Search Results

Search found 3659 results on 147 pages for 'david mesh'.

Page 4/147 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Is an extra collision-mesh for level-data worth the hassle?

    - by Serthy
    What is the optimal approach for collision-detection with the environment in an 3D engine (with triangle mesh based geometry, no bsp)? A) Use the render mesh [+] no need for additional work for artists to fiddle with collision detection [-] high detail is harder for physics calculation [+/-] maybe use collidable flags for materials [+/-] compute the collision-mesh from the render-mesh B) Use an additional collision mesh [+] faster/more optimal collision-detection [-] additional work (either by the artist or by the programmer who has to develop an algorithm to compute it from the render-mesh) [-] more memory useage How do AAA title handle this? And what are the indie dev's approaches?

    Read the article

  • 3D Huge mesh rendering

    - by Keyhan Asghari
    I am writing a program, that as input, I have a huge 3d mesh (with mostly structured and cubic shaped elements), and I want to realtime render it, but not as real-time as a game. But speed of rendering is somehow important. The most important point is, I don't need any special lighting nor any shadows. Also, the objects to render are static, and they do not move. I've read about ray tracing methods, but I don't know if there is any good libraries for this purpose, or I have to implement everything by myself. Thanks a lot.

    Read the article

  • Multiple textures on a mesh created in blender and imported in xna

    - by alecnash
    I created a cube in blender which has multiple images applied to its faces. I am trying to import the model into xna and get the same results as shown when rendering the model in blender. I go through every mesh (for the cube its only one) and through every part but only the first image used in blender is displayed in every face. The code I am using to fetch the texture looks like that: foreach (ModelMesh m in model.Meshes) { foreach (Effect e in m.Effects) { foreach (var part in m.MeshParts) { e.CurrentTechnique = e.Techniques["Lambert"]; e.Parameters["view"].SetValue(camera.viewMatrix); e.Parameters["projection"].SetValue(camera.projectionMatrix); e.Parameters["colorMap"].SetValue(modelTextures[part.GetHashCode()]); } } m.Draw(); } Am I missing something?

    Read the article

  • Selection of a mesh with arbitrary region

    - by Tigran
    Considering example: I have a mesh(es) on the OpenGL screen and would like to select a part of it (say for delete purpose). There is a clear way to do the selction via Ray Tracing, or via Selection provided by OpenGL itself. But, for my users, considering that meshes can get wired surfaces, I need to implement a selection via a Arbitrary closed region, so all triangles that appears present inside that region has to be selected. To be more clear, here is screen shot: I want all triangles inside black polygon to be selected, identified, whatever in some way. How can I achieve that ?

    Read the article

  • 3D Mesh Collision Help

    - by BlackAfricano
    I am new to XNA (I have only been working in it for a countable number of weeks) as well as to these forums (I have only made 1-2 other posts), so this may seem like a strange request, but I am wondering if anybody knows about more advanced collision in XNA. So far I have only been able to figure out BoundingSphere's which seem to be the simplest of the methods, and I was thinking of looking more into BoundingBoxes because the game I have is a 2-3D platformer. The problem I realized was that if I wanted to get any more advanced than stages in the shape of a box, I would face some immediate dilemmas. I was hoping somebody here was knowledgeable on the subject and could inform me where I could get started learning how to do something like this: https://www.youtube.com/watch?v=ekMD_Gtt8d4 Although the game in this video isn't very pretty, the mesh collision looks like what I'm looking for. I am hoping for the most complete solution, if possible.

    Read the article

  • Intersection of player and mesh

    - by Will
    I have a 3D scene, and a player that can move about in it. In a time-step the player can move from point A to point B. The player should follow the terrain height but slow going up cliffs and then fall back, or stop when jumping and hitting a wall and so on. In my first prototype I determine the Y at the player's centre's X,Z by intersecting a ray with every triangle in the scene. I am not checking their path, but rather just sampling their end-point for each tick. Despite this being Javascript, it works acceptably performance-wise. However, because I am modeling the player as a single point, the player can position themselves so that they are half-in a cliff face and so on. I need to model them as as a solid e.g. some cluster of spheres or a even their fuller mesh. I am also concerned that if they were moving faster they might miss the test altogether. How should I solve this?

    Read the article

  • C# XNA: Effecient mesh building algorithm for voxel based terrain ("top" outside layer only, non-destructible)

    - by Tim Hatch
    To put this bluntly, for non-destructible/non-constructible voxel style terrain, are generated meshes handled much better than instancing? Is there another method to achieve millions of visible quad faces per scene with ease? If generated meshes per chunk is the way to go, what kind of algorithm might I want to use based on only EVER needing the outer layer rendered? I'm using 3D Perlin Noise for terrain generation (for overhangs/caves/etc). The layout is fantastic, but even for around 20k visible faces, it's quite slow using instancing (whether it's one big draw call or multiple smaller chunks). I've simplified it to the point of removing non-visible cubes and only having the top faces of my cube-like terrain be rendered, but with 20k quad instances, it's still pretty sluggish (30fps on my machine). My goal is for the world to be made using quite small cubes. Where multiple games (IE: Minecraft) have the player 1x1 cube in width/length and 2 high, I'm shooting for 6x6 width/length and 9 high. With a lot of advantages as far as gameplay goes, it also means I could quite easily have a single scene with millions of truly visible quads. So, I have been trying to look into changing my method from instancing to mesh generation on a chunk by chunk basis. Do video cards handle this type of processing better than separate quads/cubes through instancing? What kind of existing algorithms should I be looking into? I've seen references to marching cubes a few times now, but I haven't spent much time investigating it since I don't know if it's the better route for my situation or not. I'm also starting to doubt my need of using 3D Perlin noise for terrain generation since I won't want the kind of depth it would seem best at. I just like the idea of overhangs and occasional cave-like structures, but could find no better 'surface only' algorithms to cover that. If anyone has any better suggestions there, feel free to throw them at me too. Thanks, Mythics

    Read the article

  • XNA Skinned Animated Mesh Rendering Exported from Maya

    - by Devin Garner
    I am working on translating an old RTS game engine I wrote from DirectX9 to XNA. My old models didn't have animation & are an old format, so I'm trying with an FBX file. I temporarily "borrowed" a model from League of Legends just to test if my rendering is working correctly. I imported the mesh/bones/skin/animation into Maya 2012 using an "unnamed" 3rd-party import tool. (obviously I'll have to get legit models later, but I just want to test if my programming is correct). Everything looks correct in maya and it renders the animations flawlessly. I exported everything into a single FBX file (with only a single animation). I then tried to load this model using the example at the following site: http://create.msdn.com/en-US/education/catalog/sample/skinned_model With my exported FBX, the animation looks correct for most of the frames, however at random times it screws up for a split second. Basically, the body/arms/head will look right, but the leg/foot will shoot out to a random point in space for a second & then go back to the normal position. The original FBX from the sample looks correct in my program. It seems odd that my model was imported into maya wrong, since it displays fine in Maya. So, I'm thinking either I'm exporting it wrong, or the sample code is bad & the model from the sample caters to the samples bad code. I'm new to 3D programming & maya, so chances are I'm doing something wrong in the export. I'm using mostly the defaults, but I've tried all 3 interpolation modes (quaternion, euler, resample). Thanks

    Read the article

  • Producing a smooth mesh from density cloud and marching cubes

    - by Wardy
    Based on my results from this question I decided to build myself a 3D noise map containing float values in place of my existing boolean point values. The effect I'm trying to produce is something like this, rather than typical rolling hills; which should explain the "missing cubes" in the image below. If I render my density map in normal "minecraft mode" (1 block per point in the density map) varying the size of the cube based on the value in my density map (floats in the range 0 to 1) I get something like this: I'm now happy that I can produce a density map for the marching cubes algorithm (which will need a little tweaking) but for some reason when I run it through my implementation it's not producing what I expect. My problem is that I'm getting something like the first image in this answer to my previous question, when I want to achieve the effect in the second image. Upon further investigation I can't see how marching cubes does the "move vertex along the edge" type logic (i.e. the difference between the two images on my previous link). I see that it does do some interpolation, but I'm not convinced I have the correct understanding of what I think it should do, because the code in question appears to give the same result regardless of whether I use boolean or float values. I took the code from here which is a C# implementation of marching cubes, but instead of using the MarchingCubesPrimitive I modified it to accept an object of type IDrawable, containing lists for the various collections (vertices, normals, UVs, indices), the logic was otherwise untouched. My understanding is that given a very low isovalue the accuracy level of the surface being rendered should increase, so in short "less 45 degree slows more rolling hills" type mesh output. However this isn't what I'm seeing. Have I missed something or is the implementation flawed and need to be fixed? EDIT: A little more detail on what I am seeing when I "marching cube" the data. Ok so firstly, ignore the fact that the meshes created by the chunks don't "connect" (i'll probably raise another question about this later). Then look at the shaping of the island, it's too ... square, from the voxels rendered as boxes you get the impression there's a clean soft gradual hill and yet from the image there are sharp falling edges even in the most central areas where the gradient in the first image looks the most smooth. The data is "regenerated" each time I run this so no 2 islands come out the same, and it's purely random so not based on noise, but still, how can it look so smooth in 1 image and so not smooth in the other?

    Read the article

  • Oracle's Australian Graduate Recruitment Program

    - by david.talamelli
    I have been with Oracle for 5 years now and one thing that I have found that there is never a shortage of here is - Variety. Over the last 5 years I have had the opportunity to work on projects across various countries, across various technologies and skill-sets and also across various level of seniority. No two days are the same. One of the projects I was fortunate to be involved in occurred last year and it is one of the ones that is closest to me. Last year I was able to take responsibility for our 2011 Graduate Recruitment drive in Australia. Two weeks ago I went to Sydney to meet our Graduates who started in February 2011 with us and it was great to see them come to the end (or beginning actually) of our journey together. I am excited at the potential of what our Graduates careers will develop into here with us. I remember at our interviewing last year trying to explain life in Oracle, it is great to see those same Graduates with us now learning and developing life and business skills that I hope they will take with them in their professional careers. I was talking to one of my colleagues this week who mentioned the excitement and energy that our new Graduates bring is infectious, and I agree it really is. Our Graduates have a big learning curve ahead of them and they are about to start going on rotations into some of our Business Groups - but I think it is a great experience to see how a global company operates and pulls together to achieve results together. Here is a picture we took the other week of this year's Oracle Graduates (if any of our Graduates are reading this blog - it was great seeing you in NSW and I do wish you all the success here at Oracle) Once again Oracle's Graduate Program will be running in 2011 in Australia (Graduates will start in Jan/Feb 2012). The Oracle Australia Graduate Development Program is a one-year program consisting of orientation, formal training, project rotations in one core line of business and finally job placement. The formal training is a combination of structured development programs on soft skills and functional competencies via various delivery formats. Graduates are also expected to work in a team environment and complete multiple projects addressing real business challenges and at the time gaining a broad business understanding. For our Australia program we are hiring in our North Ryde and Melbourne offices. Resume submissions are being accepted now. First Round interviews will take place in June 2011 with Final Round interviews in July 2011. The Australia Graduate Program is open to Australian Residents and Citizens who are either in the final year of their studies or have graduated the previous year. For more details on Oracle and our Graduate Program visit our Campus website To express your interest, mail your resume to [email protected]

    Read the article

  • Interviews Gone Bad.....Now What Do I Do?

    - by david.talamelli
    We have all done it at some stage of our working careers - you know those times when you leave an interview and then you think to yourself "why didn't I ask that question" or "I can't believe I said that" or "how could I have forgotten to say that". It happens to everyone but how you handle things moving forwards could be critical in helping you land that dream job. There is nothing better than seeing that dream job with the dream company that you are looking to work for advertised (or in some cases getting called by the Recruiter to let you know about that job). The role may seem perfect and it could be just what you are looking for and it is with the right company as well. You have sent in your resume and have subsequently had one, two or maybe three interviews for the role. After each step of the process you get a little bit more excited about the role as you start to think about your work day in your new role/company. Then it happens, you get it: you get The Phone Call to inform you that you have not been successful in securing the position that you have invested so much time and effort into. It can be disappointing to hear this news but what you do next is important in potentially keeping that door open for future opportunities with that company. How you handle yourself in this situation is important: if any of you remember the Choose Your Own Adventure Books do you: Tell the Recruiter (maybe get aggressive) they are wrong in their assessment and that you are the right candidate for the role Switch off and say ok thanks and hang up without engaging in any further dialogue Thank the company for their time and enquire if there may be any other opportunities in the future to explore If you chose the first option - the company in question may consider whether or not to look at you for other opportunities. How you handle yourself in the recruitment process could be an indication of how you would deal with clients/colleagues in your role and the impression that you leave a potential employer may be what sticks in their mind when they think of you (eg: isn't that the person who couldn't handle it when we told him he wasn't right for our role). The second option potentially produces a similar outcome. If you rush to get off the phone, the company may come back to you to talk about other roles when they come up, but you also leave open the potential thought with the company you were only interested in that role and therefore not interested in any other opportunities. Why take the risk of the company thinking that and potentially not getting back to you in the future. By picking the third option, you actively engage with the company and keep the dialogue open for future discussions. Ok, so you didn't get the role you interviewed for - you don't know who else the company may have been interviewing - maybe they found someone who was a better fit, or maybe there were too many boxes you didn't tick to step straight into that specific role. Take a deep breath and keep the company engaged. You are fresh in their mind - take advantage of that fact and let them know that while you respect their decision, that you are still interested in the company and would like to be kept in mind for future roles. Ask if it is ok to keep in touch and when they would like to keep in touch, as long as you are interested let them know you are still interested. You do need to balance that though if you come across as too keen or start stalking people - it could equally damage your brand. Companies normally have more than one open role. New roles are created all the time, circumstances change and hiring people is not a static business, it changes course from everyone's best laid initial plans. If you didn't get that initial role you wanted, keep the door open with that company so that when those new roles do come up or when circumstances do change you have already laid the ground to step into those new positions.

    Read the article

  • Your Job Search Should be More Than Just a New Year's Resolution

    - by david.talamelli
    I love the beginning of a new year, it is a great chance to refocus and either re-evaluate goals you are working to or even set new ones. I don't have any statistics to measure this but I am sure that one of the more popular new year's resolutions in the general workforce is to either get a new job or work to further develop one's career. I think this is a good idea, in today's competitive work force people should have a plan of what they want to do, what role they are after and how to get there. One common mistake I think many people make though is that a career plan shouldn't be a once a year thought. When people finish with the holiday season with their new year's resolution to find a new job fresh in their mind, you can see the enthusiasm and motivation a person has to make something happen. Emails are sent, calls are made, applications are made, networking is happening, etc..... Finding the right role that you are after however can be difficult, while it would be great if that dream role was available just at the time you happened to be looking for it - in reality this is not always the case. Job Seekers need to keep reminding themselves that while sometimes that dream job they are after is available at the same time they are looking, that also a Job search can be a difficult and long process. Many people who set out with the best of intentions in January to find a new job can soon lose interest in a job search if they do not immediately find a role. Just like the Christmas decorations are put away and the photos from New Year's are stored away - a Job Seeker's motivation may slowly decrease until that person finds themselves 12 months later in the same situation in same role and looking for that new opportunity again. Rather than just "going for it" and looking for a role in the month of January, a person's job search or career plan should be an ongoing activity and thought process that is constantly updated and evaluated over the course of the year. It can be hard to stay motivated over an extended period of time, especially when you are newly motivated and ready for that new role and the results are not immediate. Rather than letting your job search fall down the priority list and into the "too hard basket" a few ideas that may keep your enthusiasm fresh Update your resume every 6 months, even if you are not looking for a job - it is easy to forget what you have accomplished if you don't keep your details updated. Also it is good to be prepared and have a resume ready to go in case you do get an unexpected phone call for that 'dream job' you have been hoping for. Work out what you want out of your next role before you begin your job search - rather than aimlessly searching job ads or talking to people - think of the organisations or type of role you would like before you search. If you know what you are looking for it will be much easier to work out how to get there than if you do not know what you want. Don't expect immediate results once you decide to look for another job, things don't always fall into place. Timing and delivery can be important pieces of being selected for a role, companies don't hire every role in January. Have an open mind - people you meet or talk to may not result in immediate results for your job search but every connection may help you get a bit closer to what you are after . These actions will not guarantee a positive result, but in today's competitive work force every little of extra preparation and planning helps. All the best for 2011 and I hope your career plan whatever it may be is a success.

    Read the article

  • texture mapping with lib3ds and SOIL help

    - by Adam West
    I'm having trouble with my project for loading a texture map onto a model. Any insight into what is going wrong with my code is fantastic. Right now the code only renders a teapot which I have assinged after creating it in 3DS Max. 3dsloader.cpp #include "3dsloader.h" Object::Object(std:: string filename) { m_TotalFaces = 0; m_model = lib3ds_file_load(filename.c_str()); // If loading the model failed, we throw an exception if(!m_model) { throw strcat("Unable to load ", filename.c_str()); } // set properties of texture coordinate generation for both x and y coordinates glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); // if not already enabled, enable texture generation if(! glIsEnabled(GL_TEXTURE_GEN_S)) glEnable(GL_TEXTURE_GEN_S); if(! glIsEnabled(GL_TEXTURE_GEN_T)) glEnable(GL_TEXTURE_GEN_T); } Object::~Object() { if(m_model) // if the file isn't freed yet lib3ds_file_free(m_model); //free up memory glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); } void Object::GetFaces() { m_TotalFaces = 0; Lib3dsMesh * mesh; // Loop through every mesh. for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { // Add the number of faces this mesh has to the total number of faces. m_TotalFaces += mesh->faces; } } void Object::CreateVBO() { assert(m_model != NULL); // Calculate the number of faces we have in total GetFaces(); // Allocate memory for our vertices and normals Lib3dsVector * vertices = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsVector * normals = new Lib3dsVector[m_TotalFaces * 3]; Lib3dsTexel* texCoords = new Lib3dsTexel[m_TotalFaces * 3]; Lib3dsMesh * mesh; unsigned int FinishedFaces = 0; // Loop through all the meshes for(mesh = m_model->meshes;mesh != NULL;mesh = mesh->next) { lib3ds_mesh_calculate_normals(mesh, &normals[FinishedFaces*3]); // Loop through every face for(unsigned int cur_face = 0; cur_face < mesh->faces;cur_face++) { Lib3dsFace * face = &mesh->faceL[cur_face]; for(unsigned int i = 0;i < 3;i++) { memcpy(&texCoords[FinishedFaces*3 + i], mesh->texelL[face->points[ i ]], sizeof(Lib3dsTexel)); memcpy(&vertices[FinishedFaces*3 + i], mesh->pointL[face->points[ i ]].pos, sizeof(Lib3dsVector)); } FinishedFaces++; } } // Generate a Vertex Buffer Object and store it with our vertices glGenBuffers(1, &m_VertexVBO); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, vertices, GL_STATIC_DRAW); // Generate another Vertex Buffer Object and store the normals in it glGenBuffers(1, &m_NormalVBO); glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsVector) * 3 * m_TotalFaces, normals, GL_STATIC_DRAW); // Generate a third VBO and store the texture coordinates in it. glGenBuffers(1, &m_TexCoordVBO); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(Lib3dsTexel) * 3 * m_TotalFaces, texCoords, GL_STATIC_DRAW); // Clean up our allocated memory delete vertices; delete normals; delete texCoords; // We no longer need lib3ds lib3ds_file_free(m_model); m_model = NULL; } void Object::applyTexture(const char*texfilename) { float imageWidth; float imageHeight; glGenTextures(1, & textureObject); // allocate memory for one texture textureObject = SOIL_load_OGL_texture(texfilename,SOIL_LOAD_AUTO,SOIL_CREATE_NEW_ID,SOIL_FLAG_MIPMAPS); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glBindTexture(GL_TEXTURE_2D, textureObject); // use our newest texture glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_WIDTH,&imageWidth); glGetTexLevelParameterfv(GL_TEXTURE_2D,0,GL_TEXTURE_HEIGHT,&imageHeight); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // give the best result for texture magnification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //give the best result for texture minification glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); // don't repeat texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat textureglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); // don't repeat texture glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,GL_MODULATE); glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,imageWidth,imageHeight,0,GL_RGB,GL_UNSIGNED_BYTE,& textureObject); } void Object::Draw() const { // Enable vertex, normal and texture-coordinate arrays. glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Bind the VBO with the normals. glBindBuffer(GL_ARRAY_BUFFER, m_NormalVBO); // The pointer for the normals is NULL which means that OpenGL will use the currently bound VBO. glNormalPointer(GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_TexCoordVBO); glTexCoordPointer(2, GL_FLOAT, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, m_VertexVBO); glVertexPointer(3, GL_FLOAT, 0, NULL); // Render the triangles. glDrawArrays(GL_TRIANGLES, 0, m_TotalFaces * 3); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } 3dsloader.h #include "main.h" #include "lib3ds/file.h" #include "lib3ds/mesh.h" #include "lib3ds/material.h" class Object { public: Object(std:: string filename); virtual ~Object(); virtual void Draw() const; virtual void CreateVBO(); void applyTexture(const char*texfilename); protected: void GetFaces(); unsigned int m_TotalFaces; Lib3dsFile * m_model; Lib3dsMesh* Mesh; GLuint textureObject; GLuint m_VertexVBO, m_NormalVBO, m_TexCoordVBO; }; Called in the main cpp file with: VBO,apply texture and draw (pretty simple, how ironic) and thats it, please help me forum :)

    Read the article

  • Adding Vertices to a dynamic mesh via Method Call

    - by Raven Dreamer
    I have a C# Struct with a static method, "Get Shape" which populates a List with the vertices of a polyhedron. Method Signature: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) Adding directly to the vertices list (via vertices.Add(vector3) ), the code works as expected, and the new polyhedron appears when I trigger the method. However, I want to do some processing on the vertices I'm adding (a rotation), and the most sensible way I can think to do that is by creating a separate list of Vector3s, and then combining the lists when I'm done. However, vertices.AddRange(newVerts) does not add the shape to the mesh, nor does a foreach loop with verts.Add(vertices[i]). And this is before I've added in any of the processing! I have a feeling this might stem from passing the list of vertices in as a parameter, rather than returning a list and then adding to the vertices in the calling object, but since I'm filling 4 lists, I was trying to avoid having to create a data struct to return all four at once. Any ideas? The working version of the method is reprinted below, in full: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) { //List<Vector3> vertices = new List<Vector3>(); int l_blockShape = b.blockShape; int l_blockType = b.blockType; //CheckFace checks if the block is empty //if this block is empty, don't draw anything. int vertexIndex; //only y faces need to be hidden. //if((l_blockShape & BlockShape.NegZFace) == BlockShape.NegZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //XY Z+1 face //if((l_blockShape & BlockShape.PosZFace) == BlockShape.PosZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY face //if((l_blockShape & BlockShape.NegXFace) == BlockShape.NegXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY X+1 face // if((l_blockShape & BlockShape.PosXFace) == BlockShape.PosXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX face if((l_blockShape & BlockShape.NegYFace) == BlockShape.NegYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX + 1 face if((l_blockShape & BlockShape.PosYFace) == BlockShape.PosYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y+1 , z+.2f)); vertices.Add(new Vector3(x+.8f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.2f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } }

    Read the article

  • Wavefront mesh: determine which face a point belongs to?

    - by Mina Samy
    I have a 3D mesh Wavefront .obj file. Is there any algorithm that takes an arbitrary point coordinates as input and determines which face of the mesh that point belongs to ?? The mesh is rendered on the screen, then the user clicks on it, I want to determine which part of the mesh the user has clicked on ? Here's the code using LibGDX: Vector3 intersection=new Vector3(); Ray ray=camera.getPickRay(x, y); //vertices is an array that hold the coordinates of the mesh boolean ok=Intersector.intersectRayTriangles(ray, vertices, intersection); Thanks

    Read the article

  • Do unused vertices in a 3D object affect performance?

    - by Gajet
    For my game I need to generate a mesh dynamically. Now I'm wondering does it have a noticeable affect in FPS if I allocate more vertices than what I'm actually using or not? and does it matter if I'm using DirectX or OpenGL? Edit Final output will be a w*h cell grid, but for technical issues it's much easier for me to allocate (w+1)*(h+1) vertices. Sure I'll only use w*h vertices in indexing, and I know there is some memory wasting there, but I want to know if it also affect FPS or not? (Note that mesh is only generated once in each time you play the game)

    Read the article

  • does unused vertices in a 3D object affect performance?

    - by Gajet
    For my game I need to generate a mesh dynamically. now I'm wondering does it have a noticeable affect in fps if I allocate more vertices than what I'm actually using or not? and does it matter if I'm using DirectX or OpenGL? edit final output will be a w*h cell grid, but for technical issues it's much more easier for me to allocate (w+1)*(h+1) vertices. sure I'll only use w*h vertices in indexing, and I know there is some memory wasting there, but I want to know if it also affect fps or not? (note that mesh is only generated once in each time you play the game)

    Read the article

  • Existing open source software for wireless mesh networking?

    - by user70352
    Hello! My goal: Build a wireless mesh network with some ALIX 2D2 (500 MHz AMD Geode LX800 x86 CPU, 256MB RAM, Atheros wireless card) Aside from working like a normal wireless mesh network users should be able to read/write data from/to the ALIX Boxes and the ALIX boxes should be able to process data. Questions: Should I try to flash dd-wrt x86, voyage linux (linux.voyage.hk) or something else? What (open source) software should I look into before I start? Should I use a 'server' for data storage and processing instead of the ALIX boxes? Is it even possible to use the ALIX boxes for routing AND data storage and processing? Final notes: Data can be anything, for example, I want to setup a wireless mesh using the OLSRD protocol so my whole town gets wifi and can access songs on the network. It's not for that, but that's the idea. I'm not afraid of programing, compiling or working with *nix. This is mostly 'for fun' rather than for practicality. Thanks in advance for any feedback.

    Read the article

  • Voxel Face Crawling (Mesh simplification, possibly using greedy)

    - by Tim Winter
    This is in regards to a Minecraft-like terrain engine. I store blocks in chunks (16x256x16 blocks in a chunk). When I generate a chunk, I use multiple procedural techniques to set the terrain and to place objects. While generating, I keep one 1D array for the full chunk (solid or not) and a separate 1D array of solid blocks. After generation, I iterate through the solid blocks checking their neighbors so I only generate block faces that don't have solid neighbors. I store which faces to generate in their own list (that's 6 lists, one per possible face). When rendering a chunk, I render all lists in the camera's current chunk and only the lists facing the camera in all other chunks. Using a 2D atlas with this little shader trick Andrew Russell suggested, I want to merge similar faces together completely. That is, if they are in the same list (same normal), are adjacent to each other, have the same light level, etc. My assumption would be to have each of the 6 lists sorted by the axis they rest on, then by the other two axes (the list for the top of a block would be sorted by it's Y value, then X, then Z). With this alone, I could quite easily merge strips of faces, but I'm looking to merge more than just strips together when possible. I've read up on this greedy meshing algorithm, but I am having a lot of trouble understanding it. To even use it, I would think I'd need to perform a type of flood-fill per sorted list to get the groups of merge-able faces. Then, per group, perform the greedy algorithm. It all sounds awfully expensive if I would ever want dynamic terrain/lighting after initial generation. So, my question: To perform merging of faces as described (ignoring whether it's a bad idea for dynamic terrain/lighting), is there perhaps an algorithm that is simpler to implement? I would also quite happily accept an answer that walks me through the greedy algorithm in a much simpler way (a link or explanation). I don't mind a slight performance decrease if it's easier to implement or even if it's only a little better than just doing strips. I worry that most algorithms focus on triangles rather than quads and using a 2D atlas the way I am, I don't know that I could implement something triangle based with my current skills. PS: I already frustum cull per chunk and as described, I also cull faces between solid blocks. I don't occlusion cull yet and may never.

    Read the article

  • RANT: SkyDrive &amp; Mesh

    - by Sahil Malik
    SharePoint 2010 Training: more information Fellow citizens of the tech world, you’re watching a good Samaritan die. Unfortunately this is not the first time, it won’t be the last. We have seen this before, sadly we will see it again. The IT industry, is a few sharks – Oracle, Apple, Google, and yes, Microsoft, and numerous small fishes around them. 10 years ago, you saw some innovating smart engineers create instant-messaging programs. There was rapid innovation and growth in that field even though internet itself was quite nascent. Remember ICQ? Well, then came around the sharks! They offered you free versions of IM programs that in the short run were actually superior. Yahoo messenger, MSN, AIM and then later on google.  Innovation in IM was pretty much stand still until a new contender like skype decided to marry IM with telephony. This prompted google to do the same. Of course, Skype was then purchased by Microsoft.  The situation still stands, lets take the example of Microsoft, it offers, Read full article ....

    Read the article

  • Texturing a mesh generated from voxel data

    - by Minja
    I have implemented the Marching Cubes algorithm to display an isosurface based on voxel data. Currently, it is displayed with triplanar texturing. I'm working with unity, so I have a material with the triplanar shader attached. Now, the whole isosurface is rendered using this material. And thats my problem: I want the texture to represent the voxel data. I'm storing a material value for every point in the grid, and based on this value, I want the texture of the isosurface to change. Sadly, I have no clue how to do this. So if the voxel is sand, I want sand to be displayed; if it's stone, then there should be stone. Right now, everything is displayed as sand. Thanks in advance!

    Read the article

  • Custom mesh format - yea or nay?

    - by Electro
    In the process of writing my game prototype, I have found the OBJ format to be insufficient for my needs - it does not support any sort of animation, it doesn't support triangle strips (I'm targeting my ancient hardware). MD2 wouldn't fit the bill because it doesn't have support for named model pieces. MD3 would probably work, but like OBJ, it doesn't have support for triangle strips. Considering the limitations of the formats above, I've come to the conclusion that it may be necessary to write my own format to accommodate my requirements, but that feels like reinventing the wheel. So, I need a format which can specify indexed tri-strips, supports textures, UV-mapping, collision data, can have multiple named segments and supports animations (have I forgotten anything?). Is there any format like that which already exists, or do I have to write my own?

    Read the article

  • Uniform not being applied to proper mesh

    - by HaMMeReD
    Ok, I got some code, and you select blocks on a grid. The selection works. I can modify the blocks to be raised when selected and the correct one shows. I set a color which I use in the shader. However, I am trying to change the color before rendering the geometry, and the last rendered geometry (in the sequence) is rendered light. However, to debug logic I decided to move the block up and make it white, in which case one block moves up and another block becomes white. I checked all my logic and it knows the correct one is selected and it is showing in, in the correct place and rendering it correctly. When there is only 1 it works properly. Video Of the bug in action, note how the highlighted and elevated blocks are not the same block, however the code for color and My Renderer is here (For the items being drawn) public void render(Renderer renderer) { mGrid.render(renderer, mGameState); for (Entity e:mGameEntities) { UnitTypes ut = UnitTypes.valueOf((String)e.getObject(D.UNIT_TYPE.ordinal())); if (ut == UnitTypes.Soldier) { renderer.testShader.begin(); renderer.testShader.setUniformMatrix("u_mvpMatrix",mEntityMatrix); renderer.texture_soldier.bind(0); Vector2 pos = (Vector2) e.getObject(D.COORDS.ordinal()); mEntityMatrix.set(renderer.mCamera.combined); if (mSelectedEntities.contains(e)) { mEntityMatrix.translate(pos.x, 1f, pos.y); renderer.testShader.setUniformf("v_color", 0.5f,0.5f,0.5f,1f); } else { mEntityMatrix.translate(pos.x, 0f, pos.y); renderer.testShader.setUniformf("v_color", 1f,1f,1f,1f); } mEntityMatrix.scale(0.2f, 0.2f, 0.2f); renderer.model_soldier.render(renderer.testShader,GL20.GL_TRIANGLES); renderer.testShader.end(); } else if (ut == UnitTypes.Enemy_Infiltrator) { renderer.testShader.begin(); renderer.testShader.setUniformMatrix("u_mvpMatrix",mEntityMatrix); renderer.testShader.setUniformf("v_color", 1.0f,1,1,1.0f); renderer.texture_enemy_infiltrator.bind(0); Vector2 pos = (Vector2) e.getObject(D.COORDS.ordinal()); mEntityMatrix.set(renderer.mCamera.combined); mEntityMatrix.translate(pos.x, 0f, pos.y); mEntityMatrix.scale(0.2f, 0.2f, 0.2f); renderer.model_enemy_infiltrator.render(renderer.testShader,GL20.GL_TRIANGLES); renderer.testShader.end(); } } }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >