Search Results

Search found 14551 results on 583 pages for 'game history'.

Page 271/583 | < Previous Page | 267 268 269 270 271 272 273 274 275 276 277 278  | Next Page >

  • Making body (box2d) a sprite (andengine) in Android

    - by Kadir
    I can't make body (box2d) a sprite (andengine) and at the same time apply MoveModifier to sprite which is body. If i can make just body, it works namely the sprites can collide. If I apply just MoveModifier to sprites, the sprites can move where i want. But I want to make body (they can collide) and apply MoveModifier (they can move where I want) at the same time. How can i do it? This my code just run MoveModifier not as body at the same time. circles[i] = new Sprite(startX, startY, textRegCircle[i]); body[i] = PhysicsFactory.createCircleBody(physicsWorld, circles[i], BodyType.DynamicBody, FIXTURE_DEF); physicsWorld.registerPhysicsConnector(new PhysicsConnector(circles[i], body[i], true, true)); circles[i].registerEntityModifier( (IEntityModifier) new SequenceEntityModifier ( new MoveModifier(10.0f, circles[i].getX(), circles[i].getX(), circles[i].getY(),CAMERA_HEIGHT+64.0f))); scene.getLastChild().attachChild(circles[i]); scene.registerUpdateHandler(physicsWorld);

    Read the article

  • Why would GLCapabilities.setHardwareAccelerated(true/false) have no effect on performance?

    - by Luke
    I've got a JOGL application in which I am rendering 1 million textures (all the same texture) and 1 million lines between those textures. Basically it's a ball-and-stick graph. I am storing the vertices in a vertex array on the card and referencing them via index arrays, which are also stored on the card. Each pass through the draw loop I am basically doing this: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_LINES, <size>, GL.GL_UNSIGNED_INT, 0); I noticed that the JOGL library is pegging one of my CPU cores. Every frame, the run method internal to the library is taking quite long. I'm not sure why this is happening since I have called setHardwareAccelerated(true) on the GLCapabilities used to create my canvas. What's more interesting is that I changed it to setHardwareAccelerated(false) and there was no impact on the performance at all. Is it possible that my code is not using hardware rendering even when it is set to true? Is there any way to check? EDIT: As suggested, I have tested breaking my calls up into smaller chunks. I have tried using glDrawRangeElements and respecting the limits that it requests. All of these simply resulted in the same pegged CPU usage and worse framerates. I have also narrowed the problem down to a simpler example where I just render 4 million textures (no lines). The draw loop then just doing this: gl.glEnableClientState(GL.GL_VERTEX_ARRAY); gl.glEnableClientState(GL.GL_INDEX_ARRAY); gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); gl.glMatrixMode(GL.GL_MODELVIEW); gl.glLoadIdentity(); <... Camera and transform related code ...> gl.glEnableVertexAttribArray(0); gl.glEnable(GL.GL_TEXTURE_2D); gl.glAlphaFunc(GL.GL_GREATER, ALPHA_TEST_LIMIT); gl.glEnable(GL.GL_ALPHA_TEST); <... Bind texture ...> gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glDrawElements(GL.GL_POINTS, <size>, GL.GL_UNSIGNED_INT, 0); gl.glDisable(GL.GL_TEXTURE_2D); gl.glDisable(GL.GL_ALPHA_TEST); gl.glDisableVertexAttribArray(0); gl.glFlush(); Where the first buffer contains 12 million floats (the x,y,z coords of the 4 million textures) and the second (element) buffer contains 4 million integers. In this simple example it is simply the integers 0 through 3999999. I really want to know what is being done in software that is pegging my CPU, and how I can make it stop (if I can). My buffers are generated by the following code: gl.glBindBuffer(GL.GL_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_FLOAT, <buffer>, GL.GL_STATIC_DRAW); gl.glVertexAttribPointer(0, 3, GL.GL_FLOAT, false, 0, 0); and: gl.glBindBuffer(GL.GL_ELEMENT_ARRAY_BUFFER, <buffer id>); gl.glBufferData(GL.GL_ELEMENT_ARRAY_BUFFER, <size> * BufferUtil.SIZEOF_INT, <buffer>, GL.GL_STATIC_DRAW); ADDITIONAL INFO: Here is my initialization code: gl.setSwapInterval(1); //Also tried 0 gl.glShadeModel(GL.GL_SMOOTH); gl.glClearDepth(1.0f); gl.glEnable(GL.GL_DEPTH_TEST); gl.glDepthFunc(GL.GL_LESS); gl.glHint(GL.GL_PERSPECTIVE_CORRECTION_HINT, GL.GL_FASTEST); gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION, POINT_DISTANCE_ATTENUATION, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MIN, MIN_POINT_SIZE, 0); gl.glPointParameterfv(GL.GL_POINT_SIZE_MAX, MAX_POINT_SIZE, 0); gl.glPointSize(POINT_SIZE); gl.glTexEnvf(GL.GL_POINT_SPRITE, GL.GL_COORD_REPLACE, GL.GL_TRUE); gl.glEnable(GL.GL_POINT_SPRITE); gl.glClearColor(clearColor.getX(), clearColor.getY(), clearColor.getZ(), 0.0f); Also, I'm not sure if this helps or not, but when I drag the entire graph off the screen, the FPS shoots back up and the CPU usage falls to 0%. This seems obvious and intuitive to me, but I thought that might give a hint to someone else.

    Read the article

  • Having a problem with texturing vertices in WebGL, think parameters are off in the image?

    - by mathacka
    I'm having a problem texturing a simple rectangle in my WebGL program, I have the parameters set as follows: gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage); I'm using this image: On the properties of this image it says it's 32 bit depth, so that should take care of the gl.UNSIGNED_BYTE, and I've tried both gl.RGBA and gl.RGB to see if it's not reading the transparency. It is a 32x32 pixel image, so it's power of 2. And I've tried almost all the combinations of formats and types, but I'm not sure if this is the answer or not. I'm getting these two errors in the chrome console: INVALID_VALUE: texImage2D: invalid image (index):101 WebGL: drawArrays: texture bound to texture unit 0 is not renderable. It maybe non-power-of-2 and have incompatible texture filtering or is not 'texture complete'. Or the texture is Float or Half Float type with linear filtering while OES_float_linear or OES_half_float_linear extension is not enabled. the drawArrays function is simply: "gl.drawArrays(gl.TRIANGLES, 0, 6);" using 6 vertices to make a rectangle.

    Read the article

  • Where can i get the openal sdk for c++?

    - by Peter Short
    The OpenAL site I'm looking at is a crappy outdated and broken sharepoint portal and the SDK in the downloads section give me a 500 html code when i request it. http://connect.creativelabs.com/openal/Downloads/OpenAL11CoreSDK.zip I found an OpenAL SDK on a softpedia and it has headers but not alu.h or alut.h which the tutorials I'm looking at apparently require for loading wavs etc. What am I missing? Is OpenAL dead or something?

    Read the article

  • Can I use GLFW and GLEW together in the same code

    - by Brendan Webster
    I use the g++ compiler, which could be causing the main problem, but I'm using GLFW for window and input management, and I am using GLEW so that I can use OpenGL 3.x functionality. I loaded in models and then tried to make Vertex and Index buffers for the data, but it turned out that I kept getting segmentation faults in the program. I finally figured out that GLEW just wasn't working with GLFW included. Do they not work together? Also I've done the context creation through GLFW so that may be another factor in the problem.

    Read the article

  • Does swf provide better compress rate than zlib for png image?

    - by Huang F. Lei
    Somebody told me that when a png image is stored in swf, it's separated to several layer, hence the alpha channel can be compressed better. Is it true? Or, once png image is imported into a swf, it's format is changed, e.g converted into bitmap data, and than compressed by swf's compress algorithm. That's, it is not in png format anymore. I don't know how swf packing its resource, please tell me if you know.

    Read the article

  • Is there any difference between storing textures and baked lighting for environment meshes?

    - by Ben Hymers
    I assume that when texturing environments, one or several textures will be used, and the UVs of the environment geometry will likely overlap on these textures, so that e.g. a tiling brick texture can be used by many parts of the environment, rather than UV unwrapping the entire thing, and having several areas of the texture be identical. If my assumption is wrong, please let me know! Now, when thinking about baking lighting, clearly this can't be done the same way - lighting in general will be unique to every face so the environment must be UV unwrapped without overlap, and lighting must be baked onto unique areas of one or several textures, to give each surface its own texture space to store its lighting. My questions are: Have I got this wrong? If so, how? Isn't baking lighting going to use a lot of texture space? Will the geometry need two UV sets, one used for the colour/normal texture and one for the lighting texture? Anything else you'd like to add? :)

    Read the article

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • A Quick HLSL Question (How to modify some HLSL code)

    - by electroflame
    Thanks for wanting to help! I'm trying to create a circular, repeating ring (that moves outward) on a texture. I've achieved this, to a degree, with the following code: float distance = length(inTex - in_ShipCenter); float time = in_Time; ///* Simple distance/time combination */ float2 colorIndex = float2(distance - time, .3); float4 shipColor = tex2D(BaseTexture, inTex); float4 ringColor = tex2D(ringTexture, colorIndex); float4 finalColor; finalColor.rgb = (shipColor.rgb) + (ringColor.rgb); finalColor.a = shipColor.a; // Use the base texture's alpha (transparency). return finalColor; This works, and works how I want it to. The ring moves outward from the center of the texture at a steady rate, and is constrained to the edges of the base texture (i.e. it won't continue past an edge). However, there are a few issues with it that I would like some help on, though. They are: By combining the color additively (when I set finalColor.rgb), it makes the resulting ring color much lighter than I want (which, is pretty much the definition of additive blending, but I don't really want additive blending in this case). I would really like to be able to pass in the color that I want the ring to be. Currently, I have to pass in a texture that contains the color of the ring, but I think that doing it that way is kind of wasteful and overly-cumbersome. I know that I'm probably being an idiot over this, so I greatly appreciate the help. Some other (possibly relevant) information: I'm using XNA. I'm applying this by providing it to a SpriteBatch (as an Effect). The SpriteBatch is using BlendState.NonPremultiplied. Thanks in advance! EDIT: Thanks for the answers thus far, as they've helped me get a better grasp of the color issue. However, I'm still unsure of how to pass a color in and not use a texture. i.e. Can I create a tex2D by using a float4 instead of a texture? Or can I make a texture from a float4 and pass the texture in to the tex2D? DOUBLE EDIT: Here's some example pictures: With the effect off: With the effect on: With the effect on, but with the color weighting set to full: As you can see, the color weighting makes the base texture completely black (The background is black, so it looks transparent). You can also see the red it's supposed to be, and then the white-ish it really is when blended additively.

    Read the article

  • Decal implementation

    - by dreta
    I had issues finding information about decals, so maybe this question will help others. The implementation is for a forward renderer. Could somebody confirm if i got decal implementation right? You define a cube of any dimension that'll define the projection volume in common space. You check for triangle intersection with the defined cube to recieve triangles that the projection will affect. You clip these triangles and save them. You then use matrix tricks to calculate UV coordinates for the saved triangles that'll reference the texture you're projecting. To do this you take the vectors representing height, width and depth of the cube in common space, so that f.e. the bottom left corner is the origin. You put that in a matrix as the i, j, k unit vectors, set the translation for the cube, then you inverse this matrix. You multiply the vertices of the saved triangles by this matrix, that way you get their coordinates inside of a 0 to 1 size cube that you use as the UV coordinates. This way you have the original triangles you're projecting onto and you have UV coordinates for them (the UV coordinates are referencing the texture you're projecting). Then you rerender the saved triangles onto the scene and they overwrite the area of projection with the projected image. Now the questions that i couldn't find answers for. Is the last point right? I've never done software clipping, but it seems error prone enough, due to limited precision, that the'll be some z fighting occuring for the projected texture. Also is the way of getting UV coordinates correct?

    Read the article

  • How should I replan A*?

    - by Gregory Weir
    I've got a pathfinding boss enemy that seeks the player using the A* algorithm. It's a pretty complex environment, and I'm doing it in Flash, so the search can get a bit slow when it's searching over long distances. If the player was stationary, I could just search once, but at the moment I'm searching every frame. This takes long enough that my framerate is suffering. What's the usual solution to this? Is there a way to "replan" A* without redoing the entire search? Should I just search a little less often (every half-second or second) and accept that there will be a little inaccuracy in the path?

    Read the article

  • Visualization tools for physical simulations

    - by Nick
    I'm interested in starting some physics simulations and I'm getting hung up on the visualization side of things. I have lots of resources for reading how to implement the simulation itself but I'd rather not learn two things at once - the simulation part and a new complex visualization API. Are there any high-level visualization tools that are language independent? I understand that I'll have to learn some new code for visualization but I'd like to start at a high level, OpenGL is my long-term goal and not my prototype goal.

    Read the article

  • How do people get around the Carmack's Reverse patent?

    - by Rei Miyasaka
    Apparently, Creative has a patent on Carmack's Reverse, and they successfully forced Id to modify their techniques for the source drop, as well as to include EAX in Doom 3. But Carmack's Reverse is discussed quite often and apparently it's a good choice for deferred shading, so it's presumably used in a lot of other high-budget productions too. Even though it's unlikely that Creative would go after smaller companies, I'm wondering how the bigger studios get around this problem. Do they just cross their fingers and hope Creative doesn't troll them, or do they just not use Carmack's Reverse at all?

    Read the article

  • What is the kd tree intersection logic?

    - by bobobobo
    I'm trying to figure out how to implement a KD tree. On page 322 of "Real time collision detection" by Ericson The text section is included below in case Google book preview doesn't let you see it the time you click the link text section Relevant section: The basic idea behind intersecting a ray or directed line segment with a k-d tree is straightforward. The line is intersected against the node's splitting plane, and the t value of intersection is computed. If t is within the interval of the line, 0 <= t <= tmax, the line straddles the plane and both children of the tree are recursively descended. If not, only the side containing the segment origin is recursively visited. So here's what I have: (open image in new tab if you can't see the lettering) The logical tree Here the orange ray is going thru the 3d scene. The x's represent intersection with a plane. From the LEFT, the ray hits: The front face of the scene's enclosing cube, The (1) splitting plane The (2.2) splitting plane The right side of the scene's enclosing cube But here's what would happen, naively following Ericson's basic description above: Test against splitting plane (1). Ray hits splitting plane (1), so left and right children of splitting plane (1) are included in next test. Test against splitting plane (2.1). Ray actually hits that plane, (way off to the right) so both children are included in next level of tests. (This is counter-intuitive - shouldn't only the bottom node be included in subsequent tests) Can some one describe what happens when the orange ray goes through the scene correctly?

    Read the article

  • Quaternion Camera

    - by Alex_Hyzer_Kenoyer
    Can someone help me figure out how to use a Quaternion with the PerspectiveCamera in libGDX or in general? I am trying to rotate my camera around a sphere that is being drawn at (0,0,0). I am not sure how to go about setting up the quaternion correctly, manipulating it, and then applying it to the camera. Edit: Here is what I have tried to do so far. // This is how I set it up Quaternion orientation = new Quaternion(); orientation.setFromAxis(Vector3.Y, 45); // This is how I am trying to update the rotations public void rotateX(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.X, amount); orientation.mul(temp); } public void rotateY(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.Y, amount); orientation.mul(temp); } public void updateCamera() { // This is where I am unsure how to apply the rotations to the camera // I think I should update the view and projection matrices? camera.view.mul(orientation); ... }

    Read the article

  • Voxel terrain rendering with marching cubes

    - by JavaJosh94
    I was working on making procedurally generated terrain using normal cubish voxels (like minecraft) But then I read about marching cubes and decided to convert to using those. I managed to create a working marching cubes class and cycle through the densities and everything in it seemed to be working so I went on to work on actual terrain generation. I'm using XNA (C#) and a ported libnoise library to generate noise for the terrain generator. But instead of rendering smooth terrain I get a 64x64 chunk (I specified 64 but can change it) of seemingly random marching cubes using different triangles. This is the code I'm using to generate a "chunk": public MarchingCube[, ,] getTerrainChunk(int size, float dMultiplyer, int stepsize) { MarchingCube[, ,] temp = new MarchingCube[size / stepsize, size / stepsize, size / stepsize]; for (int x = 0; x < size; x += stepsize) { for (int y = 0; y <size; y += stepsize) { for (int z = 0; z < size; z += stepsize) { float[] densities = {(float)terrain.GetValue(x, y, z)*dMultiplyer, (float)terrain.GetValue(x, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y+stepsize, z)*dMultiplyer, (float)terrain.GetValue(x+stepsize, y, z)*dMultiplyer, (float)terrain.GetValue(x,y,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y+stepsize,z+stepsize)*dMultiplyer,(float)terrain.GetValue(x+stepsize,y,z+stepsize)*dMultiplyer }; Vector3[] corners = { new Vector3(x,y,z), new Vector3(x,y+stepsize,z),new Vector3(x+stepsize,y+stepsize,z),new Vector3(x+stepsize,y,z), new Vector3(x,y,z+stepsize), new Vector3(x,y+stepsize,z+stepsize), new Vector3(x+stepsize,y+stepsize,z+stepsize), new Vector3(x+stepsize,y,z+stepsize)}; if (x == 0 && y == 0 && z == 0) { temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners, device); } temp[x / stepsize, y / stepsize, z / stepsize] = new MarchingCube(densities, corners); } } } (terrain is a Perlin Noise generated using libnoise) I'm sure there's probably an easy solution to this but I've been drawing a blank for the past hour. I'm just wondering if the problem is how I'm reading in the data from the noise or if I may be generating the noise wrong? Or maybe the noise is just not good for this kind of generation? If I'm reading it wrong does anyone know the right way? the answers on google were somewhat ambiguous but I'm going to keep searching. Thanks in advance!

    Read the article

  • Calculating adjacent quads on a quad sphere

    - by Caius Eugene
    I've been experimenting with generating a quad sphere. This sphere subdivides into a quadtree structure. Eventually I'm going to be applying some simplex noise to the vertices of each face to create a terrain like surface. To solve the issue of cracks I want to be able to apply a geomitmap technique of triangle fanning on the edges of each quad, but in order to know the subdivision level of the adjacent quads I need to identify which quads are adjacent to each other. Does anyone know any approaches to computing and storing these adjacent quads for quick lookup? Also It's important that I know which direction they are in so I can easily adjust the correct edge.

    Read the article

  • "Marching cubes" voxel terrain - triplanar texturing with depth?

    - by Dan the Man
    I am currently working on a voxel terrain that uses the marching cubes algorithm for polygonizing the scalar field of voxels. I am using a triplanar texturing shader for texturing. say I have a grass texture set to the Y axis and a dirt texture for both the X and Z axes. Now, when my player digs downwards, it still appears as grass. How would I make it to appear as dirt? I have been thinking about this for a while, and the only thing I can think of to make this effect, would be to mark vertices that have been dug with a certain vertex color. When it has that vertex color, the shader would apply that dirt texture to the vertices marked. Is there a better method?

    Read the article

  • First time shadow mapping problems

    - by user1294203
    I have implemented basic shadow mapping for the first time in OpenGL using shaders and I'm facing some problems. Below you can see an example of my rendered scene: The process of the shadow mapping I'm following is that I render the scene to the framebuffer using a View Matrix from the light point of view and the projection and model matrices used for normal rendering. In the second pass, I send the above MVP matrix from the light point of view to the vertex shader which transforms the position to light space. The fragment shader does the perspective divide and changes the position to texture coordinates. Here is my vertex shader, #version 150 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform mat4 lightMVP; uniform float scale; in vec3 in_Position; in vec3 in_Normal; in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; smooth out vec4 lightspace_Position; void main(void){ pass_Normal = NormalMatrix * in_Normal; pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; lightspace_Position = lightMVP * vec4(scale * in_Position, 1.0); TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } And my fragment shader, #version 150 core struct Light{ vec3 direction; }; uniform Light light; uniform sampler2D inSampler; uniform sampler2D inShadowMap; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; smooth in vec4 lightspace_Position; out vec4 out_Color; float CalcShadowFactor(vec4 lightspace_Position){ vec3 ProjectionCoords = lightspace_Position.xyz / lightspace_Position.w; vec2 UVCoords; UVCoords.x = 0.5 * ProjectionCoords.x + 0.5; UVCoords.y = 0.5 * ProjectionCoords.y + 0.5; float Depth = texture(inShadowMap, UVCoords).x; if(Depth < (ProjectionCoords.z + 0.001)) return 0.5; else return 1.0; } void main(void){ vec3 Normal = normalize(pass_Normal); vec3 light_Direction = -normalize(light.direction); vec3 camera_Direction = normalize(-pass_Position); vec3 half_vector = normalize(camera_Direction + light_Direction); float diffuse = max(0.2, dot(Normal, light_Direction)); vec3 temp_Color = diffuse * vec3(1.0); float specular = max( 0.0, dot( Normal, half_vector) ); float shadowFactor = CalcShadowFactor(lightspace_Position); if(diffuse != 0 && shadowFactor > 0.5){ float fspecular = pow(specular, 128.0); temp_Color += fspecular; } out_Color = vec4(shadowFactor * texture(inSampler, TexCoord).xyz * temp_Color, 1.0); } One of the problems is self shadowing as you can see in the picture, the crate has its own shadow cast on itself. What I have tried is enabling polygon offset (i.e. glEnable(POLYGON_OFFSET_FILL), glPolygonOffset(GLfloat, GLfloat) ) but it didn't change much. As you see in the fragment shader, I have put a static offset value of 0.001 but I have to change the value depending on the distance of the light to get more desirable effects , which not very handy. I also tried using front face culling when I render to the framebuffer, that didn't change much too. The other problem is that pixels outside the Light's view frustum get shaded. The only object that is supposed to be able to cast shadows is the crate. I guess I should pick more appropriate projection and view matrices, but I'm not sure how to do that. What are some common practices, should I pick an orthographic projection? From googling around a bit, I understand that these issues are not that trivial. Does anyone have any easy to implement solutions to these problems. Could you give me some additional tips? Please ask me if you need more information on my code. Here is a comparison with and without shadow mapping of a close-up of the crate. The self-shadowing is more visible.

    Read the article

  • 2D OBB collision detection, resolving collisions?

    - by Milo
    I currently use OBBs and I have a vehicle that is a rigid body and some buildings. Here is my update() private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); vehicle.update(16.6666f / 1000.0f); ArrayList<Building> buildings = city.getBuildings(); for(Building b : buildings) { if(vehicle.getRect().overlaps(b.getRect())) { vehicle.update(-17.0f / 1000.0f); break; } } } The collision detection works well. What doesn't is how they are dealt with. My goal is simple. If the vehicle hits a building, it should stop, and never go into the building. When I apply negative torque to reverse the car should not feel buggy and move away from the building. I don't want this to look buggy. This is my rigid body class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setCenter(c.x, c.y); forces = new Vector2D(0,0); //clear forces //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { Matrix mat = new Matrix(); float[] Vector2Ds = new float[2]; Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { Matrix mat = new Matrix(); float[] Vectors = new float[2]; Vectors[0] = world.x; Vectors[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vectors); return new Vector2D(Vectors[0], Vectors[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { Vector2D tangent = new Vector2D(-worldOffset.y, worldOffset.x); return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces = Vector2D.add(forces ,worldForce); //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } } Essentially, when any rigid body hits a building it should exhibit the same behavior. How is collision solving usually done? Thanks

    Read the article

  • How to get tilemap transparency color working with TiledLib's Demo implementation?

    - by Adam LaBranche
    So the problem I'm having is that when using Nick Gravelyn's tiledlib pipeline for reading and drawing tmx maps in XNA, the transparency color I set in Tiled's editor will work in the editor, but when I draw it the color that's supposed to become transparent still draws. The closest things to a solution that I've found are - 1) Change my sprite batch's BlendState to NonPremultiplied (found this in a buried Tweet). 2) Get the pixels that are supposed to be transparent at some point then Set them all to transparent. Solution 1 didn't work for me, and solution 2 seems hacky and not a very good way to approach this particular problem, especially since it looks like the custom pipeline processor reads in the transparent color and sets it to the color key for transparency according to the code, just something is going wrong somewhere. At least that's what it looks like the code is doing. TileSetContent.cs if (imageNode.Attributes["trans"] != null) { string color = imageNode.Attributes["trans"].Value; string r = color.Substring(0, 2); string g = color.Substring(2, 2); string b = color.Substring(4, 2); this.ColorKey = new Color((byte)Convert.ToInt32(r, 16), (byte)Convert.ToInt32(g, 16), (byte)Convert.ToInt32(b, 16)); } ... TiledHelpers.cs // build the asset as an external reference OpaqueDataDictionary data = new OpaqueDataDictionary(); data.Add("GenerateMipMaps", false); data.Add("ResizetoPowerOfTwo", false); data.Add("TextureFormat", TextureProcessorOutputFormat.Color); data.Add("ColorKeyEnabled", tileSet.ColorKey.HasValue); data.Add("ColorKeyColor", tileSet.ColorKey.HasValue ? tileSet.ColorKey.Value : Microsoft.Xna.Framework.Color.Magenta); tileSet.Texture = context.BuildAsset<Texture2DContent, Texture2DContent>( new ExternalReference<Texture2DContent>(path), null, data, null, asset); ... I can share more code as well if it helps to understand my problem. Thank you.

    Read the article

  • A* Jump Point Search - how does pruning really work?

    - by DeadMG
    I've come across Jump Point Search, and it seems pretty sweet to me. However, I'm unsure as to how their pruning rules actually work. More specifically, in Figure 1, it states that we can immediately prune all grey neighbours as these can be reached optimally from the parent of x without ever going through node x However, this seems somewhat at odds. In the second image, node 5 could be reached by first going through node 7 and skipping x entirely through a symmetrical path- that is, 6 -> x -> 5 seems to be symmetrical to 6 -> 7 -> 5. This would be the same as how node 3 can be reached without going through x in the first image. As such, I don't understand how these two images are not entirely equivalent, and not just rotated versions of each other. Secondly, I'd like to understand how this algorithm could be generalized to a three-dimensional search volume.

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • Alpha blending without depth writing

    - by teodron
    A recurring problem I get is this one: given two different billboard sets with alpha textures intended to create particle special effects (such as point lights and smoke puffs), rendering them correctly is tedious. The issue arising in this scenario is that there's no way to use depth writing and make certain billboards obey depth information as they appear in front of others that are clearly closer to the camera. I've described the problem on the Ogre forums several times without any suggestions being given (since the application I'm writing uses their engine). What could be done then? sort all individual billboards from different billboard sets to avoid writing the depth and still have nice alpha blended results? If yes, please do point out some resources to start with in the frames of the aforementioned Ogre engine. Any other suggestions are welcome!

    Read the article

  • How to code a 4x shader/filter which emulates arcade crt display behavior?

    - by Arthur Wulf White
    I want to write a shader/filer probably in adobe Pixel Bender that will do the best job possible in emulating the fill of an oldskul monochromatic arcade CRT screen. Much like this here: http://filthypants.blogspot.com/2012/07/customizing-cgwgs-crt-pixel-shader.html Here are some attributes I know will exist in this filter: It will take in a low res image 160 x 120 and return a medium res image 640 x 480. It will add scanlines It will blur the color channels to create that color bleeding effect It will distort the shape of the image from a perfect rectangle into a rounder shape. The question is, could you please provide any other attributes that are beneficial to emulating an arcade CRT feel and links and resources on coding these effects. Thanks

    Read the article

< Previous Page | 267 268 269 270 271 272 273 274 275 276 277 278  | Next Page >