUG Console.WriteLine("Polygon Lists Cleared"); #endif } }//END CLASS }//END NAMESPACE

    Read the article

< Previous Page | 258 259 260 261 262 263 264 265 266 267 268 269  | Next Page >