Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 436/1332 | < Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >

  • How can I locate empty space next to polygon regions?

    - by Stephen
    Let's say I have the following area in a top-down map: The circle is the player, the black square is an obstacle, and the grey polygons with red borders are walk-able areas that will be used as a navigation mesh for enemies. Obstacles and grey polygons are always convex. The grey regions were defined using an algorithm when the world was generated at runtime. Notice the little white column. I need to figure out where any empty space like this is, if at all, after the algorithm builds the grey regions, so that I can fill the space with another region. Basically what I'm hoping for is an algorithm that can detect empty space next to a polygon.

    Read the article

  • OpenGL-ES: clearing the alpha of the FrameBufferObject

    - by MrDatabase
    This question is a follow-up to Texture artifacts on iPad How does one "clear the alpha of the render texture frameBufferObject"? I've searched around here, StackOverflow and various search engines but no luck. I've tried a few things... for example calling GlClear(GL_COLOR_BUFFER_BIT) at the beginning of my render loop... but it doesn't seem to make a difference. Any help is appreciated since I'm still new to OpenGL. Cheers! p.s. I read on SO and in Apple's documentation that GlClear should always be called at the beginning of the renderLoop. Agree? Disagree? Here's where I read this: http://stackoverflow.com/questions/2538662/how-does-glclear-improve-performance

    Read the article

  • which platform to choose for designing a game

    - by Pramod
    I am new to gaming platform and don't have any experience in gaming as well. I want to develop a small shooting game and don't have any idea from where to start and which platform to use like things. I have some experience in java and .net. Can anyone help me in giving me a start? I don't mind even if this question is voted down or closed. But please do help me. I've tried searching other similar questions but everyone is already into gaming and i can't get any of the words. Please refer me to some books or tutorials

    Read the article

  • How to attach turrets to tiles in a tile based game

    - by Joseph St. Pierre
    I am a flash developer, and I am building a Tower Defense game. The world is being built through tiles, and I have gotten that accomplished easily. I have also gotten level changes and enemy spawning down as well. However, I wish the player to be able to spawn turrets, and have those turrets be on specific tiles, based upon where the player placed it. Here is my code: stop(); colOffset = 50; rowOffset = 50; guns = []; placed = true; dead = 0; spawned = 0; level = 1; interval = 350 / level; amount = level * 20; counter = 0; numCol = 14; numRow = 10; tiles = []; k = 0; create = false; tileName = new Array("road","grass","end", "start"); board = new Array( new Array(1,1,1,1,3,1,1,1,1,1,2,1,1,1), new Array(1,1,1,0,0,1,1,1,1,1,0,1,1,1), new Array(1,1,1,0,1,1,1,1,1,1,0,0,1,1), new Array(1,1,1,0,0,0,1,1,1,1,1,0,1,1), new Array(1,1,1,0,1,0,0,0,1,1,1,0,0,1), new Array(1,1,1,0,1,1,1,0,0,1,1,1,0,1), new Array(1,1,0,0,1,1,1,1,0,1,1,0,0,1), new Array(1,1,0,1,1,1,1,1,0,1,0,0,1,1), new Array(1,1,0,0,0,0,0,0,0,1,0,1,1,1), new Array(1,1,1,1,1,1,1,1,0,0,0,1,1,1) ); buildBoard(); function buildBoard(){ for ( col = 0; col < numCol; col++){ for ( row = 0; row < numRow; row++){ _root.attachMovie("tile", "tile_" + col + "_" + row, _root.getNextHighestDepth()); theTile = eval("tile_" + col + "_" + row); theTile._x = (col * 50); theTile._y = (row * 50); theTile.row = row; theTile.col = col; tileType = board[row][col]; theTile.gotoAndStop(tileName[tileType]); tiles.push(theTile); } } } init(); function init(){ onEnterFrame = function(){ counter += 1; if ( spawned < amount && counter > 50){ min= _root.attachMovie("minion","minion",_root.getNextHighestDepth()); min._x = tile_4_0._x + 25; min._y = tile_4_0._y + 25; min.health = 100; choose = Math.round(Math.random()); if ( choose == 0 ){ min.waypointX = [ tile_4_1._x +25, tile_3_1._x + 25, tile_3_2._x + 25, tile_3_6._x + 25, tile_2_6._x + 25, tile_2_8._x + 25, tile_8_8._x + 25, tile_8_9._x + 25, tile_10_9._x + 25, tile_10_7._x + 25, tile_11_7._x + 25, tile_11_6._x + 25, tile_12_6._x + 25, tile_12_4._x + 25, tile_11_4._x + 25, tile_11_2._x + 25, tile_10_2._x + 25, tile_10_0._x + 25]; min.waypointY = [ tile_4_1._y +25, tile_3_1._y + 25, tile_3_2._y + 25, tile_3_6._y + 25, tile_2_6._y + 25, tile_2_8._y + 25, tile_8_8._y + 25, tile_8_9._y + 25, tile_10_9._y + 25, tile_10_7._y + 25, tile_11_7._y + 25, tile_11_6._y + 25, tile_12_6._y + 25, tile_12_4._y + 25, tile_11_4._y + 25, tile_11_2._y + 25, tile_10_2._y + 25, tile_10_0._y + 25]; } else if ( choose == 1 ){ min.waypointX = [ tile_4_1._x +25, tile_3_1._x + 25, tile_3_2._x + 25, tile_3_3._x + 25, tile_5_3._x + 25, tile_5_4._x + 25, tile_7_4._x + 25, tile_7_5._x + 25, tile_8_5._x + 25, tile_8_8._x + 25, tile_8_9._x + 25, tile_10_9._x + 25, tile_10_7._x + 25, tile_11_7._x + 25, tile_11_6._x + 25, tile_12_6._x + 25, tile_12_4._x + 25, tile_11_4._x + 25, tile_11_2._x + 25, tile_10_2._x + 25, tile_10_0._x + 25 ]; min.waypointY = [ tile_4_1._y +25, tile_3_1._y + 25, tile_3_2._y + 25, tile_3_3._y + 25, tile_5_3._y + 25, tile_5_4._y + 25, tile_7_4._y + 25, tile_7_5._y + 25, tile_8_5._y + 25, tile_8_8._y + 25, tile_8_9._y + 25, tile_10_9._y + 25, tile_10_7._y + 25, tile_11_7._y + 25, tile_11_6._y + 25, tile_12_6._y + 25, tile_12_4._y + 25, tile_11_4._y + 25, tile_11_2._y + 25, tile_10_2._y + 25, tile_10_0._y + 25 ]; } min.i = 0; counter = 0; spawned += 1; min.onEnterFrame = function(){ dx = this.waypointX[this.i] - this._x; dy = this.waypointY[this.i] - this._y; radians = Math.atan2(dy,dx); degrees = radians * 180 / Math.PI; xspeed = Math.cos(radians); yspeed = Math.sin(radians); this._x += xspeed; this._y += yspeed; if( this._x == this.waypointX[this.i] && this._y == this.waypointY[this.i]){ this.i++; } if ( this._x == tile_10_0._x + 25 && this._y == tile_10_0._y + 25){ this.removeMovieClip(); dead += 1; } } } if ( dead >= amount ){ dead = 0; level += 1; amount = level * 20; spawned = 0; } } btnM.onRelease = function(){ create = true; } } game.onEnterFrame = function(){ } It is possible for me however to complete this task, but only once. I am able to make the turret, drag it over to a tile, and have it attach itself to the tile. No problem. The issue is, I cannot do these multiple times. Please Help.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • Beat detection and FFT

    - by Quincy
    So I am working on a platformer game which includes music with beat detection. I am currently using a simple if the energy that is stored in the history buffer is smaller then the current energy there is a beat. The problem with this is that ofcourse if you use songs like rock songs where you have a pretty steady amplitude this isn't going to work. So I looked further and found algorithms splitting the sound into multiple bands using FFT. I then found this : http://en.literateprograms.org/Cooley-Tukey_FFT_algorithm_(C) The only problem I'm having is that I am quite new to audio and I have no idea how to use that to split the signal up into multiple signals. So my question is : How do you use a FFT to split a signal into multiple bands ? Also for the guys interested, this is my algorithm in c# : // C = threshold, N = size of history buffer / 1024 public void PlaceBeatMarkers(float C, int N) { List<float> instantEnergyList = new List<float>(); short[] samples = soundData.Samples; float timePerSample = 1 / (float)soundData.SampleRate; int sampleIndex = 0; int nextSamples = 1024; // Calculate instant energy for every 1024 samples. while (sampleIndex + nextSamples < samples.Length) { float instantEnergy = 0; for (int i = 0; i < nextSamples; i++) { instantEnergy += Math.Abs((float)samples[sampleIndex + i]); } instantEnergy /= nextSamples; instantEnergyList.Add(instantEnergy); if(sampleIndex + nextSamples >= samples.Length) nextSamples = samples.Length - sampleIndex - 1; sampleIndex += nextSamples; } int index = N; int numInBuffer = index; float historyBuffer = 0; //Fill the history buffer with n * instant energy for (int i = 0; i < index; i++) { historyBuffer += instantEnergyList[i]; } // If instantEnergy / samples in buffer < instantEnergy for the next sample then add beatmarker. while (index + 1 < instantEnergyList.Count) { if(instantEnergyList[index + 1] > (historyBuffer / numInBuffer) * C) beatMarkers.Add((index + 1) * 1024 * timePerSample); historyBuffer -= instantEnergyList[index - numInBuffer]; historyBuffer += instantEnergyList[index + 1]; index++; } }

    Read the article

  • OpenGL font rendering

    - by DEElekgolo
    I am trying to make an openGL text rendering class using FreeType. I was originally following this code but it doesn't seem to work out for me. I get nothing reguardless of what parameters I put for Draw(). class Font { public: Font() { if (FT_Init_FreeType(&ftLibrary)) { printf("Could not initialize FreeType library\n"); return; } glGenBuffers(1,&iVerts); } bool Load(std::string sFont, unsigned int Size = 12.0f) { if (FT_New_Face(ftLibrary,sFont.c_str(),0,&ftFace)) { printf("Could not open font: %s\n",sFont.c_str()); return true; } iSize = Size; FT_Set_Pixel_Sizes(ftFace,0,(int)iSize); FT_GlyphSlot gGlyph = ftFace->glyph; //Generating the texture atlas. //Rather than some amazing rectangular packing method, I'm just going //to have one long strip of letters with the height being that of the font size. int width = 0; int height = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { printf("Error rendering letter %c for font %s.\n",i,sFont.c_str()); } width += gGlyph->bitmap.width; height += std::max(height,gGlyph->bitmap.rows); } //Generate the openGL texture glActiveTexture(GL_TEXTURE0); //if I texture exists then delete it. iTexture ? glDeleteBuffers(1,&iTexture):0; glGenTextures(1,&iTexture); glBindTexture(GL_TEXTURE_2D,iTexture); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,width,height,0,GL_ALPHA,GL_UNSIGNED_BYTE,0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //load the glyphs and set the glyph data int x = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { //if it cant load the character continue; } //load the glyph map into the texture glTexSubImage2D(GL_TEXTURE_2D,0,x,0, gGlyph->bitmap.width, gGlyph->bitmap.rows, GL_ALPHA, GL_UNSIGNED_BYTE, gGlyph->bitmap.buffer); //move the "pen" down the strip x += gGlyph->bitmap.width; chars[i].ax = (float)(gGlyph->advance.x >> 6); chars[i].ay = (float)(gGlyph->advance.y >> 6); chars[i].bw = (float)gGlyph->bitmap.width; chars[i].bh = (float)gGlyph->bitmap.rows; chars[i].bl = (float)gGlyph->bitmap_left; chars[i].bt = (float)gGlyph->bitmap_top; chars[i].tx = (float)x/width; } printf("Loaded font: %s\n",sFont.c_str()); return true; } void Draw(std::string sString,Vector2f vPos = Vector2f(0,0),Vector2f vScale = Vector2f(1,1)) { struct pPoint { pPoint() { x = y = s = t = 0; } pPoint(float a,float b,float c,float d) { x = a; y = b; s = c; t = d; } float x,y; float s,t; }; pPoint* cCoordinates = new pPoint[6*sString.length()]; int n = 0; for (const char *p = sString.c_str(); *p; p++) { float x2 = vPos.x() + chars[*p].bl * vScale.x(); float y2 = -vPos.y() - chars[*p].bt * vScale.y(); float w = chars[*p].bw * vScale.x(); float h = chars[*p].bh * vScale.y(); float x = vPos.x() + chars[*p].ax * vScale.x(); float y = vPos.y() + chars[*p].ay * vScale.y(); //skip characters with no pixels //still advances though if (!w || !h) { continue; } //triangle one cCoordinates[n++] = pPoint( x2 , -y2 , chars[*p].tx , 0); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2-h , chars[*p].tx + chars[*p].bw / w , chars[*p].bh / h); } glBindBuffer(GL_ARRAY_BUFFER,iVerts); glBindBuffer(GL_TEXTURE_2D,iTexture); //Vertices glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].x); //TexCoord 0 glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].s); glCullFace(GL_NONE); glBufferData(GL_ARRAY_BUFFER,6*sString.length(),cCoordinates,GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES,0,n); glCullFace(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER,0); glBindBuffer(GL_TEXTURE_2D,0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } ~Font() { glDeleteBuffers(1,&iVerts); glDeleteBuffers(1,&iTexture); } private: unsigned int iSize; //openGL texture atlas unsigned int iTexture; //openGL geometry buffer; unsigned int iVerts; FT_Library ftLibrary; FT_Face ftFace; struct Character { float ax,ay;//Advance float bw,bh;//bitmap size float bl,bt;//bitmap left and top float tx; } chars[128]; };

    Read the article

  • How to move the object around the screen

    - by Abhishek
    I am trying to move the object around the screen I try this code -(void) move { CGFloat upperLimit = mWinSize.height - (mGunda.contentSize.height / 2.0); CGFloat upperLimit1 = mWinSize.height; CGFloat lowerLimit = (mGunda.contentSize.height / 2.0); CGFloat RightLimit = mWinSize.width - (mGunda.contentSize.width/2.0); CGFloat Right = (mGunda.contentSize.width/2.0); if ( mImageGoingUpward ) { mGunda.position = ccp( mGunda.position.x, mGunda.position.y + 5); if ( mGunda.position.y >= upperLimit ) { mImageGoingUpward = NO; mHori = NO; } } else { mGunda.position = ccp( mGunda.position.x, mGunda.position.y - 5); if ( mGunda.position.y <= lowerLimit ) { mGunda.position = ccp(mGunda.position.x +5, lowerLimit); } if(mGunda.position.x >= RightLimit) { mGunda.position = ccp(mGunda.position.x, mGunda.position.y+10); mHori = YES; } if(mHori) { if(mGunda.position.y >= upperLimit) { mGunda.position = ccp(mGunda.position.x - 5,mGunda.position.y); } } } } } It move the object from bottom to top & top to bottom & bottom to right & right to right top of the screen here is problem I have got It not move to the right top to left side of screen this rotationis not happen. How can I do this

    Read the article

  • Any good C++ Component/Entity frameworks?

    - by Pat
    (Skip to the bold if you want to get straight to my question :) ) I've been dabbling in the different technologies available out there to use. I tried Unity and component based design, managing to get a little guy up and running around a map with basic pathfinding. I really loved how easy it was to program using components, but I wanted a bit more control and something more 2D friendly, so I went with LibGDX. I looked around and found 2 good frameworks for Java, which are Artemis and Apollo. I didn't like Artemis much, so I went with Apollo, which I loved. I managed to integrate it with Box2D and get a little guy running around bouncing balls. Great! But since I want to try out most of the options, there is still C++/SFML that I haven't tried yet. Coming from a Java/C# background, I've always wanted to get my hands dirty with C++. But then, after some looking around, I noticed there aren't any Component-Based frameworks for me to use. There's a somewhat done porting of Artemis, but, aside from not being completely finished, I didn't quite like Artemis even in Java. I found Apollo's approach much more.. logical. So, my question is, are there any good Component/Entity frameworks for C++ that I can use that are similar to Artemis, or preferably, Apollo?

    Read the article

  • Homemaking a 2d soft body physics engine

    - by Griffin
    hey so I've decided to Code my own 2D soft-body physics engine in C++ since apparently none exist and I'm starting only with a general idea/understanding on how physics work and could be simulated: by giving points and connections between points properties such as elasticity, density, mass, shape retention, friction, stickiness, etc. What I want is a starting point: resources and helpful examples/sites that could give me the specifics needed to actually make this such as equations and required physics knowledge. It would be great if anyone out there also would give me their attempts or ideas. finally I was wondering if it was possible to... use the source code of an existing 3D engine such as Bullet and transform it to be 2D based? use the source code of a 2D Rigid body physics engine such as box2d as a starting point?

    Read the article

  • Computing a normal matrix in conjunction with gluLookAt

    - by Chris Smith
    I have a hand-rolled camera class that converts yaw, pitch, and roll angles into a forward, side, and up vector suitable for calling gluLookAt. Using this camera class I can modify the model-view matrix to move about the 3D world just fine. However, I am having trouble when using this camera class (and associated model-view matrix) when trying to perform directional lighting in my vertex shader. The problem is that the light direction, (0, 1, 0) for example, is relative to where the 'camera is looking' and not the actual world coordinates. (Or is this eye coordinates vs. model coordinates?) I would like the light direction to be unaffected by the camera's viewing direction. For example, when the camera is looking down the Z axis the ground is lit correctly. However, if I point the camera straight at the ground, then it goes dark. This is (I think) because the light direction is parallel with the camera's 'up' vector which is perpendicular with the ground's normal vector. I tried computing the normal matrix without taking the camera's model view into account, but then none of my objects were rotated correctly. Sorry if this sounds vague. I suspect there is a straight forward answer, but I'm not 100% clear on how the normal matrix should be used for transforming vertex normals in my vertex shader. For reference, here is pseudo code for my rendering loop: pMatrix = new Matrix(); pMatrix = makePerspective(...) mvMatrix = new Matrix() camera.apply(mvMatrix); // Calls gluLookAt // Move the object into position. mvMatrix.translatev(position); mvMatrix.rotatef(rotation.x, 1, 0, 0); mvMatrix.rotatef(rotation.y, 0, 1, 0); mvMatrix.rotatef(rotation.z, 0, 0, 1); var nMatrix = new Matrix(); nMatrix.set(mvMatrix.get().getInverse().getTranspose()); // Set vertex shader uniforms. gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false, new Float32Array(pMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false, new Float32Array(mvMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false, new Float32Array(nMatrix.getFlattened())); // ... gl.drawElements(gl.TRIANGLES, this.vertexIndexBuffer.numItems, gl.UNSIGNED_SHORT, 0); And the corresponding vertex shader: // Attributes attribute vec3 aVertexPosition; attribute vec4 aVertexColor; attribute vec3 aVertexNormal; // Uniforms uniform mat4 uMVMatrix; uniform mat4 uNMatrix; uniform mat4 uPMatrix; // Varyings varying vec4 vColor; // Constants const vec3 LIGHT_DIRECTION = vec3(0, 1, 0); // Opposite direction of photons. const vec4 AMBIENT_COLOR = vec4 (0.2, 0.2, 0.2, 1.0); float ComputeLighting() { vec4 transformedNormal = vec4(aVertexNormal.xyz, 1.0); transformedNormal = uNMatrix * transformedNormal; float base = dot(normalize(transformedNormal.xyz), normalize(LIGHT_DIRECTION)); return max(base, 0.0); } void main(void) { gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); float lightWeight = ComputeLighting(); vColor = vec4(aVertexColor.xyz * lightWeight, 1.0) + AMBIENT_COLOR; } Note that I am using WebGL, so if the anser is use glFixThisProblem(...) any pointers on how to re-implement that on WebGL if missing would be appreciated.

    Read the article

  • What is a legal way to use music from registered authors in a game?

    - by mm24
    I have recently asked a question about music in games like Guitar Hero. I have found that that in Europe (at least) if I do want to use a track composed by a musician member of a royalty collecting society I need to pay a flat fee to the society and not only to the member. So a "one-to-one" agreement is not valid and the society can come up to me and ask me for money for each download. Even if for FREE! This is a fee sheet list of the UK agency: for fee, see "Permanent download services" It is about 1,200 GBP for less than 22,000 copies and they DON'T specify anything more and they said me on the phone that I need to wait and see how many downloads I get before knowing the price. This is kind of crazy as If I give away the App for free I will have to PAY 1,200 GBP!! I am shocked and I feel very bad. One agency suggested me to use a fake name of the artist, but in this way is not fair to my collaborators as what they hope is that the App gets lots of downloads and in this way that other people will get to know about them and hopefully commission them more work. The other solution is to work only with non registered musicians. The question here to you is: Has anyone found a legal way to use music from registered authors in a game?

    Read the article

  • Vector Graphics in DirectX

    - by Doug
    I'm curious as to people's thoughts on the best way to use vector graphics in a directX game instead of rasterized textures(think Super Meat Boy). I want to remain resolution independent and don't want to downscale/upscale rasterized graphics. Also the idea would be for all assets to be vector graphics(again think Super Meat Boy). I've looked at Valve's paper "Improved Alpha-Tested Magnification for Vector Textures and Special Effects" and also looked at using shaders http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html. Wondering if anyone has done something similar or an alternate approach. Cheers

    Read the article

  • XNA GUI: Creating a 'scroll pane' widget

    - by Keith Myers
    I'm trying to create a simple GUI system and am currently stuck on how to implement a textarea with a scrollbar. In other words, the text is too large to fit into the view area. I want to learn how to do this, so I'd rather not use an already rolled API. I believe this could be done if the text were part of a texture, but if the game had a lot of unique dialog, this seems expensive. I researched creating a texture on the fly and writing to it, but came up with nothing. Any suggested strategies would be appreciated. I believe it boils down to: text in a texture and how? Or something I have not thought of...

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

  • Networking Client Server Packet logic (How they communicate)

    - by Trixmix
    I want to know what is the logic behind server client communication through packets for a real time game. for example the server sends x packets then the client receives x packets and processes them.. Basically what is the process to keep the client and server in sync and able to receive and send packets. more in depth example of what I want to know: client step 1 wait for a packet step 2 read x packets step 3 process x packets step 4 send x packets and so on... I need to know the very basic outline of the communication. Big questions are: 1) do I send and read packets all at one time? i.e for loop though the incoming packets array list and read them all or one every server loop or what... 2) what order should I do things i.e first receive then read then process then send etc.. 3) what I asked above a step by step of what the server / client should do.. Thanks!

    Read the article

  • General visual effects to meshes/entities

    - by Pacha
    I am trying to add some visual effects to some entities, meshes, or whatever you want to call them as they are looking pretty dull in my game right now. What I want to achieve is this: http://youtu.be/zox8935PLw0?t=36s (the "texture" gets disintegrated and then goes back to normal, covering the whole mesh.) Also I would like to know what is the best way to add effects like the one in the video to my game (for example, thunder effects, shattering, etc.) I know that I can do some things with shaders, but I haven't learned them too well and I am still in a beginner level. I am using Ogre3D, and GLSL for shaders. Thanks! Note: this is a screen-shot of my game, I want to apply the effect in the video to my main character):

    Read the article

  • Texture the quad with different parts of texture

    - by PolGraphic
    I have a 2D quad. Let say it's position is (5,10) and size is (7,11). I want to texture it with one texture, but using three different parts of it. I want to texture the part of quad from x = 5 to x = 7 with part of texture from U = 0 to U = 0.5 (replaying it after achieving 0.5, so I will have 4 same 0.5-lenght fragments). The second one with some other part of texture (also repeating it) and third in the same style. But, how to achieve it? I know that: float2 tc = fmod(input.TexCoord, textureCoordinates.zw - textureCoordinates.xy) + textureCoordinates.xy; //textureCoordinates.xy = fragments' offset Will give me the texture part replaying.

    Read the article

  • How should I invoke a physics engine?

    - by ymfoi
    I'm new to writing games. I'm planning to write a 2D battle game which may require an physics engine. Suppose I've written one, but how can I combine it with the main routine of my game? Should I attach it directly to the graphics render routine or put it in an individual thread? I've spent much time looking for some common approach, but found nothing. So can you reveal some basics idea for me, a newbie? Thanks! P.S. There're many other problems I have to deal with if I choose to start a separate thread for the physics engine, for example, the lock problem, while from my intuition, I guess I'd better separate the render and the physics engine.

    Read the article

  • Strange mesh import problem with Assimp and OpenGL

    - by Morgan
    Using the assimp library for importing 3D data into an OpenGL application. I get some strange problems regarding indexing of the vertices: If I use the following code for importing vertex indices: for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace * face = &mesh->mFaces[t]; if (face->mNumIndices == 3) { indices->push_back(face->mIndices[0]); indices->push_back(face->mIndices[1]); indices->push_back(face->mIndices[2]); } } I get the following result: Instead, if I use the following code: for(int k = 0; k < 2 ; k++) { for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace * face = &mesh->mFaces[t]; if (face->mNumIndices == 3) { indices->push_back(face->mIndices[0]); indices->push_back(face->mIndices[1]); indices->push_back(face->mIndices[2]); } } } I get the correct result: Hence adding the indices twice, renders the correct result? The OpenGL buffer is populated, like so: glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices->size() * sizeof(unsigned int), indices->data(), GL_STATIC_DRAW); And rendered as follows: glDrawElements(GL_TRIANGLES, vertexCount*3, GL_UNSIGNED_INT, indices->data());

    Read the article

  • Convert rotation from Right handed System to left handed

    - by Hector Llanos
    I have Euler angles from a right handed system that I am trying to convert to a left handed system. All the information that I have read online says that to convert it simply multiply the axis and the angle in the correct order and it should work. In other words, Z * Y * X. When I do this what I see in Maya, and in engine still do not match up. This is what I have so far: static Quaternion ConvertToRightHand(Vector3 Euler) { Quaternion x = Quaternion.AngleAxis(-Euler.x, Vector3.right); Quaternion y = Quaternion.AngleAxis(Euler.y, Vector3.up); Quaternion z = Quaternion.AngleAxis(Euler.z, Vector3.forward); return (z * y * x); } Keeping the -Euler.x helps keep the object pointing up correctly, but when I pass ( 0,0,0) to face in the -z, it faces in the +z. Help :/

    Read the article

  • SpriteBatch.end() generating null pointer exception

    - by odaymichael
    I am getting a null pointer exception using libGDX that the debugger points as the SpriteBatch.end() line. I was wondering what would cause this. Here is the offending code block, specifically the batch.end() line: batch.begin(); for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) if (zoomgrid[i][j].getPiece().getImage() != null) zoomgrid[i][j].getPiece().getImage().draw(batch); batch.end(); The top of the stack is actually a line that calls lastTexture.bind(); In the flush() method of com.badlogic.gdx.graphics.g2d.SpriteBatch. I appreciate any input, let me know if I haven't included enough information.

    Read the article

  • Problems implementing a screen space shadow ray tracing shader

    - by Grieverheart
    Here I previously asked for the possibility of ray tracing shadows in screen space in a deferred shader. Several problems were pointed out. One of the most important problem is that only visible objects can cast shadows and objects between the camera and the shadow caster can interfere. Still I thought it'd be a fun experiment. The idea is to calculate the view coordinates of pixels and cast a ray to the light. The ray is then traced pixel by pixel to the light and its depth is compared with the depth at the pixel. If a pixel is in front of the ray, a shadow is casted at the original pixel. At first I thought that I could use the DDA algorithm in 2D to calculate the distance 't' (in p = o + t d, where o origin, d direction) to the next pixel and use it in the 3D ray equation to find the ray's z coordinate at that pixel's position. For the 2D ray, I would use the projected and biased 3D ray direction and origin. The idea was that 't' would be the same in both 2D and 3D equations. Unfortunately, this is not the case since the projection matrix is 4D. Thus, some tweak needs to be done to make this work this way. I would like to ask if someone knows of a way to do what I described above, i.e. from a 2D ray in texture coordinate space to get the 3D ray in screen space. I did implement a simple version of the idea which you can see in the following video: video here Shadows may seem a bit pixelated, but that's mostly because of the size of the step in 't' I chose. And here is the shader: #version 330 core uniform sampler2D DepthMap; uniform vec2 projAB; uniform mat4 projectionMatrix; const vec3 light_p = vec3(-30.0, 30.0, -10.0); noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } void main(void){ vec3 origin = CalcPosition(); if(origin.z < -60) discard; vec2 pixOrigin = pass_TexCoord; //tex coords vec3 dir = normalize(light_p - origin); vec2 texel_size = vec2(1.0 / 600.0); float t = 0.1; ivec2 pixIndex = ivec2(pixOrigin / texel_size); out_AO = 1.0; while(true){ vec3 ray = origin + t * dir; vec4 temp = projectionMatrix * vec4(ray, 1.0); vec2 texCoord = (temp.xy / temp.w) * 0.5 + 0.5; ivec2 newIndex = ivec2(texCoord / texel_size); if(newIndex != pixIndex){ float depth = texture(DepthMap, texCoord).r; float linearDepth = projAB.y / (depth - projAB.x); if(linearDepth > ray.z + 0.1){ out_AO = 0.2; break; } pixIndex = newIndex; } t += 0.5; if(texCoord.x < 0 || texCoord.x > 1.0 || texCoord.y < 0 || texCoord.y > 1.0) break; } } As you can see, here I just increment 't' by some arbitrary factor, calculate the 3D ray and project it to get the pixel coordinates, which is not really optimal. Hopefully, I would like to optimize the code as much as possible and compare it with shadow mapping and how it scales with the number of lights. PS: Keep in mind that I reconstruct position from depth by interpolating rays through a full screen quad.

    Read the article

  • Setting up collision using a tilemap and cocos2d

    - by James
    I'm building my first platformer using cocos2d and a tilemap. I'm having trouble coming up with a decent way of determining if the character is colliding with an object. More specifically, in which direction is the character colliding with an object. Following the tutorial here, I have made a separate "meta" layer of collidable tiles. The problem is that unless the character is in the tile, you can't detect the collision. Also, there's no way of telling WHERE the collision is occurring. The best solution would be one that could tell me if a character is up against a wall, or walking on top of a platform. However, I can't seem to figure out a good technique for this.

    Read the article

  • Moving around/avoiding obstacles

    - by János Harsányi
    I would like to write a "game", where you can place an obstacle (red), and then the black dot tries to avoid it, and get to the green target. I'm using a very easy way to avoid it, if the black dot is close to the red, it changes its direction, and moves for a while, then it moves forward to the green point. How could I create a "smooth" path for the computer controlled "player"? Edit: Not the smoothness is the main point, but to avoid the red blocking "wall" and not to crash into it and then avoid it. How could I implement some path finding algorithm if I just have basically 3 points? (And what would it make the things much more complicated, if you could place multiple obstacles?)

    Read the article

< Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >