Search Results

Search found 25550 results on 1022 pages for 'umbraco development'.

Page 458/1022 | < Previous Page | 454 455 456 457 458 459 460 461 462 463 464 465  | Next Page >

  • Unable to Call Instantiate in Class Member Function

    - by onguarde
    The following javascript is attached to a gameObject. var instance : GameObject; class eg_class { function eg_func(){ var thePrefab : GameObject; instance = Instantiate(thePrefab); } } Error, Unknown identifier: 'instance'. Unknown identifier: 'Instantiate'. Questions, 1) Why is it that "instance" cannot be accessed within a class? Isn't it supposed to be a public variable? 2) "Instantiate" function works in Start()/Update() root functions. Is there a way to make it work from within member functions? Thanks in advance!

    Read the article

  • Normal map lighting bug in bottom right quadrant

    - by Ryan Capote
    I am currently working on getting normal maps working in my project, and have run into a problem with lighting. As you can see, the normals in the bottom right quadrant of the lighting isn't calculating the correct direction to the light or something. Best seen by the red light If I use flat normals (z normal = 1.0), it seems to be working fine: normals for the tile sheet: Shader: #version 330 uniform sampler2D uDiffuseTexture; uniform sampler2D uNormalsTexture; uniform sampler2D uSpecularTexture; uniform sampler2D uEmissiveTexture; uniform sampler2D uWorldNormals; uniform sampler2D uShadowMap; uniform vec4 uLightColor; uniform float uConstAtten; uniform float uLinearAtten; uniform float uQuadradicAtten; uniform float uColorIntensity; in vec2 TexCoords; in vec2 GeomSize; out vec4 FragColor; float sample(vec2 coord, float r) { return step(r, texture2D(uShadowMap, coord).r); } float occluded() { float PI = 3.14; vec2 normalized = TexCoords.st * 2.0 - 1.0; float theta = atan(normalized.y, normalized.x); float r = length(normalized); float coord = (theta + PI) / (2.0 * PI); vec2 tc = vec2(coord, 0.0); float center = sample(tc, r); float sum = 0.0; float blur = (1.0 / GeomSize.x) * smoothstep(0.0, 1.0, r); sum += sample(vec2(tc.x - 4.0*blur, tc.y), r) * 0.05; sum += sample(vec2(tc.x - 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x - 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x - 1.0*blur, tc.y), r) * 0.15; sum += center * 0.16; sum += sample(vec2(tc.x + 1.0*blur, tc.y), r) * 0.15; sum += sample(vec2(tc.x + 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x + 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x + 4.0*blur, tc.y), r) * 0.05; return sum * smoothstep(1.0, 0.0, r); } float calcAttenuation(float distance) { float linearAtten = uLinearAtten * distance; float quadAtten = uQuadradicAtten * distance * distance; float attenuation = 1.0 / (uConstAtten + linearAtten + quadAtten); return attenuation; } vec3 calcFragPosition(void) { return vec3(TexCoords*GeomSize, 0.0); } vec3 calcLightPosition(void) { return vec3(GeomSize/2.0, 0.0); } float calcDistance(vec3 fragPos, vec3 lightPos) { return length(fragPos - lightPos); } vec3 calcLightDirection(vec3 fragPos, vec3 lightPos) { return normalize(lightPos - fragPos); } vec4 calcFinalLight(vec2 worldUV, vec3 lightDir, float attenuation) { float diffuseFactor = dot(normalize(texture2D(uNormalsTexture, worldUV).rgb), lightDir); vec4 diffuse = vec4(0.0); vec4 lightColor = uLightColor * uColorIntensity; if(diffuseFactor > 0.0) { diffuse = vec4(texture2D(uDiffuseTexture, worldUV.xy).rgb, 1.0); diffuse *= diffuseFactor; lightColor *= diffuseFactor; } else { discard; } vec4 final = (diffuse + lightColor); if(texture2D(uWorldNormals, worldUV).g > 0.0) { return final * attenuation; } else { return final * occluded(); } } void main(void) { vec3 fragPosition = calcFragPosition(); vec3 lightPosition = calcLightPosition(); float distance = calcDistance(fragPosition, lightPosition); float attenuation = calcAttenuation(distance); vec2 worldPos = gl_FragCoord.xy / vec2(1024, 768); vec3 lightDir = calcLightDirection(fragPosition, lightPosition); lightDir = (lightDir*0.5)+0.5; float atten = calcAttenuation(distance); vec4 emissive = texture2D(uEmissiveTexture, worldPos); FragColor = calcFinalLight(worldPos, lightDir, atten) + emissive; }

    Read the article

  • Elliptical orbit modeling

    - by Nathon
    I'm playing with orbits in a simple 2-d game where a ship flies around in space and is attracted to massive things. The ship's velocity is stored in a vector and acceleration is applied to it every frame as appropriate given Newton's law of universal gravitation. The point masses don't move (there's only 1 right now) so I would expect an elliptical orbit. Instead, I see this: I've tried with nearly circular orbits, and I've tried making the masses vastly different (a factor of a million) but I always get this rotated orbit. Here's some (D) code, for context: void accelerate(Vector delta) { velocity = velocity + delta; // Velocity is a member of the ship class. } // This function is called every frame with the fixed mass. It's a // method of the ship's. void fall(Well well) { // f=(m1 * m2)/(r**2) // a=f/m // Ship mass is 1, so a = f. float mass = 1; Vector delta = well.position - loc; float rSquared = delta.magSquared; float force = well.mass/rSquared; accelerate(delta * force * mass); }

    Read the article

  • Object pools for efficient resource management

    - by GameDevEnthusiast
    How can I avoid using default new() to create each object? My previous demo had very unpleasant framerate hiccups during dynamic memory allocations (usually, when arrays are resized), and creating lots of small objects which often contain one pointer to some DirectX resource seems like an awful lot of waste. I'm thinking about: Creating a master look-up table to refer to objects by handles (for safety & ease of serialization), much like EntityList in source engine Creating a templated object pool, which will store items contiguously (more cache-friendly, fast iteration, etc.) and the stored elements will be accessed (by external systems) via the global lookup table. The object pool will use the swap-with-last trick for fast removal (it will invoke the object's ~destructor first) and will update the corresponding indices in the global table accordingly (when growing/shrinking/moving elements). The elements will be copied via plain memcpy(). Is it a good idea? Will it be safe to store objects of non-POD types (e.g. pointers, vtable) in such containers? Related post: Dynamic Memory Allocation and Memory Management

    Read the article

  • using heightmap to simulate 3d in an isometric 2d game

    - by VaTTeRGeR
    I saw a video of an 2.5d engine that used heightmaps to do zbuffering. Is this hard to do? I have more or less no idea of Opengl(lwjgl) and that stuff. I could imagine, that you compare each pixel and its depthmap to the depthmap of the already drawn background to determine if it gets drawn or not. Are there any tutorials on how to do this, is this a common problem? It would already be awesome if somebody knows the names of the Opengl commands so that i can go through some general tutorials on that. greets! Great 2.5d engine with the needed effect, pls go to the last 30 seconds Edit, just realised, that my question wasn't quite clear expressed: How can i tell Opengl to compare the existing depthbuffer with an grayscale texure, to determine if a pixel should get drawn or not?

    Read the article

  • JavaScript 3D space ship rotation

    - by user36202
    I am working with a fairly low-level JavaScript 3D API (not Three.js) which uses euler angles for rotation. In most cases, euler angles work quite well for doing things like aligning buildings, operating a hovercraft, or looking around in the first-person. However, in space there is no up or down. I want to control the ship's roll, pitch, and yaw. To do that, some people would use a local coordinate system or a permenant matrix or quaternion or whatever to represent the ship's angle. However, since I am not most people and am using a library that deals exclusively in euler angles, I will be using relative angles to represent how to rotate the ship in space and getting the resulting non-relative euler angles. For you math nerds, that means I need to convert 3 euler angles (with Y being the vertical axis, X representing the pitch, and Z representing a roll which is unaffected by the other angles, left-handed system) into a 3x3 orientation matrix, do something fancy with the matrix, and convert it back into the 3 euler angles. Euler to matrix to euler. Somebody has posted something similar to this on SO (http://stackoverflow.com/questions/1217775/rotating-a-spaceship-model-for-a-space-simulator-game) but he ended up just working with a matrix. This will not do for me. Also, I am using JavaScript, not C++. What I want essentially are the functions do_roll, do_pitch, and do_yaw which only take in and put out euler angles. Many thanks.

    Read the article

  • Adding 2D vector movement with rotation applied

    - by Michael Zehnich
    I am trying to apply a slight sine wave movement to objects that float around the screen to make them a little more interesting. I would like to apply this to the objects so that they oscillate from side to side, not front to back (so the oscillation does not affect their forward velocity). After reading various threads and tutorials, I have come to the conclusion that I need to create and add vectors, but I simply cannot come up with a solution that works. This is where I'm at right now, in the object's update method (updated based on comments): Vector2 oldPosition = new Vector2(spritePos.X, spritePos.Y); //note: newPosition is initially set in the constructor to spritePos.x/y Vector2 direction = newPosition - oldPosition; Vector2 perpendicular = new Vector2(direction.Y, -direction.X); perpendicular.Normalize(); sinePosAng += 0.1f; perpendicular.X += 2.5f * (float)Math.Sin(sinePosAng); spritePos.X += velocity * (float)Math.Cos(radians); spritePos.Y += velocity * (float)Math.Sin(radians); spritePos += perpendicular; newPosition = spritePos;

    Read the article

  • How to code Time Stop or Bullet Time in a game?

    - by David Miler
    I am developing a single-player RPG platformer in XNA 4.0. I would like to add an ability that would make the time "stop" or slow down, and have only the player character move at the original speed(similar to the Time Stop spell from the Baldur's Gate series). I am not looking for an exact implementation, rather some general ideas and design-patterns. EDIT: Thanks all for the great input. I have come up with the following solution public void Update(GameTime gameTime) { GameTime newGameTime = new GameTime(gameTime.TotalGameTime, new TimeSpan(gameTime.ElapsedGameTime.Ticks / DESIRED_TIME_MODIFIER)); gameTime = newGameTime; or something along these lines. This way I can set a different time for the player component and different for the rest. It certainly is not universal enough to work for a game where warping time like this would be a central element, but I hope it should work for this case. I kinda dislike the fact that it litters the main Update loop, but it certainly is the easiest way to implement it. I guess that is essentialy the same as tesselode suggested, so I'm going to give him the green tick :)

    Read the article

  • Android Bitmap : collision Detecting [on hold]

    - by user2505374
    I am writing an Android game right now and I would need some help in the collision of the wall on screen. When I drag the ball in the top and right it able to collide in wall but when I drag it faster it was able to overlap in the wall. public boolean onTouchEvent(MotionEvent event) { int x = (int) event.getX(); int y = (int) event.getY(); switch (event.getAction()) { // if the player moves case MotionEvent.ACTION_MOVE: { if (playerTouchRect.contains(x, y)) { boolean left = false; boolean right = false; boolean up = false; boolean down = false; boolean canMove = false; boolean foundFinish = false; if (x != pLastXPos) { if (x < pLastXPos) { left = true; } else { right = true; } pLastXPos = x; } if (y != pLastYPos) { if (y < pLastYPos) { up = true; } else { down = true; } pLastYPos = y; } plCellRect = getRectFromPos(x, y); newplRect.set(playerRect); newplRect.left = x - (int) (playerRect.width() / 2); newplRect.right = x + (int) (playerRect.width() / 2); newplRect.top = y - (int) (playerRect.height() / 2); newplRect.bottom = y + (int) (playerRect.height() / 2); int currentRow = 0; int currentCol = 0; currentRow = getRowFromYPos(newplRect.top); currentCol = getColFromXPos(newplRect.right); if(!canMove){ canMove = mapManager.getCurrentTile().pMaze[currentRow][currentCol] == Cell.wall; canMove =true; } finishTest = mapManager.getCurrentTile().pMaze[currentRow][currentCol]; foundA = finishTest == Cell.valueOf(letterNotGet + ""); canMove = mapManager.getCurrentTile().pMaze[currentRow][currentCol] != Cell.wall; canMove = (finishTest == Cell.floor || finishTest == Cell.pl) && canMove; if (canMove) { invalidate(); setTitle(); } if (foundA) { mapManager.getCurrentTile().pMaze[currentRow][currentCol] = Cell.floor; // finishTest letterGotten.add(letterNotGet); playCurrentLetter(); /*sounds.play(sExplosion, 1.0f, 1.0f, 0, 0, 1.5f);*/ foundS = letterNotGet == 's'; letterNotGet++; }if(foundS){ AlertDialog.Builder builder = new AlertDialog.Builder(mainActivity); builder.setTitle(mainActivity.getText(R.string.finished_title)); LayoutInflater inflater = mainActivity.getLayoutInflater(); View view = inflater.inflate(R.layout.finish, null); builder.setView(view); View closeButton =view.findViewById(R.id.closeGame); closeButton.setOnClickListener(new OnClickListener() { @Override public void onClick(View clicked) { if(clicked.getId() == R.id.closeGame) { mainActivity.finish(); } } }); AlertDialog finishDialog = builder.create(); finishDialog.show(); } else { Log.d(TAG, "INFO: updated player position"); playerRect.set(newplRect); setTouchZone(); updatePlayerCell(); } } // end of (CASE) if playerTouch break; } // end of (SWITCH) Case motion }//end of Switch return true; }//end of TouchEvent private void finish() { // TODO Auto-generated method stub } public int getColFromXPos(int xPos) { val = xPos / (pvWidth / mapManager.getCurrentTile().pCols); if (val == mapManager.getCurrentTile().pCols) { val = mapManager.getCurrentTile().pCols - 1; } return val; } /** * Given a y pixel position, return the row of the cell it is in This is * used when determining the type of adjacent Cells. * * @param yPos * y position in pixels * @return The cell this position is in */ public int getRowFromYPos(int yPos) { val = yPos / (pvHeight / mapManager.getCurrentTile().pRows); if (val == mapManager.getCurrentTile().pRows) { val = mapManager.getCurrentTile().pRows - 1; } return val; } /** * When preserving the position we need to know which cell the player is in, * so calculate it from the centre on its Rect */ public void updatePlayerCell() { plCell.x = (playerRect.left + (playerRect.width() / 2)) / (pvWidth / mapManager.getCurrentTile().pCols); plCell.y = (playerRect.top + (playerRect.height() / 2)) / (pvHeight / mapManager.getCurrentTile().pRows); if (mapManager.getCurrentTile().pMaze[plCell.y][plCell.x] == Cell.floor) { for (int row = 0; row < mapManager.getCurrentTile().pRows; row++) { for (int col = 0; col < mapManager.getCurrentTile().pCols; col++) { if (mapManager.getCurrentTile().pMaze[row][col] == Cell.pl) { mapManager.getCurrentTile().pMaze[row][col] = Cell.floor; break; } } } mapManager.getCurrentTile().pMaze[plCell.y][plCell.x] = Cell.pl; } } public Rect getRectFromPos(int x, int y) { calcCell.left = ((x / cellWidth) + 0) * cellWidth; calcCell.right = calcCell.left + cellWidth; calcCell.top = ((y / cellHeight) + 0) * cellHeight; calcCell.bottom = calcCell.top + cellHeight; Log.d(TAG, "Rect: " + calcCell + " Player: " + playerRect); return calcCell; } public void setPlayerRect(Rect newplRect) { playerRect.set(newplRect); } private void setTouchZone() { playerTouchRect.set( playerRect.left - playerRect.width() / TOUCH_ZONE, playerRect.top - playerRect.height() / TOUCH_ZONE, playerRect.right + playerRect.width() / TOUCH_ZONE, playerRect.bottom + playerRect.height() / TOUCH_ZONE); } public Rect getPlayerRect() { return playerRect; } public Point getPlayerCell() { return plCell; } public void setPlayerCell(Point cell) { plCell = cell; }

    Read the article

  • My frustum culling is culling from the wrong point [SOLVED]

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] *= length; m_Planes[side][1] *= length; m_Planes[side][2] *= length; m_Planes[side][3] *= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } Matrices look like (Camera is at (5, 0, 0)): ModelView [0,0,0.99,0] [0,1,0,0] [-0.99,0,0,0] [0,0,-5,1] Projection [0.814,0,0,0] [0,1.303,0,0] [0,0,-1,0] [0,0,-0.02,0] Clip [0,0,-1,-0.999] [0,1.30,0,0] [-0.814,0,0,0] [0,0,4.98,4.99] What am i doing wrong?

    Read the article

  • Consistency of DirectX models

    - by marc wellman
    Is there a way to check the consistency of a DirectX model (.x) ? Whilst compiling .x files with XNA GameStudio 3.1 compilation is aborted with the following error message: Error 2 Could not read the X file. The file is corrupt or invalid. Error code: D3DXFERR_PARSEERROR. C:\WFP\Browser\Content\m.x KiviBrowser Some models compile correctly without any error/warning and some abort as described. The files of each model have several thousand lines. I am creating the files in Googles SketchUp 8 where they all look fine and don't show any sign of corruption. Suppose I have such a model my XNA compiler won't compile because their is an inconsistency somewhere in the file - how could I identify this in order to correct it ?

    Read the article

  • Procedural content (settlement) generation

    - by instancedName
    I have, lets say, something like a homework or assignment to do. Roughly said I need to write an algorithm (pseudo code is not necessary, just in depth description) of procedure that would generate settlements, environment and a people to populate it with, as part of some larger world generation procedure. The genre of game is not specified, it could be any genre (rpg, strategy, colony simulation etc.) where interacting with large and extensive world is central to the game. Procedure should be called once per settlement. At the time of calling, world generation procedure makes geography, culture and history input available. Output should be map of the village and it's immediate area, and various potential additional information like myths, history, demographic facts etc. Bonus would be quest ant similar stuff, but that not really my focus at the moment. I will leave quality of the output for later when I actually dig little deeper into this topic. I am free to change parameters as long as I have strong explanation for doing so. Setting of the game is undetermined so I am free to use anything that I like the most. Ok, so my actual question is: Can anyone who has some experience in this field of game design recommend me some good literature, or point me in the direction where I should look/reed/study? I'm somewhat experienced game programmer, but I've never been into game design till now so any help will be great. I want to do this assignment as good as I can. As for deadline, it's not strictly set, but lets say I don't want it to take longer then few weeks, one month at worst case.

    Read the article

  • What would be the best mean for a gui with a lot of FX in Unity

    - by Lionel Barret
    The game I am working on (we are in R&D) is based almost exclusively on a windowed gui with a lot of FX (fading, growing, etc). We will also likely need custom widgets (like a sound recording graph). The game will be made with Unity and from what I heard, the default gui system has quite a bad rep, it is too slow for many usages. So, I wondering what would be the best way to do what we need.

    Read the article

  • Why is chunk size often a power of two?

    - by danijar
    There are many Minecraft clones out there and I am working on my own implementation. A principle of terrain rendering is tiling the whole world in fixed size chunks to reduce the effort of localized changes. In Minecraft the chunk size is 16 x 16 x 256 as far as I now. And in clones I also always saw chunk sizes of a power of the number 2. Is there any reason for that, maybe performance or memory related? I know that powers of 2 play a special role in binary computers but what has that to do with the chunk size?

    Read the article

  • Why won't my vertex buffer render in GLFW3?

    - by sm81095
    I have started to try to learn OpenGL, and I decided to use GLFW to assist in window creation. The problem is, since GLFW3 is so new, there are no tutorials on it or how to use it with modern OpenGL (3.3, specifically). Using the GLFW3 tutorial found on the website, which uses older OpenGL rendering (glBegin(GL_TRIANGLES), glVertex3f(), and such), I can get a triangle to render to the screen. The problem is, using new OpenGL, I can't get the same triangle to render to the screen. I am new to OpenGL, and GLFW3 is new to most people, so I may be completely missing something obvious, but here is my code: static const GLuint g_vertex_buffer_data[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f }; int main(void) { GLFWwindow* window; if(!glfwInit()) { fprintf(stderr, "Failed to initialize GLFW."); return -1; } glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); window = glfwCreateWindow(800, 600, "Test Window", NULL, NULL); if(!window) { glfwTerminate(); fprintf(stderr, "Failed to create a GLFW window"); return -1; } glfwMakeContextCurrent(window); glewExperimental = GL_TRUE; GLenum err = glewInit(); if(err != GLEW_OK) { glfwTerminate(); fprintf(stderr, "Failed to initialize GLEW"); fprintf(stderr, (char*)glewGetErrorString(err)); return -1; } GLuint VertexArrayID; glGenVertexArrays(1, &VertexArrayID); glBindVertexArray(VertexArrayID); GLuint programID = LoadShaders("SimpleVertexShader.glsl", "SimpleFragmentShader.glsl"); GLuint vertexBuffer; glGenBuffers(1, &vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW); while(!glfwWindowShouldClose(window)) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(programID); glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_TRIANGLES, 0, 3); glDisableVertexAttribArray(0); glfwSwapBuffers(window); glfwPollEvents(); } glDeleteBuffers(1, &vertexBuffer); glDeleteProgram(programID); glfwDestroyWindow(window); glfwTerminate(); exit(EXIT_SUCCESS); } I know it is not my shaders, they are super simple and I've checked them against GLFW 2.7 so I know that they work. I'm assuming that I've missed something crucial to using the OpenGL context with GLFW3, so any help locating the problem would be greatly appreciated.

    Read the article

  • Checking for alternate keys with XNA IsKeyDown

    - by jocull
    I'm working on picking up XNA and this was a confusing point for me. KeyboardState keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Left) || keyState.IsKeyDown(Keys.A)) { //Do stuff... } The book I'm using (Learning XNA 4.0, O'Rielly) says that this method accepts a bitwise OR series of keys, which I think should look like this... KeyboardState keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Left | Keys.A)) { //Do stuff... } But I can't get it work. I also tried using !IsKeyUp(... | ...) as it said that all keys had to be down for it to be true, but had no luck with that either. Ideas? Thanks.

    Read the article

  • Unity3D problem. Bullets fall down instead of flying like they should

    - by user2342080
    I used this tutorial as a reference. http://www.youtube.com/watch?v=3L8eaoyZ0Go My problem is that whenever I play the game, EVERYTHING works but the bullets. It just falls down instead of flying forward. This is the flash version of the game: http://v1k.me/swf/ Can some one help me out? Should I upload the project? This is my "Shoot.js": public var bulletPrefab : Transform; public var bulletSpeed : float = 20; function Update() { if(Input.GetMouseButton(0)) { if(bulletPrefab || bulletSpeed) { var bulletCreate = Instantiate(bulletPrefab, GameObject.Find("SpawnPoint").transform.position, Quaternion.identity); bulletCreate.rigidbody.AddForce(transform.forward * bulletSpeed); } } }

    Read the article

  • Splitting a texture atlas into seperate images

    - by bigtunacan
    I'm doing a port of an existing game and the designer no longer has all of the original art; he only has the resulting texture atlases he used when developing for iPad. The tool I'm using won't support these files so I need to break them back out into separate PNG files. I'm hoping someone knows of a software tool that does this. PC software would be preferred in this case, but Mac would suffice.

    Read the article

  • How to properly do weapon cool-down reload timer in multi-player laggy environment?

    - by John Murdoch
    I want to handle weapon cool-down timers in a fair and predictable way on both client on server. Situation: Multiple clients connected to server, which is doing hit detection / physics Clients have different latency for their connections to server ranging from 50ms to 500ms. They want to shoot weapons with fairly long reload/cool-down times (assume exactly 10 seconds) It is important that they get to shoot these weapons close to the cool-down time, as if some clients manage to shoot sooner than others (either because they are "early" or the others are "late") they gain a significant advantage. I need to show time remaining for reload on player's screen Clients can have clocks which are flat-out wrong (bad timezones, etc.) What I'm currently doing to deal with latency: Client collects server side state in a history, tagged with server timestamps Client assesses his time difference with server time: behindServerTimeNs = (behindServerTimeNs + (System.nanoTime() - receivedState.getServerTimeNs())) / 2 Client renders all state received from server 200 ms behind from his current time, adjusted by what he believes his time difference with server time is (whether due to wrong clocks, or lag). If he has server states on both sides of that calculated time, he (mostly LERP) interpolates between them, if not then he (LERP) extrapolates. No other client-side prediction of movement, e.g., to make his vehicle seem more responsive is done so far, but maybe will be added later So how do I properly add weapon reload timers? My first idea would be for the server to send each player the time when his reload will be done with each world state update, the client then adjusts it for the clock difference and thus can estimate when the reload will be finished in client-time (perhaps considering also for latency that the shoot message from client to server will take as well?), and if the user mashes the "shoot" button after (or perhaps even slightly before?) that time, send the shoot event. The server would get the shoot event and consider the time shot was made as the server time when it was received. It would then discard it if it is nowhere near reload time, execute it immediately if it is past reload time, and hold it for a few physics cycles until reload is done in case if it was received a bit early. It does all seem a bit convoluted, and I'm wondering whether it will work (e.g., whether it won't be the case that players with lower ping get better reload rates), and whether there are more elegant solutions to this problem.

    Read the article

  • Path tables or real time searching for AI?

    - by SirYakalot
    What is the more common practice in commercial games; path lookup tables or real time searches? I've read that in many games path lookup tables are pre-calculated and baked into each map, so to speak, then steering behaviour is used to handle dynamic obstacles. or is it better practice to use optimised hierarchical A* searches? I understand the pro's and cons of each, I'm just curious as to what is most often used in the industry.

    Read the article

  • Algorithm to shoot at a target in a 3d game

    - by Sebastian Bugiu
    For those of you remembering Descent Freespace it had a nice feature to help you aim at the enemy when shooting non-homing missiles or lasers: it showed a crosshair in front of the ship you chased telling you where to shoot in order to hit the moving target. I tried using the answer from http://stackoverflow.com/questions/4107403/ai-algorithm-to-shoot-at-a-target-in-a-2d-game?lq=1 but it's for 2D so I tried adapting it. I first decomposed the calculation to solve the intersection point for XoZ plane and saved the x and z coordinates and then solving the intersection point for XoY plane and adding the y coordinate to a final xyz that I then transformed to clipspace and put a texture at those coordinates. But of course it doesn't work as it should or else I wouldn't have posted the question. From what I notice the after finding x in XoZ plane and the in XoY the x is not the same so something must be wrong. float a = ENG_Math.sqr(targetVelocity.x) + ENG_Math.sqr(targetVelocity.y) - ENG_Math.sqr(projectileSpeed); float b = 2.0f * (targetVelocity.x * targetPos.x + targetVelocity.y * targetPos.y); float c = ENG_Math.sqr(targetPos.x) + ENG_Math.sqr(targetPos.y); ENG_Math.solveQuadraticEquation(a, b, c, collisionTime); First time targetVelocity.y is actually targetVelocity.z (the same for targetPos) and the second time it's actually targetVelocity.y. The final position after XoZ is crossPosition.set(minTime * finalEntityVelocity.x + finalTargetPos4D.x, 0.0f, minTime * finalEntityVelocity.z + finalTargetPos4D.z); and after XoY crossPosition.y = minTime * finalEntityVelocity.y + finalTargetPos4D.y; Is my approach of separating into 2 planes and calculating any good? Or for 3D there is a whole different approach? sqr() is square not sqrt - avoiding a confusion.

    Read the article

  • Rendering order in an Entity System

    - by Daedalus
    Say I use a basic ES approach, and also inside Systems I hold lists of all entities that Systems are required to process. How do I maintain this list of entities in desired rendering order, i.e. for a dumb 2D RenderingSystem? I saw this discussion, and what they suggest is to do something like Z ordering - what I would probably do is just to store a "layer" int in DrawableComponent and then, inside RenderingSystem, just sort entities by mentioned "layer" whenever the entity list for RenderingSystem changes. They also say we could just delete and recreate the entity whenever we want it on the top, but it seems too inflexible to me. How is this problem usually solved?

    Read the article

  • How to work with scenes in a 2D game

    - by Anearion
    I'm a java/android programmer, but I don't have any experience in game programming, I'm already reading proper books, like "Pro Android Games", but my concerns are more about the ideas behind game programming than the techniques themselves. I'm working on a 2D game, something like Cluedo to let you understand the genre. I would like to know how should I act with the "scenes", for example, a room with a desk, TV, windows and a lamp. I need to make some items tappable and others not. Is it common to use one image (invisible to the user) with every different item a different color, then call the getColor() method on the image? Or use one image as background, and separate images for all the items? If the latter, how can I set the positioning? and should I use imageView or imageButton? I'm sorry if those are really low quality questions, but as "outsider" ( I'm 23 and still finishing my university ) it's pretty hard learn alone.

    Read the article

  • Minecraft style XNA game collision?

    - by Levi
    I've been trying to get this working for ages now, I can detect if there's a solid block at any place on the map and I can check how far something is inside of it, but I don't understand how to fix the collision. I've tried loads of ways and all of them end up by the player getting stuck, glitching around, incorrect responses and I really have no idea how to go about this :/. int Chnk = Utility.GetChunkFromPosition(origin); if (Chnk == -1) return; Vector3 Pos = Utility.GetCubeVectorFromPosition(origin); if (GlobalWorld.LoadedChunks[Chnk].Blocks[(byte)Pos.X, (byte)Pos.Y, (byte)Pos.Z] != 0) { isInIllegalState = true; if (velocity.Y < 0f) velocity.Y = 0f; } while (isInIllegalState) { if (GlobalWorld.LoadedChunks[Chnk].Blocks[(byte)Pos.X, (byte)origin.Y, (byte)Pos.Z] != 0) origin.Y = (int)(origin.Y + 1); else isInIllegalState = false; } if (origin.Y < Chunk.YSize - 2 && GlobalWorld.LoadedChunks[Chnk].Blocks[(byte)Pos.X, (byte)(origin.Y + playerHeight.Y), (byte)Pos.Z] != 0) { velocity.Y = 0f; //Acceleration.Y = 0f; origin.Y = (int)origin.Y;// -0.5f; } for (int x = -1; x <= 1; x+=2) { for (int z = -1; z <= 1; z += 2) { Vector3 CornerPosition = new Vector3(boundingSize * x, 0, boundingSize * z); bool CorrectX = false; bool CorrectZ = false; Vector3 RoundedOrigin = Utility.RoundVector(origin); Vector3 RoundedCorner = Utility.RoundVector(origin + CornerPosition); byte BlockAdjacent = Utility.GetCubeFromPosition(origin + CornerPosition); if (BlockAdjacent == 0) continue; if (RoundedCorner.X != RoundedOrigin.X && RoundedCorner.Z != RoundedOrigin.Z) { CorrectX = true; CorrectZ = true; } if (RoundedCorner.Z != RoundedOrigin.Z && RoundedCorner.X == RoundedOrigin.X) CorrectZ = true; if (RoundedCorner.X != RoundedOrigin.X && RoundedCorner.Z == RoundedOrigin.Z) CorrectX = true; if (CorrectX && CornerPosition.X > 0) { if (origin.X > 0f) origin.X = (int)(origin.X + 1) - boundingSize; else origin.X = (int)origin.X - boundingSize; } else if (CorrectX && CornerPosition.X < 0) { if (origin.X > 0f) origin.X = (int)(origin.X) + boundingSize; else origin.X = (int)(origin.X - 1) + boundingSize; } if (CorrectZ && CornerPosition.Z > 0) { if (origin.Z > 0f) origin.Z = (int)(origin.Z + 1) - boundingSize; else origin.Z = (int)origin.Z - boundingSize; } else if (CorrectZ && CornerPosition.Z < 0) { if (origin.Z > 0f) origin.Z = (int)(origin.Z) + boundingSize; else origin.Z = (int)(origin.Z - 1) + boundingSize; } } }

    Read the article

  • Calculate the intersection depth between a rectangle and a right triangle

    - by Celarix
    all. I'm working on a 2D platformer built in C#/XNA, and I'm having a lot of problems calculating the intersection depth between a standard rectangle (used for sprites) and a right triangle (used for sloping tiles). Ideally, the rectangle will collide with the solid edges of the triangle, and its bottom-center point will collide with the sloped edge. I've been fighting with this for a couple of days now, and I can't make sense of it. So far, the method detects intersections (somewhat), but it reports wildly wrong depths. How does one properly calculate the depth? Is there something I'm missing? Thanks!

    Read the article

< Previous Page | 454 455 456 457 458 459 460 461 462 463 464 465  | Next Page >