Search Results

Search found 12087 results on 484 pages for 'game mechanics'.

Page 277/484 | < Previous Page | 273 274 275 276 277 278 279 280 281 282 283 284  | Next Page >

  • Logic that can traverse all possible layouts, but not checking every combination of identical pieces?

    - by George Bailey
    Suppose we have a grid of arbitrary size, which is filled by blocks of various widths and heights. There are many 2x2 blocks (meaning they take a total of 4 cells in the grid) and many 3x3 blocks, as well as some 5x4, 4x5, 2x3, etc. I was hoping I could set up a program that would look at all possible layouts, and rank them, and find the best one. Simply it would look at all possible positions of these blocks, and see what setup is the best rank. (the rank based on how many of these can be connected by a roadway system of 1x1 road blocks, and how many squares can be left empty after this is done. - wanting to fit the most blocks as possible with the least roads.) My question, is how should I traverse all the possibilities? I could take all the blocks and try them one at a time, but since all 2x2 blocks are equal, and there are a couple dozen of them, there is no point in trying every combination there, as in the following AA BBB AA BBB CCBBB CCEEE DD EEE DD EEE is exactly the same as CC EEE CC EEE AAEEE AABBB DD BBB DD BBB You notice that there are 2 3x3 blocks and 3 2x2 blocks in my two examples. Based on the model I have now, the computer would try both of these combinations, as well as many others. The problem is that it is going to try every single possible variation of my couple dozen 2x2 blocks. And that is sorely inefficient. Is there a reasonable way to take out this duplicated work, somehow getting the computer program to treat all 2x2 blocks as equal/identical, instead of one requiring rearranging/swapping of these identical blocks? Can this be done?

    Read the article

  • Algorithm for creating spheres?

    - by Dan the Man
    Does anyone have an algorithm for creating a sphere proceduraly with la amount of latitude lines, lo amount of longitude lines, and a radius of r? I need it to work with Unity, so the vertex positions need to be defined and then, the triangles defined via indexes (more info). EDIT I managed to get the code working in unity. But I think I might have done something wrong. When I turn up the detailLevel, All it does is add more vertices and polygons without moving them around. Did I forget something?

    Read the article

  • Can't get sprite to rotate correctly?

    - by rphello101
    I'm attempting to play with graphics using Java/Slick 2d. I'm trying to get my sprite to rotate to wherever the mouse is on the screen and then move accordingly. I figured the best way to do this was to keep track of the angle the sprite is at since I have to multiply the cosine/sine of the angle by the move speed in order to get the sprite to go "forwards" even if it is, say, facing 45 degrees in quadrant 3. However, before I even worry about that, I'm having trouble even getting my sprite to rotate in the first place. Preliminary console tests showed that this code worked, but when applied to the sprite, it just kind twitches. Anyone know what's wrong? int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x; int pY = sprite.y; int tempY, tempX; double mAng, pAng = sprite.angle; double angRotate=0; if(mX!=pX){ tempY=pY-mY; tempX=mX-pX; mAng = Math.toDegrees(Math.atan2(Math.abs((tempY)),Math.abs((tempX)))); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=270; else mAng=90; } //Calculations if(mX<pX&&mY<pY){ //If in Q2 mAng = 180-mAng; } if(mX<pX&&mY>pY){ //If in Q3 mAng = 180+mAng; } if(mX>pX&&mY>pY){ //If in Q4 mAng = 360-mAng; } angRotate = mAng-pAng; sprite.angle = mAng; sprite.image.setRotation((float)angRotate);

    Read the article

  • Mapping dynamic buffers in Direct3D11 in Windows Store apps

    - by Donnie
    I'm trying to make instanced geometry in Direct3D11, and the ID3D11DeviceContext1->Map() call is failing with the very helpful error of "Invalid Parameter" when I'm attempting to update the instance buffer. The buffer is declared as a member variable: Microsoft::WRL::ComPtr<ID3D11Buffer> m_instanceBuffer; Then I create it (which succeeds): D3D11_BUFFER_DESC instanceDesc; ZeroMemory(&instanceDesc, sizeof(D3D11_BUFFER_DESC)); instanceDesc.Usage = D3D11_USAGE_DYNAMIC; instanceDesc.ByteWidth = sizeof(InstanceData) * MAX_INSTANCE_COUNT; instanceDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; instanceDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; instanceDesc.MiscFlags = 0; instanceDesc.StructureByteStride = 0; DX::ThrowIfFailed(d3dDevice->CreateBuffer(&instanceDesc, NULL, &m_instanceBuffer)); However, when I try to map it: D3D11_MAPPED_SUBRESOURCE inst; DX::ThrowIfFailed(d3dContext->Map(m_instanceBuffer.Get(), 0, D3D11_MAP_WRITE, 0, &inst)); The map call fails with E_INVALIDARG. Nothing is NULL incorrectly, and this being one of my first D3D apps I'm currently stumped on what to do next to track it down. I'm thinking I must be creating the buffer incorrectly, but I can't see how. Any input would be appreciated.

    Read the article

  • 2D wave-like sprite movement XNA

    - by TheBroodian
    I'm trying to create a particle that will 'circle' my character. When the particle is created, it's given a random position in relation to my character, and a box to provide boundaries for how far left or right this particle should circle. When I use the phrase 'circle', I'm referring to a simulated circling, i.e., when moving to the right, the particle will appear in front of my character, when passing back to the left, the particle will appear behind my character. That may have been too much context, so let me cut to the chase: In essence, the path I would like my particle to follow would be akin to a sine wave, with the left and right sides of the provided rectangle being the apexes of the wave. The trouble I'm having is that the position of the particle will be random, so it will never be produced at the same place within the wave twice, but I have no idea how to create this sort of behavior procedurally.

    Read the article

  • Most efficient way to implement delta time

    - by Starkers
    Here's one way to implement delta time: /// init /// var duration = 5000, currentTime = Date.now(); // and create cube, scene, camera ect ////// function animate() { /// determine delta /// var now = Date.now(), deltat = now - currentTime, currentTime = now, scalar = deltat / duration, angle = (Math.PI * 2) * scalar; ////// /// animate /// cube.rotation.y += angle; ////// /// update /// requestAnimationFrame(render); ////// } Could someone confirm I know how it works? Here what I think is going on: Firstly, we set duration at 5000, which how long the loop will take to complete in an ideal world. With a computer that is slow/busy, let's say the animation loop takes twice as long as it should, so 10000: When this happens, the scalar is set to 2.0: scalar = deltat / duration scalar = 10000 / 5000 scalar = 2.0 We now times all animation by twice as much: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 2.0; angle = (Math.PI * 4) // which is 2 rotations When we do this, the cube rotation will appear to 'jump', but this is good because the animation remains real-time. With a computer that is going too quickly, let's say the animation loop takes half as long as it should, so 2500: When this happens, the scalar is set to 0.5: scalar = deltat / duration scalar = 2500 / 5000 scalar = 0.5 We now times all animation by a half: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 0.5; angle = (Math.PI * 1) // which is half a rotation When we do this, the cube won't jump at all, and the animation remains real time, and doesn't speed up. However, would I be right in thinking this doesn't alter how hard the computer is working? I mean it still goes through the loop as fast as it can, and it still has render the whole scene, just with different smaller angles! So this a bad way to implement delta time, right? Now let's pretend the computer is taking exactly as long as it should, so 5000: When this happens, the scalar is set to 1.0: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 1; angle = (Math.PI * 2) // which is 1 rotation When we do this, everything is timsed by 1, so nothing is changed. We'd get the same result if we weren't using delta time at all! My questions are as follows Mostly importantly, have I got the right end of the stick here? How do we know to set the duration to 5000 ? Or can it be any number? I'm a bit vague about the "computer going too quickly". Is there a way loop less often rather than reduce the animation steps? Seems like a better idea. Using this method, do all of our animations need to be timesed by the scalar? Do we have to hunt down every last one and times it? Is this the best way to implement delta time? I think not, due to the fact the computer can go nuts and all we do is divide each animation step and because we need to hunt down every step and times it by the scalar. Not a very nice DSL, as it were. So what is the best way to implement delta time? Below is one way that I do not really get but may be a better way to implement delta time. Could someone explain please? // Globals INV_MAX_FPS = 1 / 60; frameDelta = 0; clock = new THREE.Clock(); // In the animation loop (the requestAnimationFrame callback)… frameDelta += clock.getDelta(); // API: "Get the seconds passed since the last call to this method." while (frameDelta >= INV_MAX_FPS) { update(INV_MAX_FPS); // calculate physics frameDelta -= INV_MAX_FPS; } How I think this works: Firstly we set INV_MAX_FPS to 0.01666666666 How we will use this number number does not jump out at me. We then intialize a frameDelta which stores how long the last loop took to run. Come the first loop frameDelta is not greater than INV_MAX_FPS so the loop is not run (0 = 0.01666666666). So nothing happens. Now I really don't know what would cause this to happen, but let's pretend that the loop we just went through took 2 seconds to complete: We set frameDelta to 2: frameDelta += clock.getDelta(); frameDelta += 2.00 Now we run an animation thanks to update(0.01666666666). Again what is relevance of 0.01666666666?? And then we take away 0.01666666666 from the frameDelta: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 2 - 0.01666666666 frameDelta = 1.98333333334 So let's go into the second loop. Let's say it took 2(? Why not 2? Or 12? I am a bit confused): frameDelta += clock.getDelta(); frameDelta = frameDelta + clock.getDelta(); frameDelta = 1.98333333334 + 2 frameDelta = 3.98333333334 This time we enter the while loop because 3.98333333334 = 0.01666666666 We run update We take away 0.01666666666 from frameDelta again: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 3.98333333334 - 0.01666666666 frameDelta = 3.96666666668 Now let's pretend the loop is super quick and runs in just 0.1 seconds and continues to do this. (Because the computer isn't busy any more). Basically, the update function will be run, and every loop we take away 0.01666666666 from the frameDelta untill the frameDelta is less than 0.01666666666. And then nothing happens until the computer runs slowly again? Could someone shed some light please? Does the update() update the scalar or something like that and we still have to times everything by the scalar like in the first example?

    Read the article

  • 3D terrain map with Hexagon Grids (XNA)

    - by Rob
    I'm working on a hobby project (I'm a web/backend developer by day) and I want to create a 3D Tile (terrain) engine. I'm using XNA, but I can use MonoGame, OpenGL, or straight DirectX, so the answer does not have to be XNA specific. I'm more looking for some high level advice on how to approach this problem. I know about creating height maps and such, there are thousands of references out there on the net for that, this is a bit more specific. I'm more concerned with is the approach to get a 3D hexagon tile grid out of my terrain (since the terrain, and all 3d objects, are basically triangles). The first approach I thought about is to basically draw the triangles on the screen in the following order (blue numbers) to give me the triangles for terrain (black triangles) and then make hexes out of the triangles (red hex). http://screencast.com/t/ebrH2g5V This approach seems complicated to me since i'm basically having to draw 4 different types of triangles. The next approach I thought of was to use the existing triangles like I did for a square grid and get my hexes from 6 triangles as follows http://screencast.com/t/w9b7qKzVJtb8 This seems like the easier approach to me since there are only 2 types of triangles (i would have to play with the heights and widths to get a "perfect" hexagon, but the idea is the same. So I'm looking for: 1) Any suggestions on which approach I should take, and why. 2) How would I translate mouse position to a hexagon grid position (especially when moving the camera around), for example in the second image if the mouse pointer were the green circle, how would I determine to highlight that hexagon and then translating that into grid coordinates (assuming it is 0,0)? 3) Any references, articles, books, etc - to get me going in the right direction. Note: I've done hex grid's and mouse-grid coordinate conversion before in 2d. looking for some pointers on how to do the same in 3d. The result I would like to achieve is something similar to the following: http :// www. youtube .com / watch?v=Ri92YkyC3fw (sorry about the youtube link, but it will only let me post 2 links in this post... same rep problem i mention below...) Thanks for any help! P.S. Sorry for not posting the images inline, I apparently don't have enough rep on this stack exchange site.

    Read the article

  • Sprites, Primitives and logic entity as structs

    - by Jeffrey
    I'm wondering would it be considered acceptable: The window class is responsible for drawing data, so it will have a method: Window::draw(const Sprite&); Window::draw(const Rect&); Window::draw(const Triangle&); Window::draw(const Circle&); and all those primitives + sprites would be just public struct. For example Sprite: struct Sprite { float x, y; // center float origin_x, origin_y; float width, height; float rotation; float scaling; GLuint texture; Sprite(float w, float h); Sprite(float w, float h, float a, float b); void useTexture(std::string file); void setOrigin(float a, float b); void move(float a, float b); // relative move void moveTo(float a, float b); // absolute move void rotate(float a); // relative rotation void rotateTo(float a); // absolute rotation void rotationReset(); void scale(float a); // relative scaling void scaleTo(float a); // absolute scaling void scaleReset(); }; So instead of having each primitive to call their draw() function, which is a little bit off topic for their object, I let the Window class handle all the OpenGL stuff and manipulate them as simple objects that will be drawn later on. Is this pattern used? Does it have any cons against it's primitives-draw-themself pattern? Are there any other related patterns?

    Read the article

  • circle - rectangle collision in 2D, most efficient way

    - by john smith
    Suppose I have a circle intersecting a rectangle, what is ideally the least cpu intensive way between the two? method A calculate rectangle boundaries loop through all points of the circle and, for each of those, check if inside the rect. method B calculate rectangle boundaries check where the center of the circle is, compared to the rectangle make 9 switch/case statements for the following positions: top, bottom, left, right top left, top right, bottom left, bottom right inside rectangle check only one distance using the circle's radius depending on where the circle happens t be. I know there are other ways that are definitely better than these two, and if could point me a link to them, would be great but, exactly between those two, which one would you consider to be better, regarding both performance and quality/precision? Thanks in advance.

    Read the article

  • OpenGL position from depth is wrong

    - by CoffeeandCode
    My engine is currently implemented using a deferred rendering technique, and today I decided to change it up a bit. First I was storing 5 textures as so: DEPTH24_STENCIL8 - Depth and stencil RGBA32F - Position RGBA10_A2 - Normals RGBA8 x 2 - Specular & Diffuse I decided to minimize it and reconstruct positions from the depth buffer. Trying to figure out what is wrong with my method currently has not been fun :/ Currently I get this: which changes whenever I move the camera... weird Vertex shader really simple #version 150 layout(location = 0) in vec3 position; layout(location = 1) in vec2 uv; out vec2 uv_f; void main(){ uv_f = uv; gl_Position = vec4(position, 1.0); } Fragment shader Where the fun (and not so fun) stuff happens #version 150 uniform sampler2D depth_tex; uniform sampler2D normal_tex; uniform sampler2D diffuse_tex; uniform sampler2D specular_tex; uniform mat4 inv_proj_mat; uniform vec2 nearz_farz; in vec2 uv_f; ... other uniforms and such ... layout(location = 3) out vec4 PostProcess; vec3 reconstruct_pos(){ float z = texture(depth_tex, uv_f).x; vec4 sPos = vec4(uv_f * 2.0 - 1.0, z, 1.0); sPos = inv_proj_mat * sPos; return (sPos.xyz / sPos.w); } void main(){ vec3 pos = reconstruct_pos(); vec3 normal = texture(normal_tex, uv_f).rgb; vec3 diffuse = texture(diffuse_tex, uv_f).rgb; vec4 specular = texture(specular_tex, uv_f); ... do lighting ... PostProcess = vec4(pos, 1.0); // Just for testing } Rendering code probably nothing wrong here, seeing as though it always worked before this->gbuffer->bind(); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Enable(gl::DEPTH_TEST); gl::Enable(gl::CULL_FACE); ... bind geometry shader and draw models and shiz ... gl::Disable(gl::DEPTH_TEST); gl::Disable(gl::CULL_FACE); gl::Enable(gl::BLEND); ... bind textures and lighting shaders shown above then draw each light ... gl::BindFramebuffer(gl::FRAMEBUFFER, 0); gl::Clear(gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT); gl::Disable(gl::BLEND); ... bind screen shaders and draw quad with PostProcess texture ... Rinse_and_repeat(); // not actually a function ;) Why are my positions being output like they are?

    Read the article

  • Bullet Physics - Casting a ray straight down from a rigid body (first person camera)

    - by Hydrocity
    I've implemented a first person camera using Bullet--it's a rigid body with a capsule shape. I've only been using Bullet for a few days and physics engines are new to me. I use btRigidBody::setLinearVelocity() to move it and it collides perfectly with the world. The only problem is the Y-value moves freely, which I temporarily solved by setting the Y-value of the translation vector to zero before the body is moved. This works for all cases except when falling from a height. When the body drops off a tall object, you can still glide around since the translate vector's Y-value is being set to zero, until you stop moving and fall to the ground (the velocity is only set when moving). So to solve this I would like to try casting a ray down from the body to determine the Y-value of the world, and checking the difference between that value and the Y-value of the camera body, and disable or slow down movement if the difference is large enough. I'm a bit stuck on simply casting a ray and determining the Y-value of the world where it struck. I've implemented this callback: struct AllRayResultCallback : public btCollisionWorld::RayResultCallback{ AllRayResultCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld) : m_rayFromWorld(rayFromWorld), m_rayToWorld(rayToWorld), m_closestHitFraction(1.0){} btVector3 m_rayFromWorld; btVector3 m_rayToWorld; btVector3 m_hitNormalWorld; btVector3 m_hitPointWorld; float m_closestHitFraction; virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, bool normalInWorldSpace) { if(rayResult.m_hitFraction < m_closestHitFraction) m_closestHitFraction = rayResult.m_hitFraction; m_collisionObject = rayResult.m_collisionObject; if(normalInWorldSpace){ m_hitNormalWorld = rayResult.m_hitNormalLocal; } else{ m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis() * rayResult.m_hitNormalLocal; } m_hitPointWorld.setInterpolate3(m_rayFromWorld, m_rayToWorld, m_closestHitFraction); return 1.0f; } }; And in the movement function, I have this code: btVector3 from(pos.x, pos.y + 1000, pos.z); // pos is the camera's rigid body position btVector3 to(pos.x, 0, pos.z); // not sure if 0 is correct for Y AllRayResultCallback callback(from, to); Base::getSingletonPtr()->m_btWorld->rayTest(from, to, callback); So I have the callback.m_hitPointWorld vector, which seems to just show the position of the camera each frame. I've searched Google for examples of casting rays, as well as the Bullet documentation, and it's been hard to just find an example. An example is really all I need. Or perhaps there is some method in Bullet to keep the rigid body on the ground? I'm using Ogre3D as a rendering engine, and casting a ray down is quite straightforward with that, however I want to keep all the ray casting within Bullet for simplicity. Could anyone point me in the right direction? Thanks.

    Read the article

  • Displaying possible movement tiles

    - by Ash Blue
    What's the fastest way to highlight all possible movement tiles for a player on a square grid? Players can only move up, down, left, right. Tiles can cost more than one movement, multiple levels are available to move, and players can be larger than one tile. Think of games like Fire Emblem, Front Mission, and XCOM. My first thought was to recursively search for connecting tiles. This quickly demonstrated many shortcomings when blockers, movement costs, and other features were added into the mix. My second thought was to use an A* pathfinding algorithm to check all tiles presumed valid. Presumed valid tiles would come from an algorithm that generates a diamond of tiles from the player's speed (see example here http://jsfiddle.net/truefreestyle/Suww8/9/). Problem is this seems a little slow and expensive. Is there a faster way? Edit: In Lua for Corona SDK, I integrated the following movement generation controller. I've linked to a Gist here because the solution is around 90 lines of code. https://gist.github.com/ashblue/5546009

    Read the article

  • Handling different screen densities in Android Devices?

    - by DevilWithin
    Well, i know there are plenty of different-sized screens in devices that run Android. The SDK I code with deploys to all major desktop platforms and android. I am aware i must have special cares to handle the different screen sizes and densities, but i just had an idea that would work in theory, and my question is exactly about that method, How could it FAIL ? So, what I do is to have an ortho camera of the same size for all devices, with possible tweaks, but anyway that would grant the proper positioning of all elements in all devices, right? We can assume everything is drawn in OpenGLES and input handling is converted to the proper camera coordinates. If you need me to improve the question, please tell me.

    Read the article

  • Manipulating Perlin Noise

    - by Numeri
    I've been learning about Procedurally Generated Content lately (in particular, Perlin noise). Perlin noise works great for making things like landscapes, height maps, and stuff like that. But now I am trying to generate structures more like mountain ranges (in 2D, as 3D would be way over my head right now) or underground veins of ores. I can't manage to manipulate Perlin Noise to do this. Making a cut off point (i.e. using only the tops of the 'mountains' of a heightmap) wouldn't work, because I would get lumps of mountains/veins. Any suggestions? Thanks, Numeri

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Scrolling a WriteableBitmap

    - by Skoder
    I need to simulate my background scrolling but I want to avoid moving my actual image control. Instead, I'd like to use a WriteableBitmap and use a blitting method. What would be the way to simulate an image scrolling upwards? I've tried various things buy I can't seem to get my head around the logic: //X pos, Y pos, width, height Rect src = new Rect(0, scrollSpeed , 480, height); Rect dest = new Rect(0, 700 - scrollSpeed , 480, height); //destination rect, source WriteableBitmap, source Rect, blend mode wb.Blit(destRect, wbSource, srcRect, BlendMode.None); scrollSpeed += 5; if (scrollSpeed > 700) scrollSpeed = 0; If height is 10, the image is quite fuzzy and moreso if the height is 1. If the height is a taller, the image is clearer, but it only seems to do a one to one copy. How can I 'scroll' the image so that it looks like it's moving up in a continuous loop? (The height of the screen is 700).

    Read the article

  • vector rotations for branches of a 3d tree

    - by freefallr
    I'm attempting to create a 3d tree procedurally. I'm hoping that someone can check my vector rotation maths, as I'm a bit confused. I'm using an l-system (a recursive algorithm for generating branches). The trunk of the tree is the root node. It's orientation is aligned to the y axis. In the next iteration of the tree (e.g. the first branches), I might create a branch that is oriented say by +10 degrees in the X axis and a similar amount in the Z axis, relative to the trunk. I know that I should keep a rotation matrix at each branch, so that it can be applied to child branches, along with any modifications to the child branch. My questions then: for the trunk, the rotation matrix - is that just the identity matrix * initial orientation vector ? for the first branch (and subsequent branches) - I'll "inherit" the rotation matrix of the parent branch, and apply x and z rotations to that also. e.g. using glm::normalize; using glm::rotateX; using glm::vec4; using glm::mat4; using glm::rotate; vec4 vYAxis = vec4(0.0f, 1.0f, 0.0f, 0.0f); vec4 vInitial = normalize( rotateX( vYAxis, 10.0f ) ); mat4 mRotation = mat4(1.0); // trunk rotation matrix = identity * initial orientation vector mRotation *= vInitial; // first branch = parent rotation matrix * this branches rotations mRotation *= rotate( 10.0f, 1.0f, 0.0f, 0.0f ); // x rotation mRotation *= rotate( 10.0f, 0.0f, 0.0f, 1.0f ); // z rotation Are my maths and approach correct, or am I completely wrong? Finally, I'm using the glm library with OpenGL / C++ for this. Is the order of x rotation and z rotation important?

    Read the article

  • Boat passing under a bridge in a 2D tile based RTS

    - by aleguna
    I'm writing a 2D tile based RTS. And I want to add a 'pseudo 3D' feature to it - bridges over the rivers. I havent't start any coding yet, just trying to think how it fits the collision detection model. A boat passing under the bridge and a unit moving over the bridge will eventually occupy the same cell on the map. How to prement them from colliding? Is there a common approach to solve such a problem? Or I need to implement a 3D world to do this?

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • getting bone base and tip positions from a transform matrix?

    - by ddos
    I need this for a Blender3d script, but you don't really need to know Blender to answer this. I need to get bone head and tip positions from a transform matrix read from a file. The position of base is the location part of the matrix, length of the bone (distance from base to tip) is the scale, position of the tip is calculated from the scale (distance from bone base) and rotation part of the matrix. So how to calculate these? bone.base([x,y,z]) # x,y,z - floats bone.tip([x,y,z])

    Read the article

  • Foreach loop with 2d array of objects

    - by Jacob Millward
    I'm using a 2D array of objects to store data about tiles, or "blocks" in my gameworld. I initialise the array, fill it with data and then attempt to invoke the draw method of each object. foreach (Block block in blockList) { block.Draw(spriteBatch); } I end up with an exception being thrown "Object reference is not set to an instance of an object". What have I done wrong? EDIT: This is the code used to define the array Block[,] blockList; Then blockList = new Block[screenRectangle.Width, screenRectangle.Height]; // Fill with dummy data for (int x = 0; x <= screenRectangle.Width / texture.Width; x++) { for (int y = 0; y <= screenRectangle.Height / texture.Width; y++) { if (y >= screenRectangle.Height / (texture.Width*2)) { blockList[x, y] = new Block(1, new Rectangle(x * 16, y * 16, texture.Width, texture.Height), texture); } else { blockList[x, y] = new Block(0, new Rectangle(x * 16, y * 16, texture.Width, texture.Height), texture); } } }

    Read the article

  • Resources on expected behaviour when manipulating 3D objects with the mouse

    - by sebf
    Hello, In my animation editor, I have a 3D gizmo that sits on the origin of a bone; the user drags the mesh around to rotate the bone. I've found that translating the 2D movements of the mouse into sensible 3D transforms is not near as simple as i'd hoped. For example what is intuitively 'up' or 'down'? How should the magnitude of rotations change with respect to dX/dY? How to implement this? What happens when the gizmo changes position or orientation with respect to the camera? ect. So far with trial and error i've written something (very) simple that works 70% of the time. I could probably continue to hack at it until I made something that works 99% of the time, but there must be someone who needed the same thing, and spent the time coming up with a much more elegant solution. Does anyone know of one?

    Read the article

  • Loading and drawing materials using Lib3ds

    - by Dfowj
    Hey all, i'm currently using Lib3ds to load models into my C++/OpenGL project. So far, i've been follow the model loading tutorial found here. The tutorial gives a good example of how to draw the vertices and normals using VBO's, but so far i've been lost as how to do the same thing with materials. Could i get an explanation/example of how to both load and draw materials of my meshes using Lib3ds and OpenGL?

    Read the article

  • Impact of variable-length loops on GPU shaders

    - by Will
    Its popular to render procedural content inside the GPU e.g. in the demoscene (drawing a single quad to fill the screen and letting the GPU compute the pixels). Ray marching is popular: This means the GPU is executing some unknown number of loop iterations per pixel (although you can have an upper bound like maxIterations). How does having a variable-length loop affect shader performance? Imagine the simple ray-marching psuedocode: t = 0.f; while(t < maxDist) { p = rayStart + rayDir * t; d = DistanceFunc(p); t += d; if(d < epsilon) { ... emit p return; } } How are the various mainstream GPU families (Nvidia, ATI, PowerVR, Mali, Intel, etc) affected? Vertex shaders, but particularly fragment shaders? How can it be optimised?

    Read the article

  • Self learning automated movement

    - by Super1
    I am trying to make a small demo in Javascript, I have a black border and a car the car travels randomly and a line is drawn of its trail. When the user click inside the area it creates an object (we'll call this the wall). If the car hits the wall then it goes back 3 paces and tries a different route. When its hit the wall it needs to log down its location so it does NOT make that mistake again. Here is my example: http://jsfiddle.net/Jtq3E/ How can I get the car to move by itself and create a trail?

    Read the article

< Previous Page | 273 274 275 276 277 278 279 280 281 282 283 284  | Next Page >