Search Results

Search found 16473 results on 659 pages for 'game logic'.

Page 264/659 | < Previous Page | 260 261 262 263 264 265 266 267 268 269 270 271  | Next Page >

  • java slick2D - problem using ScalableGame class

    - by nellykvist
    I have problem adjusting the size of the screen, using the ScalableGame class from Slick2D library. So, what I want to achieve, whenever I change display size, background should adjust to screen size, and objects (images, grahpic shapes) should fit (scale). Alright, so this is how state looks by default. I can change screen size, but images and graphic shapes does not appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth(), Settings.video.getHeight(), true) ); appGameContainer.setDisplayMode(Settings.video.getWidth(), Settings.video.getHeight(), Settings.video.isFullScreen()); appGameContainer.start(); If I assign to width/height +100, ScalableGame constructor: appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth() + 100, Settings.video.getHeight() + 100, true) ); appGameContainer.setDisplayMode(Settings.video.getWidth(), Settings.video.getHeight(), Settings.video.isFullScreen()); appGameContainer.start(); If I assign to width/height +100, to display: appGameContainer = new AppGameContainer(     new ScalableGame(new AppStateController(), Settings.video.getWidth(), Settings.video.getHeight(), true) ); appGameContainer.setDisplayMode(Settings.video.getWidth() + 100, Settings.video.getHeight() + 100, Settings.video.isFullScreen()); appGameContainer.start();

    Read the article

  • Inverted textures

    - by brainydexter
    I'm trying to draw textures aligned with this physics body whose coordinate system's origin is at the center of the screen. (XNA)Spritebatch has its default origin set to top-left corner. I got the textures to be positioned correctly, but I noticed my textures are vertically inverted. That is, an arrow texture pointing Up , when rendered points down. I'm not sure where I am going wrong with the math. My approach is to convert everything in physic's meter units and draw accordingly. Matrix proj = Matrix.CreateOrthographic(scale * graphics.GraphicsDevice.Viewport.AspectRatio, scale, 0, 1); Matrix view = Matrix.Identity; effect.World = Matrix.Identity; effect.View = view; effect.Projection = proj; effect.TextureEnabled = true; effect.VertexColorEnabled = true; effect.Techniques[0].Passes[0].Apply(); SpriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend, null, DepthStencilState.Default, RasterizerState.CullNone, effect); m_Paddles[1].Draw(gameTime); SpriteBatch.End(); where Paddle::Draw looks like: SpriteBatch.Draw(paddleTexture, mBody.Position, null, Color.White, 0f, new Vector2(16f, 16f), // origin of the texture 0.1875f, SpriteEffects.None, // width of box is 3*2 = 6 meters. texture is 32 pixels wide. to make it 6 meters wide in world space: 6/32 = 0.1875f 0); The orthographic projection matrix seem fine to me, but I am obviously doing something wrong somewhere! Can someone please help me figure out what am i doing wrong here ? Thanks

    Read the article

  • How can I get the palette of an 8-bit surface in SDL.NET/Tao.SDL?

    - by lolmaster
    I'm looking to get the palette of an 8-bit surface in SDL.NET if possible, or (more than likely) using Tao.SDL. This is because I want to do palette swapping with the palette directly, instead of blitting surfaces together to replace colours like how you would do it with a 32-bit surface. I've gotten the SDL_Surface and the SDL_PixelFormat, however when I go to get the palette in the same way, I get a System.ExecutionEngineException: private Tao.Sdl.Sdl.SDL_Palette GetPalette(Surface surf) { // Get surface. Tao.Sdl.Sdl.SDL_Surface sdlSurface = (Tao.Sdl.Sdl.SDL_Surface)System.Runtime.InteropServices.Marshal.PtrToStructure(surf.Handle, typeof(Tao.Sdl.Sdl.SDL_Surface)); // Get pixel format. Tao.Sdl.Sdl.SDL_PixelFormat pixelFormat = (Tao.Sdl.Sdl.SDL_PixelFormat)System.Runtime.InteropServices.Marshal.PtrToStructure(sdlSurface.format, typeof(Tao.Sdl.Sdl.SDL_PixelFormat)); // Execution exception here. Tao.Sdl.Sdl.SDL_Palette palette = (Tao.Sdl.Sdl.SDL_Palette)System.Runtime.InteropServices.Marshal.PtrToStructure(pixelFormat.palette, typeof(Tao.Sdl.Sdl.SDL_Palette)); return palette; } When I used unsafe code to get the palette, I got a compile time error: "Cannot take the address of, get the size of, or declare a pointer to a managed type ('Tao.Sdl.Sdl.SDL_Palette')". My unsafe code to get the palette was this: unsafe { Tao.Sdl.Sdl.SDL_Palette* pal = (Tao.Sdl.Sdl.SDL_Palette*)pixelFormat.palette; } From what I've read, a managed type in this case is when a structure has some sort of reference inside it as a field. The SDL_Palette structure happens to have an array of SDL_Color's, so I'm assuming that's the reference type that is causing issues. However I'm still not sure how to work around that to get the underlying palette. So if anyone knows how to get the palette from an 8-bit surface, whether it's through safe or unsafe code, the help would be greatly appreciated.

    Read the article

  • How can I run the pixel shader effect?

    - by Yashwinder
    Stated below is the code for my pixel shader which I am rendering after the vertex shader. I have set the wordViewProjection matrix in my program but I don't know to set the progress variable i.e in my pixel shader file which will make the image displayed by the help of a quad to give out transition effect. Here is the code for my pixel shader program::: As my pixel shader is giving a static effect and now I want to use it to give some effect. So for this I have to add a progress variable in my pixel shader and initialize to the Constant table function i.e constantTable.SetValue(D3DDevice,"progress",progress ); I am having the problem in using this function for progress in my program. Anybody know how to set this variable in my program. And my new pixel shader code is float progress : register(C0); sampler2D implicitInput : register(s0); sampler2D oldInput : register(s1); struct VS_OUTPUT { float4 Position : POSITION; float4 Color : COLOR0; float2 UV : TEXCOORD 0; }; float4 Blinds(float2 uv) { if(frac(uv.y * 5) < progress) { return tex2D(implicitInput, uv); } else { return tex2D(oldInput, uv); } } // Pixel Shader { return Blinds(input.UV); }

    Read the article

  • Java Slick2d - How to translate mouse coordinates to world coordinates

    - by Corey
    I am translating in my main class render. How do I get the mouse position where my mouse actually is after I scroll the screen public void render(GameContainer gc, Graphics g) throws SlickException { float centerX = 800/2; float centerY = 600/2; g.translate(centerX, centerY); g.translate(-player.playerX, -player.playerY); gen.render(g); player.render(g); } playerX = 800 /2 - sprite.getWidth(); playerY = 600 /2 - sprite.getHeight(); Image to help with explanation I tried implementing a camera but it seems no matter what I can't get the mouse position. I was told to do this worldX = mouseX + camX; but it didn't work the mouse was still off. Here is my Camera class if that helps: public class Camera { public float camX; public float camY; Player player; public void init() { player = new Player(); } public void update(GameContainer gc, int delta) { Input input = gc.getInput(); if(input.isKeyDown(Input.KEY_W)) { camY -= player.speed * delta; } if(input.isKeyDown(Input.KEY_S)) { camY += player.speed * delta; } if(input.isKeyDown(Input.KEY_A)) { camX -= player.speed * delta; } if(input.isKeyDown(Input.KEY_D)) { camX += player.speed * delta; } } Code used to convert mouse worldX = (int) (mouseX + cam.camX); worldY = (int) (mouseY + cam.camY);

    Read the article

  • Marketing iOS games (and other mobile platforms)

    - by MrDatabase
    I'd like to market my existing and/or upcoming mobile games. Specifically I want to have a "revenue sharing" agreement w/ the "marketing company"... i.e. I don't want to pay anything up front... and I'm will to give the marketing company a sizable chunk of the revenue (say up to 50%). Is a publisher the only entity that does this? Or do marketing companies exist that would be interested in this type of arrangement?

    Read the article

  • Bullet physics debug drawing not working

    - by Krishnabhadra
    Background I am following on from this question, which isn't answered yet. Basically I have a cube and a UVSphere in my scene, with UVSphere on the top of the cube without touching the cube. Both exported from blender. When I run the app The UVSphere does circle around the cube for 3 or 4 times and jump out of the scene. What I actually expect was the sphere to fall on top of the cube. What this question about From the comment to the linked question, I got to know about bullet debug drawing, which helps in debugging by drawing outline of physics bodies which are normally invisible. I did some research on that and came up with the code given below. From whatever I have read, below code should work, but it doesn't. My Code My bullet initialization code. -(void) initializeScene { /*Setup physics world*/ _physicsWorld = [[CC3PhysicsWorld alloc] init]; [_physicsWorld setGravity:0 y:-9.8 z:0]; /*Setting up debug draw*/ MyDebugDraw *draw = new MyDebugDraw; draw->setDebugMode(draw->getDebugMode() | btIDebugDraw::DBG_DrawWireframe ); _physicsWorld._discreteDynamicsWorld->setDebugDrawer(draw); /*Setup camera and lamb*/ ………….. //This simpleCube.pod contains the cube [self addContentFromPODFile: @"simpleCube.pod"]; //This file contains sphere [self addContentFromPODFile: @"SimpleSphere.pod"]; [self createGLBuffers]; CC3MeshNode* cubeNode = (CC3MeshNode*)[self getNodeNamed:@"Cube"]; CC3MeshNode* sphereNode = (CC3MeshNode*)[self getNodeNamed:@"Sphere"]; // both cubeNode and sphereNode are not nil from this point float *cVertexData = (float*)((CC3VertexArrayMesh*)cubeNode.mesh) .vertexLocations.vertices; int cVertexCount = ((CC3VertexArrayMesh*)cubeNode.mesh) .vertexLocations.vertexCount; btTriangleMesh* cTriangleMesh = new btTriangleMesh(); int offset = 0; for (int i = 0; i < (cVertexCount / 3); i++) { unsigned int index1 = offset; unsigned int index2 = offset+6; unsigned int index3 = offset+12; cTriangleMesh->addTriangle( btVector3(cVertexData[index1], cVertexData[index1+1], cVertexData[index1+2]), btVector3(cVertexData[index2], cVertexData[index2+1], cVertexData[index2+2]), btVector3(cVertexData[index3], cVertexData[index3+1], cVertexData[index3+2])); offset += 18; } [self releaseRedundantData]; /*Create a triangle mesh from the vertices*/ btBvhTriangleMeshShape* cTriMeshShape = new btBvhTriangleMeshShape(cTriangleMesh,true); btCollisionShape *sphereShape = new btSphereShape(1); gTriMeshObject = [_physicsWorld createPhysicsObjectTrimesh:cubeNode shape:cTriMeshShape mass:0 restitution:1.0 position:cubeNode.location]; sphereObject = [_physicsWorld createPhysicsObject:sphereNode shape:sphereShape mass:1 restitution:0.1 position:sphereNode.location]; sphereObject.rigidBody->setDamping(0.1,0.8); /*Enable debug drawing*/ _physicsWorld._discreteDynamicsWorld->debugDrawWorld(); } And My btIDebugDraw implementation (MyDebugDraw.h) //MyDebugDraw.h class MyDebugDraw: public btIDebugDraw{ int m_debugMode; public: virtual void drawLine(const btVector3& from,const btVector3& to ,const btVector3& color); virtual void drawContactPoint(const btVector3& PointOnB ,const btVector3& normalOnB,btScalar distance ,int lifeTime,const btVector3& color); virtual void reportErrorWarning(const char* warningString); virtual void draw3dText(const btVector3& location ,const char* textString); virtual void setDebugMode(int debugMode); virtual int getDebugMode() const; }; void MyDebugDraw::drawLine(const btVector3& from,const btVector3& to ,const btVector3& color){ LogInfo(@"Works!!"); glPushMatrix(); glColor4f(color.getX(), color.getY(), color.getZ(), 1.0); const GLfloat line[] = { from.getX()*1, from.getY()*1, from.getZ()*1, //point A to.getX()*1, to.getY()*1,to.getZ()*1 //point B }; glVertexPointer( 3, GL_FLOAT, 0, &line ); glPointSize( 5.0f ); glDrawArrays( GL_POINTS, 0, 2 ); glDrawArrays( GL_LINES, 0, 2 ); glPopMatrix(); } void MyDebugDraw::drawContactPoint(const btVector3 &PointOnB ,const btVector3 &normalOnB, btScalar distance ,int lifeTime, const btVector3 &color){ } void MyDebugDraw::reportErrorWarning(const char *warningString){ } void MyDebugDraw::draw3dText(const btVector3 &location , const char *textString){ } void MyDebugDraw::setDebugMode(int debugMode){ } int MyDebugDraw::getDebugMode() const{ return DBG_DrawWireframe; } My Problem The drawLine method is getting called. I can see the cube and sphere in place. Sphere again does some circling around the cube before jumping off. No debug lines are getting drawn.

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Modular Open MMO RPG

    - by Chris Valentine
    Has there been an MMORPG type attempt at some kind of open universe where you could host a server on your own if you wish and it would merely be added to the collective of possible places to travel within the MMO? Two types come to mind, a DnD Neverwinter Nights type place or something like EVE online. Where there is a "universe" and each hosted space is a planet or solar system or galaxy and players can travel between them using the same characters/ships/portal system and each new server is than just a new adventure or place to go. I would also assume there were dedicated/replicated servers that housed the characters/inventory themselves so that the environment was decentralized and always expandable. Not sure thats clear but has there been any such attempts or WIP? thanks

    Read the article

  • OpenGL - Stack overflow if I do, Stack underflow if I don't!

    - by Wayne Werner
    Hi, I'm in a multimedia class in college, and we're "learning" OpenGL as part of the class. I'm trying to figure out how the OpenGL camera vs. modelview works, and so I found this example. I'm trying to port the example to Python using the OpenGL bindings - it starts up OpenGL much faster, so for testing purposes it's a lot nicer - but I keep running into a stack overflow error with the glPushMatrix in this code: def cube(): for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); According to this reference, that happens when the matrix stack is full. So I thought, "well, if it's full, let me just pop the matrix off the top of the stack, and there will be room". I modified the code to: def cube(): glPopMatrix() for x in xrange(10): glPushMatrix() glTranslated(-positionx[x + 1] * 10, 0, -positionz[x + 1] * 10); #translate the cube glutSolidCube(2); #draw the cube glPopMatrix(); And now I get a buffer underflow error - which apparently happens when the stack has only one matrix. So am I just waaay off base in my understanding? Or is there some way to increase the matrix stack size? Also, if anyone has some good (online) references (examples, etc.) for understanding how the camera/model matrices work together, I would sincerely appreciate them! Thanks!

    Read the article

  • Atmospheric Scattering

    - by Lawrence Kok
    I'm trying to implement atmospheric scattering based on Sean O`Neil algorithm that was published in GPU Gems 2. But I have some trouble getting the shader to work. My latest attempts resulted in: http://img253.imageshack.us/g/scattering01.png/ I've downloaded sample code of O`Neil from: http://http.download.nvidia.com/developer/GPU_Gems_2/CD/Index.html. Made minor adjustments to the shader 'SkyFromAtmosphere' that would allow it to run in AMD RenderMonkey. In the images it is see-able a form of banding occurs, getting an blueish tone. However it is only applied to one half of the sphere, the other half is completely black. Also the banding appears to occur at Zenith instead of Horizon, and for a reason I managed to get pac-man shape. I would appreciate it if somebody could show me what I'm doing wrong. Vertex Shader: uniform mat4 matView; uniform vec4 view_position; uniform vec3 v3LightPos; const int nSamples = 3; const float fSamples = 3.0; const vec3 Wavelength = vec3(0.650,0.570,0.475); const vec3 v3InvWavelength = 1.0f / vec3( Wavelength.x * Wavelength.x * Wavelength.x * Wavelength.x, Wavelength.y * Wavelength.y * Wavelength.y * Wavelength.y, Wavelength.z * Wavelength.z * Wavelength.z * Wavelength.z); const float fInnerRadius = 10; const float fOuterRadius = fInnerRadius * 1.025; const float fInnerRadius2 = fInnerRadius * fInnerRadius; const float fOuterRadius2 = fOuterRadius * fOuterRadius; const float fScale = 1.0 / (fOuterRadius - fInnerRadius); const float fScaleDepth = 0.25; const float fScaleOverScaleDepth = fScale / fScaleDepth; const vec3 v3CameraPos = vec3(0.0, fInnerRadius * 1.015, 0.0); const float fCameraHeight = length(v3CameraPos); const float fCameraHeight2 = fCameraHeight * fCameraHeight; const float fm_ESun = 150.0; const float fm_Kr = 0.0025; const float fm_Km = 0.0010; const float fKrESun = fm_Kr * fm_ESun; const float fKmESun = fm_Km * fm_ESun; const float fKr4PI = fm_Kr * 4 * 3.141592653; const float fKm4PI = fm_Km * 4 * 3.141592653; varying vec3 v3Direction; varying vec4 c0, c1; float scale(float fCos) { float x = 1.0 - fCos; return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main( void ) { // Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere) vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Pos = normalize(gl_Vertex.xyz) * fOuterRadius; vec3 v3Ray = v3CameraPos - v3Pos; float fFar = length(v3Ray); v3Ray = normalize(v3Ray); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = v3CameraPos; float fHeight = length(v3Start); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fCameraHeight)); float fStartAngle = dot(v3Ray, v3Start) / fHeight; float fStartOffset = fDepth*scale(fStartAngle); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight)); float fLightAngle = dot(normalize(v3LightPos), v3SamplePoint) / fHeight; float fCameraAngle = dot(normalize(v3Ray), v3SamplePoint) / fHeight; float fScatter = (-fStartOffset + fDepth*( scale(fLightAngle) - scale(fCameraAngle)))/* 0.25f*/; vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } // Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader vec4 newPos = vec4( (gl_Vertex.xyz + view_position.xyz), 1.0); gl_Position = gl_ModelViewProjectionMatrix * vec4(newPos.xyz, 1.0); gl_Position.z = gl_Position.w * 0.99999; c1 = vec4(v3FrontColor * fKmESun, 1.0); c0 = vec4(v3FrontColor * (v3InvWavelength * fKrESun), 1.0); v3Direction = v3CameraPos - v3Pos; } Fragment Shader: uniform vec3 v3LightPos; varying vec3 v3Direction; varying vec4 c0; varying vec4 c1; const float g =-0.90f; const float g2 = g * g; const float Exposure =2; void main(void){ float fCos = dot(normalize(v3LightPos), v3Direction) / length(v3Direction); float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5); gl_FragColor = c0 + fMiePhase * c1; gl_FragColor.a = 1.0; }

    Read the article

  • 2D animation example in pyglet (python) looping through 2 images/sprites every x seconds

    - by Bentley4
    Suppose you have two images: step1.png and step2.png . Can anyone show me a very simple example in pyglet how to loop through those 2 images say every 0.5 seconds? The character doesn't have to move, just a simple black screen with a fixed region wherein the two images continually change every 0.5 secs. I know how to make a character move, shoot projectiles etc. but I just can't figure out how to control the looping speed of the images.

    Read the article

  • Top Down RPG Movement w/ Correction?

    - by Corey Ogburn
    I would hope that we have all played Zelda: A Link to the Past, please correct me if I'm wrong, but I want to emulate that kind of 2D, top-down character movement with a touch of correction. It has been done in other games, but I feel this reference would be the easiest to relate to. More specifically the kind of movement and correction I'm talking about is: Floating movement not restricted to tile based movement like Pokemon and other games where one tap of the movement pad moves you one square in that cardinal direction. This floating movement should be able to achieve diagonal motion. If you're walking West and you come to a wall that is diagonal in a North East/South West fashion, you are corrected into a South West movement even if you continue holding left (West) on the controller. This should work for both diagonals correcting in both directions. If you're a few pixels off from walking squarely into a door or hallway, you are corrected into walking through the hall or down the hallway, i.e. bumping into the corner causes you to be pushed into the hall/door. I've hunted for efficient ways to achieve this and have had no luck. To be clear I'm talking about the human character's movement, not an NPC's movement. Are their resources available on this kind of movement? Equations or algorithms explained on a wiki or something? I'm using the XNA Framework, is there anything in it to help with this?

    Read the article

  • GLSL Atmospheric Scattering Issue

    - by mtf1200
    I am attempting to use Sean O'Neil's shaders to accomplish atmospheric scattering. For now I am just using SkyFromSpace and GroundFromSpace. The atmosphere works fine but the planet itself is just a giant dark sphere with a white blotch that follows the camera. I think the problem might rest in the "v3Attenuation" variable as when this is removed the sphere is show (albeit without scattering). Here is the vertex shader. Thanks for the time! uniform mat4 g_WorldViewProjectionMatrix; uniform mat4 g_WorldMatrix; uniform vec3 m_v3CameraPos; // The camera's current position uniform vec3 m_v3LightPos; // The direction vector to the light source uniform vec3 m_v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels uniform float m_fCameraHeight; // The camera's current height uniform float m_fCameraHeight2; // fCameraHeight^2 uniform float m_fOuterRadius; // The outer (atmosphere) radius uniform float m_fOuterRadius2; // fOuterRadius^2 uniform float m_fInnerRadius; // The inner (planetary) radius uniform float m_fInnerRadius2; // fInnerRadius^2 uniform float m_fKrESun; // Kr * ESun uniform float m_fKmESun; // Km * ESun uniform float m_fKr4PI; // Kr * 4 * PI uniform float m_fKm4PI; // Km * 4 * PI uniform float m_fScale; // 1 / (fOuterRadius - fInnerRadius) uniform float m_fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found) uniform float m_fScaleOverScaleDepth; // fScale / fScaleDepth attribute vec4 inPosition; vec3 v3ELightPos = vec3(g_WorldMatrix * vec4(m_v3LightPos, 1.0)); vec3 v3ECameraPos= vec3(g_WorldMatrix * vec4(m_v3CameraPos, 1.0)); const int nSamples = 2; const float fSamples = 2.0; varying vec4 color; float scale(float fCos) { float x = 1.0 - fCos; return m_fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { gl_Position = g_WorldViewProjectionMatrix * inPosition; // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 v3Pos = vec3(g_WorldMatrix * inPosition); vec3 v3Ray = v3Pos - v3ECameraPos; float fFar = length(v3Ray); v3Ray /= fFar; // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(m_v3CameraPos, v3Ray); float C = m_fCameraHeight2 - m_fOuterRadius2; float fDet = max(0.0, B*B - 4.0 * C); float fNear = 0.5 * (-B - sqrt(fDet)); // Calculate the ray's starting position, then calculate its scattering offset vec3 v3Start = m_v3CameraPos + v3Ray * fNear; fFar -= fNear; float fDepth = exp((m_fInnerRadius - m_fOuterRadius) / m_fScaleDepth); float fCameraAngle = dot(-v3Ray, v3Pos) / fFar; float fLightAngle = dot(v3ELightPos, v3Pos) / fFar; float fCameraScale = scale(fCameraAngle); float fLightScale = scale(fLightAngle); float fCameraOffset = fDepth*fCameraScale; float fTemp = (fLightScale + fCameraScale); // Initialize the scattering loop variables float fSampleLength = fFar / fSamples; float fScaledLength = fSampleLength * m_fScale; vec3 v3SampleRay = v3Ray * fSampleLength; vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5; // Now loop through the sample rays vec3 v3FrontColor = vec3(0.0, 0.0, 0.0); vec3 v3Attenuate; for(int i=0; i<nSamples; i++) { float fHeight = length(v3SamplePoint); float fDepth = exp(m_fScaleOverScaleDepth * (m_fInnerRadius - fHeight)); float fScatter = fDepth*fTemp - fCameraOffset; v3Attenuate = exp(-fScatter * (m_v3InvWavelength * m_fKr4PI + m_fKm4PI)); v3FrontColor += v3Attenuate * (fDepth * fScaledLength); v3SamplePoint += v3SampleRay; } vec3 first = v3FrontColor * (m_v3InvWavelength * m_fKrESun + m_fKmESun); vec3 secondary = v3Attenuate; color = vec4((first + vec3(0.25,0.25,0.25) * secondary), 1.0); // ^^ that color is passed to the frag shader and is used as the gl_FragColor } Here is also an image of the problem image

    Read the article

  • blurry image rendered

    - by Jason
    I'm using Direct2D to render a PNG image using a ID2D1BitmapRenderTarget and then caling it's GetBitmap() function and rendering the image using ID2D1HwndRenderTarget::DrawBitmap(). Some of the images rendered this way are clear but others appear blurry. I did some research and followed a tutorial to make my application "DPI Aware" but it didn't help. What could cause the rendered image to appear blurry? Has anyone experienced this issue before? What can I do about this?

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Isometric screen to 3D world coordinates efficiently

    - by Justin
    Been having a difficult time transforming 2D screen coordinates to 3D isometric space. This is the situation where I am working in 3D but I have an orthographic camera. Then my camera is positioned at (100, 200, 100), Where the xz plane is flat and y is up and down. I've been able to get a sort of working solution, but I feel like there must be a better way. Here's what I'm doing: With my camera at (0, 1, 0) I can translate my screen coordinates directly to 3D coordinates by doing: mouse2D.z = (( event.clientX / window.innerWidth ) * 2 - 1) * -(window.innerWidth /2); mouse2D.x = (( event.clientY / window.innerHeight) * 2 + 1) * -(window.innerHeight); mouse2D.y = 0; Everything okay so far. Now when I change my camera back to (100, 200, 100) my 3D space has been rotated 45 degrees around the y axis and then rotated about 54 degrees around a vector Q that runs along the xz plane at a 45 degree angle between the positive z axis and the negative x axis. So what I do to find the point is first rotate my point by 45 degrees using a matrix around the y axis. Now I'm close. So then I rotate my point around the vector Q. But my point is closer to the origin than it should be, since the Y value is not 0 anymore. What I want is that after the rotation my Y value is 0. So now I exchange my X and Z coordinates of my rotated vector with the X and Z coordinates of my non-rotated vector. So basically I have my old vector but it's y value is at an appropriate rotated amount. Now I use another matrix to rotate my point around the vector Q in the opposite direction, and I end up with the point where I clicked. Is there a better way? I feel like I must be missing something. Also my method isn't completely accurate. I feel like it's within 5-10 coordinates of where I click, maybe because of rounding from many calculations. Sorry for such a long question.

    Read the article

  • shader coding: calculate screen coordinates of fragment

    - by Jay
    Good morning, I'm new to shader coding and trying to implement some visual effects code in shaders using billboards. (Yes, I couldn't have picked anything harder to start with, but I'm lucky that way) Setup: I have rendered the full screen z depth to an array of floats in a previous pass. In the fragment shader I need the scene depth where the rendered fragment is displayed (to see if it's occluded). I can use tex2d() to get the depth value if I have the screen coordinates of the point being rendered in the fragment shader. Question: In the fragment shader how do you calculate the screen coordinates of the pixel (in the range 0-1.0)? Is the position passed to the fragment shader a pixel offset? If so, I guess it would be: float2( position.x / screen-width, position.y / screen-height ) Thanks for any help/

    Read the article

  • Reading from a staging 2D texture array in DirectX10

    - by Don Reba
    I have a DX10 program, where I create an array of 3 16x16 textures, then map, read, and unmap each subresource in turn. I use a single mip level, set resource usage to staging and CPU access to read. Now, here is the problem: Subresource 0 contains 1024 bytes, pitch 64, as expected. Subresource 1 contains 512 bytes, pitch 64. Subresource 2 contains 256 bytes, pitch 64. I expect all three to be the same size. Debugging output is enabled, but not reporting any warnings or errors. Am I missing something, or might this be some sort of driver issue? Here is the code. The language is Nemerle, but C# and C++ would look almost the same. I have looked through the generated code, and am fairly confident the problem is not language-related. def cpuTexture = Texture2D ( device , Texture2DDescription() <- { Width = 16; Height = 16; MipLevels = 1; ArraySize = 3; Format = Format.R32_Float; Usage = ResourceUsage.Staging; CpuAccessFlags = CpuAccessFlags.Read; SampleDescription = SampleDescription(count = 1, quality = 0); } ); foreach (subresource in [0 .. 2]) { def data = cpuTexture.Map(subresource, MapMode.Read, MapFlags.None); Console.WriteLine($"subresource $subresource"); Console.WriteLine($"length = $(data.Data.Length)"); Console.WriteLine($"pitch = $(data.Pitch)"); cpuTexture.Unmap(subresource); }

    Read the article

  • Depth interpolation for z-buffer, with scanline

    - by Twodordan
    I have to write my own software 3d rasterizer, and so far I am able to project my 3d model made of triangles into 2d space: I rotate, translate and project my points to get a 2d space representation of each triangle. Then, I take the 3 triangle points and I implement the scanline algorithm (using linear interpolation) to find all points[x][y] along the edges(left and right) of the triangles, so that I can scan the triangle horizontally, row by row, and fill it with pixels. This works. Except I have to also implement z-buffering. This means that knowing the rotated&translated z coordinates of the 3 vertices of the triangle, I must interpolate the z coordinate for all other points I find with my scanline algorithm. The concept seems clear enough, I first find Za and Zb with these calculations: var Z_Slope = (bottom_point_z - top_point_z) / (bottom_point_y - top_point_y); var Za = top_point_z + ((current_point_y - top_point_y) * Z_Slope); Then for each Zp I do the same interpolation horizontally: var Z_Slope = (right_z - left_z) / (right_x - left_x); var Zp = left_z + ((current_point_x - left_x) * Z_Slope); And of course I add to the zBuffer, if current z is closer to the viewer than the previous value at that index. (my coordinate system is x: left - right; y: top - bottom; z: your face - computer screen;) The problem is, it goes haywire. The project is here and if you select the "Z-Buffered" radio button, you'll see the results... (note that the rest of the options before "Z-Buffered" use the Painter's algorithm to correctly order the triangles. I also use the painter's algorithm -only- to draw the wireframe in "Z-Buffered" mode for debugging purposes) PS: I've read here that you must turn the z's into their reciprocals (meaning z = 1/z) before you interpolate. I tried that, and it appears that there's no change. What am I missing? (could anyone clarify, precisely where you must turn z into 1/z and where to turn it back?)

    Read the article

  • DirectX9 dynamic rendering

    - by gardian06
    What I am planning to do is have the models (or maybe just an identifier for the model to be used) stored outside of the directX9 framework, and so in nature have completely dynamic rendering. All of the information that I have found contains static rendering (rendering models that are stored in memory at specific positions) I would like information on how to take a model (or identifier for a model type) that is stored outside of the framework, and render it to the screen. I am expected to take a container that holds all the relevant data to be rendered. The information outside would hold the position, orientation (quaternion, though I am told that I can also get a rotation matrix if I prefer), and dimensions (scale)

    Read the article

  • using Unity Android In a sub view and add actionbar and style

    - by aeroxr1
    I exported a simple animation from Unity3D (version 4.5) in android project. With eclipse I modified the manifest and added another activity. In this activity I put a button that it makes start the animation,and this is the result. The action bar appear in the main activity but it doesn't in the unity's activity :( How can I add the action bar and the style of the first activity to unity's animation activity ? This is the unity's activity's code : package com.rabidgremlin.tut.redcube; import android.app.NativeActivity; import android.content.res.Configuration; import android.graphics.PixelFormat; import android.os.Bundle; import android.view.KeyEvent; import android.view.MotionEvent; import android.view.View; import android.view.ViewGroup; import android.view.Window; import android.view.WindowManager; import com.unity3d.player.UnityPlayer; public class UnityPlayerNativeActivity extends NativeActivity { protected UnityPlayer mUnityPlayer; // don't change the name of this variable; referenced from native code // Setup activity layout @Override protected void onCreate (Bundle savedInstanceState) { //requestWindowFeature(Window.FEATURE_NO_TITLE); super.onCreate(savedInstanceState); getWindow().takeSurface(null); //setTheme(android.R.style.Theme_NoTitleBar_Fullscreen); getWindow().setFormat(PixelFormat.RGB_565); mUnityPlayer = new UnityPlayer(this); /*if (mUnityPlayer.getSettings ().getBoolean ("hide_status_bar", true)) getWindow ().setFlags (WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN); */ setContentView(mUnityPlayer); mUnityPlayer.requestFocus(); } // Quit Unity @Override protected void onDestroy () { mUnityPlayer.quit(); super.onDestroy(); } // Pause Unity @Override protected void onPause() { super.onPause(); mUnityPlayer.pause(); } // eliminiamo questa onResume() e proviamo a modificare la onResume() // Resume Unity @Override protected void onResume() { super.onResume(); mUnityPlayer.resume(); } // inseriamo qualche modifica qui // This ensures the layout will be correct. @Override public void onConfigurationChanged(Configuration newConfig) { super.onConfigurationChanged(newConfig); mUnityPlayer.configurationChanged(newConfig); } // Notify Unity of the focus change. @Override public void onWindowFocusChanged(boolean hasFocus) { super.onWindowFocusChanged(hasFocus); mUnityPlayer.windowFocusChanged(hasFocus); } // For some reason the multiple keyevent type is not supported by the ndk. // Force event injection by overriding dispatchKeyEvent(). @Override public boolean dispatchKeyEvent(KeyEvent event) { if (event.getAction() == KeyEvent.ACTION_MULTIPLE) return mUnityPlayer.injectEvent(event); return super.dispatchKeyEvent(event); } // Pass any events not handled by (unfocused) views straight to UnityPlayer @Override public boolean onKeyUp(int keyCode, KeyEvent event) { return mUnityPlayer.injectEvent(event); } @Override public boolean onKeyDown(int keyCode, KeyEvent event) { return mUnityPlayer.injectEvent(event); } @Override public boolean onTouchEvent(MotionEvent event) { return mUnityPlayer.injectEvent(event); } /*API12*/ public boolean onGenericMotionEvent(MotionEvent event) { return mUnityPlayer.injectEvent(event); } } And this is the AndroidManifest.xml android:versionCode="1" android:versionName="1.0" > <!-- android:theme="@android:style/Theme.NoTitleBar"--> <supports-screens android:anyDensity="true" android:largeScreens="true" android:normalScreens="true" android:smallScreens="true" android:xlargeScreens="true" /> <application android:icon="@drawable/app_icon" android:label="@string/app_name" android:theme="@android:style/Theme.Holo.Light" > <activity android:name="com.rabidgremlin.tut.redcube.UnityPlayerNativeActivity" android:configChanges="mcc|mnc|locale|touchscreen|keyboard|keyboardHidden|navigation|orientation|screenLayout|uiMode|screenSize|smallestScreenSize|fontScale" android:label="@string/app_name" android:screenOrientation="portrait" > <!--android:launchMode="singleTask"--> <meta-data android:name="unityplayer.UnityActivity" android:value="true" /> <meta-data android:name="unityplayer.ForwardNativeEventsToDalvik" android:value="false" /> </activity> <activity android:name="com.rabidgremlin.tut.redcube.MainActivity" android:label="@string/title_activity_main" > <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> </application> <uses-sdk android:minSdkVersion="17" android:targetSdkVersion="19" /> <uses-feature android:glEsVersion="0x00020000" /> </manifest>

    Read the article

  • Speed, delta time and movement

    - by munchor
    player.vx = scroll_speed * dt /* Update positions */ player.x += player.vx player.y += player.vy I have a delta time in miliseconds, and I was wondering how I can use it properly. I tried the above, but that makes the player go fast when the computer is fast, and the player go slow when the computer is slow. The same thing happens with jumping. The player can jump really high when the computer is faster. This is sort of unfair, I think, because. Should I be doing this someway else? Thanks.

    Read the article

  • Bullet physics in python and pygame

    - by Pomg
    I am programming a 2D sidescroller in python and pygame and am having trouble making a bullet go farther than just farther than the player. The bullet travels straight to the ground after i fire it. How, in python code using pygame do I make the bullet go farther. If you need code, here is the method that handles the bullet firing: self.xv += math.sin(math.radians(self.angle)) * self.attrs['speed'] self.yv += math.cos(math.radians(self.angle)) * self.attrs['speed'] self.rect.left += self.xv self.rect.top += self.yv

    Read the article

  • Scene Graph for Deferred Rendering Engine

    - by Roy T.
    As a learning exercise I've written a deferred rendering engine. Now I'd like to add a scene graph to this engine but I'm a bit puzzled how to do this. On a normal (forward rendering engine) I would just add all items (All implementing IDrawable and IUpdateAble) to my scene graph, than travel the scene-graph breadth first and call Draw() everywhere. However in a deferred rendering engine I have to separate draw calls. First I have to draw the geometry, then the shadow casters and then the lights (all to different render targets), before I combine them all. So in this case I can't just travel over the scene graph and just call draw. The way I see it I either have to travel over the entire scene graph 3 times, checking what kind of object it is that has to be drawn, or I have to create 3 separate scene graphs that are somehow connected to each other. Both of these seem poor solutions, I'd like to handle scene objects more transparent. One other solution I've thought of was traveling trough the scene graph as normal and adding items to 3 separate lists, separating geometry, shadow casters and lights, and then iterating these lists to draw the correct stuff, is this better, and is it wise to repopulate 3 lists every frame?

    Read the article

< Previous Page | 260 261 262 263 264 265 266 267 268 269 270 271  | Next Page >