Search Results

Search found 25488 results on 1020 pages for 'prndl development studios'.

Page 318/1020 | < Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >

  • SharpDX: best practice for multiple RenderForms?

    - by Rob Jellinghaus
    I have an XNA app, but I really need to add multiple render windows, which XNA doesn't do. I'm looking at SharpDX (both for multi-window support and for DX11 / Metro / many other reasons). I decided to hack up the SharpDX DX11 MultiCubeTexture sample to see if I could make it work. My changes are pretty trivial. The original sample had: [STAThread] private static void Main() { var form = new RenderForm("SharpDX - MiniCubeTexture Direct3D11 Sample"); ... I changed this to: struct RenderFormWithActions { internal readonly RenderForm Form; // should just be Action but it's not in System namespace?! internal readonly Action RenderAction; internal readonly Action DisposeAction; internal RenderFormWithActions(RenderForm form, Action renderAction, Action disposeAction) { Form = form; RenderAction = renderAction; DisposeAction = disposeAction; } } [STAThread] private static void Main() { // hackity hack new Thread(new ThreadStart(() = { RenderFormWithActions form1 = CreateRenderForm(); RenderLoop.Run(form1.Form, () = form1.RenderAction(0)); form1.DisposeAction(0); })).Start(); new Thread(new ThreadStart(() = { RenderFormWithActions form2 = CreateRenderForm(); RenderLoop.Run(form2.Form, () = form2.RenderAction(0)); form2.DisposeAction(0); })).Start(); } private static RenderFormWithActions CreateRenderForm() { var form = new RenderForm("SharpDX - MiniCubeTexture Direct3D11 Sample"); ... Basically, I split out all the Main() code into a separate method which creates a RenderForm and two delegates (a render delegate, and a dispose delegate), and bundles them all together into a struct. I call this method twice, each time from a separate, new thread. Then I just have one RenderLoop on each new thread. I was thinking this wouldn't work because of the [STAThread] declaration -- I thought I would need to create the RenderForm on the main (STA) thread, and run only a single RenderLoop on that thread. Fortunately, it seems I was wrong. This works quite well -- if you drag one of the forms around, it stops rendering while being dragged, but starts again when you drop it; and the other form keeps chugging away. My questions are pretty basic: Is this a reasonable approach, or is there some lurking threading issue that might make trouble? My code simply duplicates all the setup code -- it makes a duplicate SwapChain, Device, Texture2D, vertex buffer, everything. I don't have a problem with this level of duplication -- my app is not intensive enough to suffer resource issues -- but nonetheless, is there a better practice? Is there any good reference for which DirectX structures can safely be shared, and which can't? It appears that RenderLoop.Run calls the render delegate in a tight loop. Is there any standard way to limit the frame rate of RenderLoop.Run, if you don't want a 400FPS app eating 100% of your CPU? Should I just Thread.Sleep(30) in the render delegate? (I asked on the sharpdx.org forums as well, but Alexandre is on vacation for two weeks, and my sister wants me to do a performance with my app at her wedding in three and a half weeks, so I'm mighty incented here! http://robjsoftware.org for details of what I'm building....)

    Read the article

  • Is a text file with names/pixel locations something a graphic artist can/should produce? [on hold]

    - by edA-qa mort-ora-y
    I have an artist working on 2D graphics for a game UI. He has no problem producing a screenshot showing all the bits, but we're having some trouble exporting this all into an easy-to-use format. For example, take the game HUD, which is a bunch of elements laid out around the screen. He exports the individual graphics for each one, but how should he communicate the positioning of each of them? My desire is to have a yaml file (or some other simple markup file) that contains the name of each asset and pixel position of that element. For example: fire_icon: pos: 20, 30 fire_bar: pos: 30, 80 Is producing such files a common task of a graphic artist? Is is reasonable to request them to produce such files as part of their graphic work?

    Read the article

  • Raycasting "fisheye effect" question

    - by mattboy
    Continuing my exploration of raycasting, I am very confused about how the correction of the fisheye effect works. Looking at the screenshot below from the tutorial at permadi.com, the way I understand the cause of the fisheye effect is that the rays that are cast are distances from the player, rather than the distances perpendicular to the screen (or camera plane) which is what really needs to be displayed. The distance perpendicular to the screen then, in my world, should simply be the distance of Y coordinates (Py - Dy) assuming that the player is facing straight upwards. Continuing the tutorial, this is exactly how it seems to be according to the below screenshot. From my point of view, the "distorted distance" below is the same as the distance PD calculated above, and what's labelled the "correct distance" below should be the same as Py - Dy. Yet, this clearly isn't the case according to the tutorial. My question is, WHY is this not the same? How could it not be? What am I understanding and visualizing wrong here?

    Read the article

  • Sampler referencing in HLSL - Sampler parameter must come from a literal expression

    - by user1423893
    The following method works fine when referencing a sampler in HLSL float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; float depth; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } // [Standard Depth Calculation] float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; If I try and do anything with the sampler reference outside the if statement then I get the following error: Sampler parameter must come from a literal expression This code demonstrates that float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; // [Standard Depth Calculation] float depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; How can I reference the sampler in this manner without triggering the error?

    Read the article

  • Pixel Shader, YUV-RGB Conversion failing

    - by TomTom
    I am tasked with playing back a video hthat comes in in a YUV format as an overlay in a larger game. I am not a specialist in Direct3d, so I am struggling. I managed to get a shader working and am rendering 3 textures (Y, V, U). Sadly I am totally unable to get anything like a decent image. Documentation is also failing me. I am currently loading the different data planes (Y,V,U) in three different textures: m_Textures = new Texture[3]; // Y Plane m_Textures[0] = new Texture(m_Device, w, h, 1, Usage.None, Format.L8, Pool.Managed); // V Plane m_Textures[1] = new Texture(m_Device, w2, h2, 1, Usage.None, Format.L8, Pool.Managed); // U Plane m_Textures[2] = new Texture(m_Device, w2, h2, 1, Usage.None, Format.L8, Pool.Managed); When I am rendering them as R, G and B respectively with the following code: float4 Pixel( float2 texCoord: TEXCOORD0) : COLOR0 { float y = tex2D (ytexture, texCoord); float v = tex2D (vtexture, texCoord); float u = tex2D (utexture, texCoord); //R = Y + 1.140 (V -128) //G = Y - 0.395 (U-128) - 0.581 (V-128) //B = Y + 2.028 (U-128) float r = y; //y + 1.140 * v; float g = v; //y - 0.395 * u - 0.581 * v; float b = u; //y + 2.028 * u; float4 result; result.a = 255; result.r = r; //clamp (r, 0, 255); result.g = g; //clamp (g, 0, 255); result.b = b; //clamp (b, 0, 255); return result; } Then the resulting image is - quite funny. I can see the image, but colors are totally distorted, as it should be. The formula I should apply shows up in the comment of the pixel shader, but when I do it, the resulting image is pretty brutally magenta only. This gets me to the question - when I read out an L8 texture into a float, with float y = tex2D (ytexture, texCoord); what is the range of values? The "origin" values are 1 byte, 0 to 255, and the forum I have assumes this. Naturally I am totally off when the values returned are somehow normalized. My Clamp operation at the end also will fail if for example colors in a pixel shader are normalized 0 to 1. Anyone an idea how that works? Please point me also to documentation - I have not found anything in this regard.

    Read the article

  • Color sprite tint with opacity in MonoGame/XNA

    - by Piotr Walat
    In MonoGame I am using SpriteBatch to draw sprites. I want to create a semi transparent overlay that would 'tint' the sprite with a given color. SpriteBatch.Draw accepts Color parameter that allows to specify the tint, however the alpha channel seems to make the whole sprite transparent (not the tint only). To address the problem i am overlaying my sprites with another white, semitransparent sprite tinted to a given color. It works as expected, but I am not sure if that is the correct (ie. most optimal) approach. Can you suggest better/faster technique?

    Read the article

  • SFML: Generate a background image

    - by BlackMamba
    I want to generate a background, which is used in the game, on every instance of the game based on certain conditions. To do so, I'm using a sf::RenderTexture and a sf::Texture like this: sf::RenderTexture image; std::vector<sf::Texture> textures; sf::Texture texture; // instantiating the vector of textures and the image not shown here for (int i = 0; i < certainSize; ++i) { if(certainContition) { texture.setTexture("file"); texture.setPosition(pos1, pos2); } else { ... } image.draw(texture); } The point here is that I draw single textures on a sf::RenderTexture, but because textures always are on the graphic cards memory, I can't exceed a certain map size which I have to. I also considered using an sf::Image, but I can't find a way to draw an image (i.e. a texture) to it. The third way I found was using an sf::VertexArray, but this seems to be a bit too low-level for my rather simple purposes. So is there a common way to dynamically generate a background image based on other existing images?

    Read the article

  • How to fix Monogame WP8 Touch Position bug?

    - by Moses Aprico
    Normally below code will result in X:Infinity, Y:Infinity TouchCollection touchState = TouchPanel.GetState(); foreach (TouchLocation t in touchState) { if (t.State == TouchLocationState.Pressed) { vb.ButtonTouched((int)t.Position.X, (int)t.Position.Y); } } Then, I followed this https://github.com/mono/MonoGame/issues/1046 and added below code at the first line in update method. (I still don't know how it's worked, but it fixed the problem) if (_firstUpdate) { typeof(Microsoft.Xna.Framework.Input.Touch.TouchPanel).GetField("_touchScale",System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.Static).SetValue(null, Vector2.One); _firstUpdate = false; } And then, when I randomly testing something, there are several area that won't read the user touch. The tile with the purple dude is the area which won't receive user input (It don't even detect "Pressed", the TouchCollection.Count = 0) Any idea how to fix this? UPDATE 1 : The second attempt in recompiling The difference is weird. Dunno why the consistent clickable area is just 2/3 area to the left UPDATE 2 : After trying to rotate to landscape and back to portrait to randomly testing, then the outcome become :

    Read the article

  • OpenGL or OpenGL ES

    - by zxspectrum
    What should I learn? OpenGL 4.1 or OpenGL ES 2.0? I will be developing desktop applications using Qt but I may start developing mobile applications in a few months, too. I don't know anything about 3D, 3D math, etc and I'd rather spend 100 bucks in a good book than 1 week digging websites and going through trial and error. One problem I see with OpenGL 4.1 is as far as I know there is no book yet (the most recent ones are for OpenGL 3.3 or 4.0), while there are books on OpenGL ES 2.0. On the other hand, from my naive point of view, OpenGL 4.1 seems like OpenGL ES 2.0 + additions, so it looks like it would be easier/better to first learn OpenGL ES 2.0, then go for the shader language, etc Please, don't tell me to use NeHe (it's generally agreed it's full of bad/old practices), the Durian tutorial, etc. Thanks

    Read the article

  • Unity: how to apply programmatical changes to the Terrain SplatPrototype?

    - by Shivan Dragon
    I have a script to which I add a Terrain object (I drag and drop the terrain in the public Terrain field). The Terrain is already setup in Unity to have 2 PaintTextures: 1 is a Square (set up with a tile size so that it forms a checkered pattern) and the 2nd one is a grass image: Also the Target Strength of the first PaintTexture is lowered so that the checkered pattern also reveals some of the grass underneath. Now I want, at run time, to change the Tile Size of the first PaintTexture, i.e. have more or less checkers depending on various run time conditions. I've looked through Unity's documentation and I've seen you have the Terrain.terrainData.SplatPrototype array which allows you to change this. Also there's a RefreshPrototypes() method on the terrainData object and a Flush() method on the Terrain object. So I made a script like this: public class AStarTerrain : MonoBehaviour { public int aStarCellColumns, aStarCellRows; public GameObject aStarCellHighlightPrefab; public GameObject aStarPathMarkerPrefab; public GameObject utilityRobotPrefab; public Terrain aStarTerrain; void Start () { //I've also tried NOT drag and dropping the Terrain on the public field //and instead just using the commented line below, but I get the same results //aStarTerrain = this.GetComponents<Terrain>()[0]; Debug.Log ("Got terrain "+aStarTerrain.name); SplatPrototype[] splatPrototypes = aStarTerrain.terrainData.splatPrototypes; Debug.Log("Terrain has "+splatPrototypes.Length+" splat prototypes"); SplatPrototype aStarCellSplat = splatPrototypes[0]; Debug.Log("Re-tyling splat prototype "+aStarCellSplat.texture.name); aStarCellSplat.tileSize = new Vector2(2000,2000); Debug.Log("Tyling is now "+aStarCellSplat.tileSize.x+"/"+aStarCellSplat.tileSize.y); aStarTerrain.terrainData.RefreshPrototypes(); aStarTerrain.Flush(); } //... Problem is, nothing gets changed, the checker map is not re-tiled. The console outputs correctly tell me that I've got the Terrain object with the right name, that it has the right number of splat prototypes and that I'm modifying the tileSize on the SplatPrototype object corresponding to the right texture. It also tells me the value has changed. But nothing gets updated in the actual graphical view. So please, what am I missing?

    Read the article

  • Send regular keyboard samples OR keyboard state changes over network

    - by Ciaran
    Building a multi player asteroids game where ships compete with each other. Using UDP. Wanted to minimize traffic sent to server. Which would you do: Send periodic keyboard state samples every from client every to match server physics update rate e.g. 50 times per second. Highly resilient to packet loss and other reliabilty problems. Out of date packets disacarded by server. Generates a lot of unnuecessary traffic. Only send keyboard state when it changes (key up, key down). Radically less traffic sent from client to server. However, UDP can lose packets without you being informed. So the latter method could result in the vital packet never being resent unless I detect and resend this in a timely manner.

    Read the article

  • SDL2 sprite batching and texture atlases

    - by jms
    I have been programming a 2D game in C++, using the SDL2 graphics API for rendering. My game concept currently features effects that could result in even tens of thousands of sprites being drawn simultaneously to the screen. I'd like to know what can be done for increasing rendering efficiency if the need arises, preferably using the SDL2 API only. I have previously given a quick look at OpenGL-based 2D rendering, and noticed that SDL2 lacks a command like int SDL_RenderCopyMulti(SDL_Renderer* renderer, SDL_Texture* texture, const SDL_Rect* srcrects, SDL_Rect* dstrects, int count) Which would permit SDL to benefit from two common techniques used for efficient 2D graphics: Texture batching: Sorting sprites by the texture used, and then simultaneously rendering as many sprites that use the same texture as possible, changing only the source area on the texture and the destination area on the render target between sprites. This allows the encapsulation of the whole operation in a single GPU command, reducing the overhead drastically from multiple distinct calls. Texture atlases: Instead of creating one texture for each frame of each animation of each sprite, combining multiple animations and even multiple sprites into a single large texture. This lessens the impact of changing the current texture when switching between sprites, as the correct texture is often ready to be used from the previous draw call. Furthemore the GPU is optimized for handling large textures, in contrast to the many tiny textures typically used for sprites. My question: Would SDL2 still get somewhat faster from any rudimentary sprite sorting or from combining multiple images into one texture thanks to automatic video driver optimizations? If I will encounter performance issues related to 2D rendering in the future, will I be forced to switch to OpenGL for lower level control over the GPU? Edit: Are there any plans to include such functionality in the near future?

    Read the article

  • C# graph library to be used from Unity3D

    - by Heisenbug
    I'm looking for a C# graph library to be used inside Unity3D script. I'm not looking for pathfinding libraries (I know there are good one available). I could consider using a path finding library only if it gives me direct access to underlying graph classes (I need nodes and edges, and classic graph algorithms) The only product I've seen that seems intersting is QuickGraph. I have the following question: Is it possible to use QuickGraph inside Unity3d? If yes. Is this a good idea? Does it have any drawbacks? Is it a quite fast and well written/supported library? Does anyone has ever used it? Are available other C# graph library that can be easily integrated in Unity3d?

    Read the article

  • Sharing a texture resource from DX11 to DX9 to WPF, need to wait for DeviceContext.Flush() to finish

    - by Rei Miyasaka
    I'm following these instructions on TheCodeProject for rendering from DirectX to WPF using D3DImage. The trouble is that now that I have no swap chain to call Present() on -- which according to the article shouldn't be a problem, but it definitely wasn't copying my back buffer. An additional step that I have to take before I can copy the texture to WPF is to share it with a second D3D9Ex device, since D3DImage only works with DX9 (which is understandable, as WPF is built on DX9). To that end, I've modified some SlimDX code to work with DirectX 11. I tried calling DeviceContext.Flush() (the Immediate one) at the end of each render cycle, which kind of works -- most of the time it'll show my renderings, but maybe for maybe 3 or 4 out of 60 frames each second, it'll draw my clear color instead. This makes sense -- Flush() is non-blocking; it doesn't wait for the GPU to do its thing the way SwapChain.Present does. Any idea what the proper solution is? I have a feeling it has something to do with my texture parameters for the back buffer, but I don't know.

    Read the article

  • LWJGL - Eclipse error [on hold]

    - by Zarkopafilis
    When I try to run my lwjgl project, an error pops . Here is the log file: # A fatal error has been detected by the Java Runtime Environment: # EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x6d8fcc0a, pid=5612, tid=900 # JRE version: 6.0_16-b01 Java VM: Java HotSpot(TM) Client VM (14.2-b01 mixed mode windows-x86 ) Problematic frame: V [jvm.dll+0xfcc0a] # If you would like to submit a bug report, please visit: http://java.sun.com/webapps/bugreport/crash.jsp # --------------- T H R E A D --------------- Current thread (0x016b9000): JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] siginfo: ExceptionCode=0xc0000005, reading address 0x00000000 Registers: EAX=0x00000000, EBX=0x00000000, ECX=0x00000006, EDX=0x00000000 ESP=0x001af4d4, EBP=0x001af524, ESI=0x016b9000, EDI=0x016b9110 EIP=0x6d8fcc0a, EFLAGS=0x00010246 Top of Stack: (sp=0x001af4d4) 0x001af4d4: 6da44bd8 016b9110 00000000 001af668 0x001af4e4: ffffffff 22200000 001af620 76ec39c2 0x001af4f4: 001af524 6d801086 0000000b 001afd34 0x001af504: 016b9000 016dd990 016b9000 00000000 0x001af514: 001af5f4 6d9ee000 6d9ef2f0 ffffffff 0x001af524: 001af58c 10008c85 016b9110 00000000 0x001af534: 00000000 000a0554 00000000 00000024 0x001af544: 00000000 00000000 001af6ac 00000000 Instructions: (pc=0x6d8fcc0a) 0x6d8fcbfa: e8 e8 d0 1d 08 00 8b 45 10 c7 45 d8 0b 00 00 00 0x6d8fcc0a: 8b 00 8b 48 08 0f b7 51 26 8b 40 0c 8b 4c 90 20 Stack: [0x00160000,0x001b0000], sp=0x001af4d4, free space=317k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) V [jvm.dll+0xfcc0a] C [lwjgl.dll+0x8c85] C [USER32.dll+0x18876] C [USER32.dll+0x170f4] C [USER32.dll+0x1119e] C [ntdll.dll+0x460ce] C [USER32.dll+0x10e29] C [USER32.dll+0x10e84] C [lwjgl.dll+0x1cf0] j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub V [jvm.dll+0xecf9c] V [jvm.dll+0x1741e1] V [jvm.dll+0xed01d] V [jvm.dll+0xf5be5] V [jvm.dll+0xfd83d] C [javaw.exe+0x2155] C [javaw.exe+0x833e] C [kernel32.dll+0x51154] C [ntdll.dll+0x5b2b9] C [ntdll.dll+0x5b28c] Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.WindowsDisplay.nCreateWindow(IIIIZZJ)J+0 j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub --------------- P R O C E S S --------------- Java Threads: ( = current thread ) 0x0179a400 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=4460, stack(0x0b900000,0x0b950000)] 0x01795400 JavaThread "CompilerThread0" daemon [_thread_blocked, id=5264, stack(0x0b8b0000,0x0b900000)] 0x01790c00 JavaThread "Attach Listener" daemon [_thread_blocked, id=6080, stack(0x0b860000,0x0b8b0000)] 0x01786400 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=1204, stack(0x0b810000,0x0b860000)] 0x01759c00 JavaThread "Finalizer" daemon [_thread_blocked, id=5772, stack(0x0b7c0000,0x0b810000)] 0x01755000 JavaThread "Reference Handler" daemon [_thread_blocked, id=4696, stack(0x01640000,0x01690000)] =0x016b9000 JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] Other Threads: 0x01751c00 VMThread [stack: 0x015f0000,0x01640000] [id=4052] 0x0179c800 WatcherThread [stack: 0x0b950000,0x0b9a0000] [id=3340] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap def new generation total 960K, used 816K [0x037c0000, 0x038c0000, 0x03ca0000) eden space 896K, 91% used [0x037c0000, 0x0388c2c0, 0x038a0000) from space 64K, 0% used [0x038a0000, 0x038a0000, 0x038b0000) to space 64K, 0% used [0x038b0000, 0x038b0000, 0x038c0000) tenured generation total 4096K, used 0K [0x03ca0000, 0x040a0000, 0x077c0000) the space 4096K, 0% used [0x03ca0000, 0x03ca0000, 0x03ca0200, 0x040a0000) compacting perm gen total 12288K, used 2143K [0x077c0000, 0x083c0000, 0x0b7c0000) the space 12288K, 17% used [0x077c0000, 0x079d7e38, 0x079d8000, 0x083c0000) No shared spaces configured. Dynamic libraries: 0x00400000 - 0x00424000 C:\Program Files\Java\jre6\bin\javaw.exe 0x77550000 - 0x7768e000 C:\Windows\SYSTEM32\ntdll.dll 0x75a80000 - 0x75b54000 C:\Windows\system32\kernel32.dll 0x758d0000 - 0x7591b000 C:\Windows\system32\KERNELBASE.dll 0x759e0000 - 0x75a80000 C:\Windows\system32\ADVAPI32.dll 0x76070000 - 0x7611c000 C:\Windows\system32\msvcrt.dll 0x77250000 - 0x77269000 C:\Windows\SYSTEM32\sechost.dll 0x771a0000 - 0x77241000 C:\Windows\system32\RPCRT4.dll 0x76eb0000 - 0x76f79000 C:\Windows\system32\USER32.dll 0x76e60000 - 0x76eae000 C:\Windows\system32\GDI32.dll 0x77770000 - 0x7777a000 C:\Windows\system32\LPK.dll 0x75fd0000 - 0x7606e000 C:\Windows\system32\USP10.dll 0x770b0000 - 0x770cf000 C:\Windows\system32\IMM32.DLL 0x770d0000 - 0x7719c000 C:\Windows\system32\MSCTF.dll 0x7c340000 - 0x7c396000 C:\Program Files\Java\jre6\bin\msvcr71.dll 0x6d800000 - 0x6da8b000 C:\Program Files\Java\jre6\bin\client\jvm.dll 0x73a00000 - 0x73a32000 C:\Windows\system32\WINMM.dll 0x75610000 - 0x7565b000 C:\Windows\system32\apphelp.dll 0x6d7b0000 - 0x6d7bc000 C:\Program Files\Java\jre6\bin\verify.dll 0x6d330000 - 0x6d34f000 C:\Program Files\Java\jre6\bin\java.dll 0x6d290000 - 0x6d298000 C:\Program Files\Java\jre6\bin\hpi.dll 0x776e0000 - 0x776e5000 C:\Windows\system32\PSAPI.DLL 0x6d7f0000 - 0x6d7ff000 C:\Program Files\Java\jre6\bin\zip.dll 0x10000000 - 0x1004c000 C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows\lwjgl.dll 0x5d170000 - 0x5d238000 C:\Windows\system32\OPENGL32.dll 0x6e7b0000 - 0x6e7d2000 C:\Windows\system32\GLU32.dll 0x70620000 - 0x70707000 C:\Windows\system32\DDRAW.dll 0x70610000 - 0x70616000 C:\Windows\system32\DCIMAN32.dll 0x75b60000 - 0x75cfd000 C:\Windows\system32\SETUPAPI.dll 0x759b0000 - 0x759d7000 C:\Windows\system32\CFGMGR32.dll 0x76d70000 - 0x76dff000 C:\Windows\system32\OLEAUT32.dll 0x75db0000 - 0x75f0c000 C:\Windows\system32\ole32.dll 0x758b0000 - 0x758c2000 C:\Windows\system32\DEVOBJ.dll 0x74060000 - 0x74073000 C:\Windows\system32\dwmapi.dll 0x74b60000 - 0x74b69000 C:\Windows\system32\VERSION.dll 0x745f0000 - 0x7478e000 C:\Windows\WinSxS\x86_microsoft.windows.common-controls_6595b64144ccf1df_6.0.7600.16661_none_420fe3fa2b8113bd\COMCTL32.dll 0x75d50000 - 0x75da7000 C:\Windows\system32\SHLWAPI.dll 0x74370000 - 0x743b0000 C:\Windows\system32\uxtheme.dll 0x22200000 - 0x22206000 C:\Program Files\ESET\ESET Smart Security\eplgHooks.dll VM Arguments: jvm_args: -Djava.library.path=C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows -Dfile.encoding=Cp1253 java_command: zarkopafilis.koding.io.javafx.Main Launcher Type: SUN_STANDARD Environment Variables: PATH=C:/Program Files/Java/jre6/bin/client;C:/Program Files/Java/jre6/bin;C:/Program Files/Java/jre6/lib/i386;C:\Perl\site\bin;C:\Perl\bin;C:\Ruby200\bin;C:\Program Files\Common Files\Microsoft Shared\Windows Live;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Windows Live\Shared;C:\Users\theo\Desktop\eclipse; USERNAME=theo OS=Windows_NT PROCESSOR_IDENTIFIER=x86 Family 6 Model 37 Stepping 5, GenuineIntel --------------- S Y S T E M --------------- OS: Windows 7 Build 7600 CPU:total 4 (8 cores per cpu, 2 threads per core) family 6 model 37 stepping 5, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, ht Memory: 4k page, physical 2097151k(1257972k free), swap 4194303k(4194303k free) vm_info: Java HotSpot(TM) Client VM (14.2-b01) for windows-x86 JRE (1.6.0_16-b01), built on Jul 31 2009 11:26:58 by "java_re" with MS VC++ 7.1 time: Wed Oct 23 22:00:12 2013 elapsed time: 0 seconds Code: Display.setDisplayMode(new DisplayMode(800,600)); Display.create();//Error here I am using JDK 6

    Read the article

  • How do I blend 2 lightmaps for day/night cycle in Unity?

    - by Timothy Williams
    Before I say anything else: I'm using dual lightmaps, meaning I need to blend both a near and a far. So I've been working on this for a while now, I have a whole day/night cycle set up for renderers and lighting, and everything is working fine and not process intensive. The only problem I'm having is figuring out how I could blend two lightmaps together, I've figured out how to switch lightmaps, but the problem is that looks kind of abrupt and interrupts the experience. I've done hours of research on this, tried all kinds of shaders, pixel by pixel blending, and everything else to no real avail. Pixel by pixel blending in C# turned out to be a bit process intensive for my liking, though I'm still working on cleaning it up and making it run more smoothly. Shaders looked promising, but I couldn't find a shader that could properly blend two lightmaps. Does anyone have any leads on how I could accomplish this? I just need some sort of smooth transition between my daytime and nighttime lightmap. Perhaps I could overlay the two textures and use an alpha channel? Or something like that?

    Read the article

  • Cocos2d-xna memory management for WP8

    - by Arkiliknam
    I recently upgraded to VS2012 and try my in dev game out on the new WP8 emulators but was dismayed to find out the emulator now crashes and throws an out of memory exception during my sprite loading procedure (funnily, it still works in WP7 emulators and on my WP7). Regardless of whether the problem is the emulator or not, I want to get a clear understanding of how I should be managing memory in the game. My game consists of a character whom has 4 or more different animations. Each animation consists of 4 to 7 frames. On top of that, the character has up to 8 stackable visualization modifications (eg eye type, nose type, hair type, clothes type). Pre memory issue, I preloaded all textures for each animation frame and customization and created animate action out of them. The game then plays animations using the customizations applied to that current character. I re-looked at this implementation when I received the out of memory exceptions and have started playing with RenderTexture instead, so instead of pre loading all possible textures, it on loads textures needed for the character, renders them onto a single texture, from which the animation is built. This means the animations use 1/8th of the sprites they were before. I thought this would solve my issue, but it hasn't. Here's a snippet of my code: var characterTexture = CCRenderTexture.Create((int)width, (int)height); characterTexture.BeginWithClear(0, 0, 0, 0); // stamp a body onto my texture var bodySprite = MethodToCreateSpecificSprite(); bodySprite.Position = centerPoint; bodySprite.Visit(); bodySprite.Cleanup(); bodySprite = null; // stamp eyes, nose, mouth, clothes, etc... characterTexture.End(); As you can see, I'm calling CleanUp and setting the sprite to null in the hope of releasing the memory, though I don't believe this is the right way, nor does it seem to work... I also tried using SharedTextureCache to load textures before Stamping my texture out, and then clearing the SharedTextureCache with: CCTextureCache.SharedTextureCache.RemoveAllTextures(); But this didn't have an effect either. Any tips on what I'm not doing? I used VS to do a memory profile of the emulation causing the crash. Both WP7.1 and WP8 emulators peak at about 150mb of usage. WP8 crashes and throws an out of memory exception. Each customisation/frame is 15kb at the most. Lets say there are 8 layers of customisation = 120kb but I render then onto one texture which I would assume is only 15kb again. Each animation is 8 frames at the most. That's 15kb for 1 texture, or 960kb for 8 textures of customisation. There are 4 animation sets. That's 60Kb for 4 sets of 1 texture, or 3.75MB for 4 sets of 8 textures of customisation. So even if its storing every layer, its 3.75MB.... no where near the 150mb breaking point my profiler seems to suggest :( WP 7.1 Memory Profile (max 150MB) WP8 Memory Profile (max 150MB and crashes)

    Read the article

  • Access violation in DirectX OMSetRenderTargets

    - by IDWMaster
    I receive the following error (Unhandled exception at 0x527DAE81 (d3d11_1sdklayers.dll) in Lesson2.Triangles.exe: 0xC0000005: Access violation reading location 0x00000000) when running the Triangle sample application for DirectX 11 in D3D_FEATURE_LEVEL_9_1. This error occurs at the OMSetRenderTargets function, as shown below, and does not happen if I remove that function from the program (but then, the screen is blue, and does not render the triangle) //// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF //// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO //// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A //// PARTICULAR PURPOSE. //// //// Copyright (c) Microsoft Corporation. All rights reserved #include #include #include "DirectXSample.h" #include "BasicMath.h" #include "BasicReaderWriter.h" using namespace Microsoft::WRL; using namespace Windows::UI::Core; using namespace Windows::Foundation; using namespace Windows::ApplicationModel::Core; using namespace Windows::ApplicationModel::Infrastructure; // This class defines the application as a whole. ref class Direct3DTutorialViewProvider : public IViewProvider { private: CoreWindow^ m_window; ComPtr m_swapChain; ComPtr m_d3dDevice; ComPtr m_d3dDeviceContext; ComPtr m_renderTargetView; public: // This method is called on application launch. void Initialize( _In_ CoreWindow^ window, _In_ CoreApplicationView^ applicationView ) { m_window = window; } // This method is called after Initialize. void Load(_In_ Platform::String^ entryPoint) { } // This method is called after Load. void Run() { // First, create the Direct3D device. // This flag is required in order to enable compatibility with Direct2D. UINT creationFlags = D3D11_CREATE_DEVICE_BGRA_SUPPORT; #if defined(_DEBUG) // If the project is in a debug build, enable debugging via SDK Layers with this flag. creationFlags |= D3D11_CREATE_DEVICE_DEBUG; #endif // This array defines the ordering of feature levels that D3D should attempt to create. D3D_FEATURE_LEVEL featureLevels[] = { D3D_FEATURE_LEVEL_11_1, D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0, D3D_FEATURE_LEVEL_9_3, D3D_FEATURE_LEVEL_9_1 }; ComPtr d3dDevice; ComPtr d3dDeviceContext; DX::ThrowIfFailed( D3D11CreateDevice( nullptr, // specify nullptr to use the default adapter D3D_DRIVER_TYPE_HARDWARE, nullptr, // leave as nullptr if hardware is used creationFlags, // optionally set debug and Direct2D compatibility flags featureLevels, ARRAYSIZE(featureLevels), D3D11_SDK_VERSION, // always set this to D3D11_SDK_VERSION &d3dDevice, nullptr, &d3dDeviceContext ) ); // Retrieve the Direct3D 11.1 interfaces. DX::ThrowIfFailed( d3dDevice.As(&m_d3dDevice) ); DX::ThrowIfFailed( d3dDeviceContext.As(&m_d3dDeviceContext) ); // After the D3D device is created, create additional application resources. CreateWindowSizeDependentResources(); // Create a Basic Reader-Writer class to load data from disk. This class is examined // in the Resource Loading sample. BasicReaderWriter^ reader = ref new BasicReaderWriter(); // Load the raw vertex shader bytecode from disk and create a vertex shader with it. auto vertexShaderBytecode = reader-ReadData("SimpleVertexShader.cso"); ComPtr vertexShader; DX::ThrowIfFailed( m_d3dDevice-CreateVertexShader( vertexShaderBytecode-Data, vertexShaderBytecode-Length, nullptr, &vertexShader ) ); // Create an input layout that matches the layout defined in the vertex shader code. // For this lesson, this is simply a float2 vector defining the vertex position. const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] = { { "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, }; ComPtr inputLayout; DX::ThrowIfFailed( m_d3dDevice-CreateInputLayout( basicVertexLayoutDesc, ARRAYSIZE(basicVertexLayoutDesc), vertexShaderBytecode-Data, vertexShaderBytecode-Length, &inputLayout ) ); // Load the raw pixel shader bytecode from disk and create a pixel shader with it. auto pixelShaderBytecode = reader-ReadData("SimplePixelShader.cso"); ComPtr pixelShader; DX::ThrowIfFailed( m_d3dDevice-CreatePixelShader( pixelShaderBytecode-Data, pixelShaderBytecode-Length, nullptr, &pixelShader ) ); // Create vertex and index buffers that define a simple triangle. float3 triangleVertices[] = { float3(-0.5f, -0.5f,13.5f), float3( 0.0f, 0.5f,0), float3( 0.5f, -0.5f,0), }; D3D11_BUFFER_DESC vertexBufferDesc = {0}; vertexBufferDesc.ByteWidth = sizeof(float3) * ARRAYSIZE(triangleVertices); vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT; vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER; vertexBufferDesc.CPUAccessFlags = 0; vertexBufferDesc.MiscFlags = 0; vertexBufferDesc.StructureByteStride = 0; D3D11_SUBRESOURCE_DATA vertexBufferData; vertexBufferData.pSysMem = triangleVertices; vertexBufferData.SysMemPitch = 0; vertexBufferData.SysMemSlicePitch = 0; ComPtr vertexBuffer; DX::ThrowIfFailed( m_d3dDevice-CreateBuffer( &vertexBufferDesc, &vertexBufferData, &vertexBuffer ) ); // Once all D3D resources are created, configure the application window. // Allow the application to respond when the window size changes. m_window-SizeChanged += ref new TypedEventHandler( this, &Direct3DTutorialViewProvider::OnWindowSizeChanged ); // Specify the cursor type as the standard arrow cursor. m_window-PointerCursor = ref new CoreCursor(CoreCursorType::Arrow, 0); // Activate the application window, making it visible and enabling it to receive events. m_window-Activate(); // Enter the render loop. Note that tailored applications should never exit. while (true) { // Process events incoming to the window. m_window-Dispatcher-ProcessEvents(CoreProcessEventsOption::ProcessAllIfPresent); // Specify the render target we created as the output target. ID3D11RenderTargetView* targets[1] = {m_renderTargetView.Get()}; m_d3dDeviceContext-OMSetRenderTargets( 1, targets, NULL // use no depth stencil ); // Clear the render target to a solid color. const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f }; //Code fails here m_d3dDeviceContext-ClearRenderTargetView( m_renderTargetView.Get(), clearColor ); m_d3dDeviceContext-IASetInputLayout(inputLayout.Get()); // Set the vertex and index buffers, and specify the way they define geometry. UINT stride = sizeof(float3); UINT offset = 0; m_d3dDeviceContext-IASetVertexBuffers( 0, 1, vertexBuffer.GetAddressOf(), &stride, &offset ); m_d3dDeviceContext-IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Set the vertex and pixel shader stage state. m_d3dDeviceContext-VSSetShader( vertexShader.Get(), nullptr, 0 ); m_d3dDeviceContext-PSSetShader( pixelShader.Get(), nullptr, 0 ); // Draw the cube. m_d3dDeviceContext-Draw(3,0); // Present the rendered image to the window. Because the maximum frame latency is set to 1, // the render loop will generally be throttled to the screen refresh rate, typically around // 60Hz, by sleeping the application on Present until the screen is refreshed. DX::ThrowIfFailed( m_swapChain-Present(1, 0) ); } } // This method is called before the application exits. void Uninitialize() { } private: // This method is called whenever the application window size changes. void OnWindowSizeChanged( _In_ CoreWindow^ sender, _In_ WindowSizeChangedEventArgs^ args ) { m_renderTargetView = nullptr; CreateWindowSizeDependentResources(); } // This method creates all application resources that depend on // the application window size. It is called at app initialization, // and whenever the application window size changes. void CreateWindowSizeDependentResources() { if (m_swapChain != nullptr) { // If the swap chain already exists, resize it. DX::ThrowIfFailed( m_swapChain-ResizeBuffers( 2, 0, 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0 ) ); } else { // If the swap chain does not exist, create it. DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0}; swapChainDesc.Stereo = false; swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; swapChainDesc.Scaling = DXGI_SCALING_NONE; swapChainDesc.Flags = 0; // Use automatic sizing. swapChainDesc.Width = 0; swapChainDesc.Height = 0; // This is the most common swap chain format. swapChainDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // Don't use multi-sampling. swapChainDesc.SampleDesc.Count = 1; swapChainDesc.SampleDesc.Quality = 0; // Use two buffers to enable flip effect. swapChainDesc.BufferCount = 2; // We recommend using this swap effect for all applications. swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // Once the swap chain description is configured, it must be // created on the same adapter as the existing D3D Device. // First, retrieve the underlying DXGI Device from the D3D Device. ComPtr dxgiDevice; DX::ThrowIfFailed( m_d3dDevice.As(&dxgiDevice) ); // Ensure that DXGI does not queue more than one frame at a time. This both reduces // latency and ensures that the application will only render after each VSync, minimizing // power consumption. DX::ThrowIfFailed( dxgiDevice-SetMaximumFrameLatency(1) ); // Next, get the parent factory from the DXGI Device. ComPtr dxgiAdapter; DX::ThrowIfFailed( dxgiDevice-GetAdapter(&dxgiAdapter) ); ComPtr dxgiFactory; DX::ThrowIfFailed( dxgiAdapter-GetParent( __uuidof(IDXGIFactory2), &dxgiFactory ) ); // Finally, create the swap chain. DX::ThrowIfFailed( dxgiFactory-CreateSwapChainForImmersiveWindow( m_d3dDevice.Get(), DX::GetIUnknown(m_window), &swapChainDesc, nullptr, // allow on all displays &m_swapChain ) ); } // Once the swap chain is created, create a render target view. This will // allow Direct3D to render graphics to the window. ComPtr backBuffer; DX::ThrowIfFailed( m_swapChain-GetBuffer( 0, __uuidof(ID3D11Texture2D), &backBuffer ) ); DX::ThrowIfFailed( m_d3dDevice-CreateRenderTargetView( backBuffer.Get(), nullptr, &m_renderTargetView ) ); // After the render target view is created, specify that the viewport, // which describes what portion of the window to draw to, should cover // the entire window. D3D11_TEXTURE2D_DESC backBufferDesc = {0}; backBuffer-GetDesc(&backBufferDesc); D3D11_VIEWPORT viewport; viewport.TopLeftX = 0.0f; viewport.TopLeftY = 0.0f; viewport.Width = static_cast(backBufferDesc.Width); viewport.Height = static_cast(backBufferDesc.Height); viewport.MinDepth = D3D11_MIN_DEPTH; viewport.MaxDepth = D3D11_MAX_DEPTH; m_d3dDeviceContext-RSSetViewports(1, &viewport); } }; // This class defines how to create the custom View Provider defined above. ref class Direct3DTutorialViewProviderFactory : IViewProviderFactory { public: IViewProvider^ CreateViewProvider() { return ref new Direct3DTutorialViewProvider(); } }; [Platform::MTAThread] int main(array^) { auto viewProviderFactory = ref new Direct3DTutorialViewProviderFactory(); Windows::ApplicationModel::Core::CoreApplication::Run(viewProviderFactory); return 0; }

    Read the article

  • Direct2d off-screen rendering and hardware acceleration

    - by Goran
    I'm trying to use direct2d to render images off-screen using WindowsAPICodePack. This is easily achieved using WicBitmapRenderTarget but sadly it's not hardware accelerated. So I'm trying this route: Create direct3d device Create texture2d Use texture surface to create render target using CreateDxgiSurfaceRenderTarget Draw some shapes While this renders the image it appears GPU isn't being used at all while CPU is used heavily. Am I doing something wrong? Is there a way to check whether hardware or software rendering is used? Code sample: var device = D3DDevice1.CreateDevice1( null, DriverType.Hardware, null, CreateDeviceOptions.SupportBgra ,FeatureLevel.Ten ); var txd = new Texture2DDescription(); txd.Width = 256; txd.Height = 256; txd.MipLevels = 1; txd.ArraySize = 1; txd.Format = Format.B8G8R8A8UNorm; //DXGI_FORMAT_R32G32B32A32_FLOAT; txd.SampleDescription = new SampleDescription(1,0); txd.Usage = Usage.Default; txd.BindingOptions = BindingOptions.RenderTarget | BindingOptions.ShaderResource; txd.MiscellaneousResourceOptions = MiscellaneousResourceOptions.None; txd.CpuAccessOptions = CpuAccessOptions.None; var tx = device.CreateTexture2D(txd); var srfc = tx.GraphicsSurface; var d2dFactory = D2DFactory.CreateFactory(); var renderTargetProperties = new RenderTargetProperties { PixelFormat = new PixelFormat(Format.Unknown, AlphaMode.Premultiplied), DpiX = 96, DpiY = 96, RenderTargetType = RenderTargetType.Default, }; using(var renderTarget = d2dFactory.CreateGraphicsSurfaceRenderTarget(srfc, renderTargetProperties)) { renderTarget.BeginDraw(); var clearColor = new ColorF(1f,1f,1f,1f); renderTarget.Clear(clearColor); using (var strokeBrush = renderTarget.CreateSolidColorBrush(new ColorF(0.2f,0.2f,0.2f,1f))) { for (var i = 0; i < 100000; i++) { renderTarget.DrawEllipse(new Ellipse(new Point2F(i, i), 10, 10), strokeBrush, 2); } } var hr = renderTarget.EndDraw(); }

    Read the article

  • Setting Up GLFW3 in Visual Studio

    - by sm81095
    I decided a couple of days ago that I was going to start trying to develop games in C++ with OpenGL, instead of C# Monogame like I have been doing for a while. I was looking around for libraries to use, to make OpenGL a little easier to use. I settled on GLEW and GLFW. GLEW was a super easy copy/paste, but GLFW3 was not. After looking around for a while and fighting with CMake, I got the GLFW2.lib file created, and I added the additional include directories, library directories, and linked my program to the glfw3.lib file I just created. The problem is, I get these linker errors when I try to run or build my program: Error 1 error LNK2019: unresolved external symbol _glfwInit referenced in function _main C:\Codex Interactive\Projects\OGLTest\OGLTest\test.obj OGLTest Error 2 error LNK2019: unresolved external symbol _glfwTerminate referenced in function _main C:\Codex Interactive\Projects\OGLTest\OGLTest\test.obj OGLTest Error 3 error LNK2019: unresolved external symbol _glfwSetErrorCallback referenced in function _main C:\Codex Interactive\Projects\OGLTest\OGLTest\test.obj OGLTest and 10 other LNK2019 errors, all talking about some glfw method, as well as: Error 14 error LNK1120: 13 unresolved externals C:\Codex Interactive\Projects\OGLTest\Debug\OGLTest.exe 1 1 OGLTest at the very bottom of the error list. I've looked up most of these errors on their own, and the solutions that I find either do nothing to solve the problem, or are people commenting on how dumb people are for not being about to solve this linker problem. Any assistance to solve these errors would be greatly appreciated. Info: I built GLFW3 on Cmake for Visual Studio 11, 32 bit and 64 bit, and both threw the same errors. The only extra libraries I linked were opengl32.lib, glu32.lib, and glfw3.lib Here is the test code (from GLFW3's latest tutorial): Code

    Read the article

  • Game Networking Help Jmonkey SpiderMonkey

    - by user185812
    I have decided I think Jmonkey Engine will be best for my project, (an online RTS), but I have one question. If my game were to be successful (Yes I understand how slim the chances are, and how difficult this can be) I don't quite understand an aspect of networking. Do games like this require multiple servers, or only a single server? If multiple servers, I was unable to find anything regarding if Jmonkey's SpirderMonkey Networking supports this. (Something to allow equal distribution of traffic to multiple servers). UPDATE: I plan on using Jmonkey for my project. My Project is an online RTS, but with somewhat of an FPS twist. I am currently trying to figure out if the game has heavy traffic if having multiple servers to host the game is recommended. In addition to this, if using multiple hosting servers is supported in Jmonkey as I can't seem to find any documentation regarding it.

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • In HLSL pixel shader , why is SV_POSITION different to other semantics?

    - by tina nyaa
    In my HLSL pixel shader, SV_POSITION seems to have different values to any other semantic I use. I don't understand why this is. Can you please explain it? For example, I am using a triangle with the following coordinates: (0.0f, 0.5f) (0.5f, -0.5f) (-0.5f, -0.5f) The w and z values are 0 and 1, respectively. This is the pixel shader. struct VS_IN { float4 pos : POSITION; }; struct PS_IN { float4 pos : SV_POSITION; float4 k : LOLIMASEMANTIC; }; PS_IN VS( VS_IN input ) { PS_IN output = (PS_IN)0; output.pos = input.pos; output.k = input.pos; return output; } float4 PS( PS_IN input ) : SV_Target { // screenshot 1 return input.pos; // screenshot 2 return input.k; } technique10 Render { pass P0 { SetGeometryShader( 0 ); SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); } } Screenshot 1: http://i.stack.imgur.com/rutGU.png Screenshot 2: http://i.stack.imgur.com/NStug.png (Sorry, I'm not allowed to post images until I have a lot of 'reputation') When I use the first statement (result is first screenshot), the one that uses the SV_POSITION semantic, the result is completely unexpected and is yellow, whereas using any other semantic will produce the expected result. Why is this?

    Read the article

  • GLSL - one-pass gaussian blur

    - by martin pilch
    It is possible to implement fragment shader to do one-pass gaussian blur? I have found lot of implementation of two-pass blur (gaussian and box blur): http://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html http://www.gamerendering.com/2008/10/11/gaussian-blur-filter-shader/ http://www.geeks3d.com/20100909/shader-library-gaussian-blur-post-processing-filter-in-glsl/ and so on. I have been thinking of implementing gaussian blur as convolution (in fact, it is the convolution, the examples above are just aproximations): http://en.wikipedia.org/wiki/Gaussian_blur

    Read the article

  • Using XNA ContentPipeline to export a file in a machine without full XNA GS

    - by krolth
    My game uses the Content Pipeline to load the spriteSheet at runtime. The artist for the game sends me the modified spritesheet and I do a build in my machine and send him an updated project. So I'm looking for a way to generate the xnb files in his machine (this is the output of the content pipeline) without him having to install the full XNA Game studio. 1) I don't want my artist to install VS + Xna (I know there is a free version of VS but this won't scale once we add more people to the team). 2) I'm not interested in running this editor/tool in Xbox so a Windows only solution works. 3) I'm aware of MSBuild options but they require full XNA I researched Shawn's blog and found the option of using Msbuild Sample or a new option in XNA 4.0 that looked promising here but seems like it has the same restriction: Need to install full XNA GS because the ContentPipeline is not part of the XNA redist. So has anyone found a workaround for this?

    Read the article

< Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >