Search Results

Search found 26093 results on 1044 pages for 'career development'.

Page 472/1044 | < Previous Page | 468 469 470 471 472 473 474 475 476 477 478 479  | Next Page >

  • Physic engine for snooker/billard game

    - by Marc Gillé
    I think most billard/snooker games have a lot of problems with their physic engines. They are far away from realistic and you can't really enjoy the game (especially when snooker is your hobby :) ) So I want to try to make an own physic engine (and own snooker game). I think the physic engine is the most important part of such a game. So my question is: Do anybody know an open physic enginge I can start with? Is there any literature about such physic problems?

    Read the article

  • Why don't C++ Game Developers use the boost library?

    - by James
    So if you spend any time viewing / answering questions over on Stack Overflow under the C++ tag, you will quickly notice that just about everybody uses the boost library; some would even say that if you aren't using it, you're not writing "real' C++ (I disagree, but that's not the point). But then there is the game industry, which is well known for using C++ and not using boost. I can't help but wonder why that is. I don't care to use boost because I write games (now) as a hobby, and part of that hobby is implementing what I need when I am able to and using off-the-shelf libraries when I can't. But that is just me. Why don't game developers, in general, use the boost library? Is it performance or memory concerns? Style? Something Else? I was about to ask this on stack overflow, but I figured the question is better asked here. EDIT : I realize I can't speak for all game programmers and I haven't seen all game projects, so I can't say game developers never use boost; this is simply my experience. Allow me to edit my question to also ask, if you do use boost, why did you choose to use it?

    Read the article

  • XNA 4.0, Combining model draw calls

    - by MayContainNuts
    I have the following problem: The levels in my game are made up of a Large Quantity of small Models and because of that I am experiencing frame rate problems. I already did some research and came to the conclusion that the amount of draw calls I am making must be the root of my problems. I've looked around for a while now and couldn't quite find a satisfying solution. I can't cull any of those models, in a worst case scenario there could be 1000 of them visible at the same time. I also looked at Hardware geometry Instancing, but I don't think that's quite what I'm looking for, because the level consists of a lot of different parts. So, what I'd like to do is combining 100 or 200 of these Models into a single large one and draw it as a whole 'chunk'. The whole geometry is static so it wouldn't have to be changed after combining, but different parts of it would have to use different textures (I think I can accomplish that with a texture atlas). But I have no idea how to to that, so does anybody have any suggestions?

    Read the article

  • Pattern for performing game actions

    - by Arkiliknam
    Is there a generally accepted pattern for performing various actions within a game? A way a player can perform actions and also that an AI might perform actions, such as move, attack, self-destruct, etc. I currently have an abstract BaseAction which uses .NET generics to specify the different objects that get returned by the various actions. This is all implemented in a pattern similar to the Command, where each action is responsible for itself and does all that it needs. My reasoning for being abstract is so that I may have a single ActionHandler, and AI can just queue up different action implementing the baseAction. And the reason it is generic is so that the different actions can return result information relevant to the action (as different actions can have totally different outcomes in the game), along with some common beforeAction and afterAction implementations. So... is there a more accepted way of doing this, or does this sound alright?

    Read the article

  • Circle-Line Collision Detection Problem

    - by jazzdawg
    I am currently developing a breakout clone and I have hit a roadblock in getting collision detection between a ball (circle) and a brick (convex polygon) working correctly. I am using a Circle-Line collision detection test where each line represents and edge on the convex polygon brick. For the majority of the time the Circle-Line test works properly and the points of collision are resolved correctly. Collision detection working correctly. However, occasionally my collision detection code returns false due to a negative discriminant when the ball is actually intersecting the brick. Collision detection failing. I am aware of the inefficiency with this method and I am using axis aligned bounding boxes to cut down on the number of bricks tested. My main concern is if there are any mathematical bugs in my code below. /* * from and to are points at the start and end of the convex polygons edge. * This function is called for every edge in the convex polygon until a * collision is detected. */ bool circleLineCollision(Vec2f from, Vec2f to) { Vec2f lFrom, lTo, lLine; Vec2f line, normal; Vec2f intersectPt1, intersectPt2; float a, b, c, disc, sqrt_disc, u, v, nn, vn; bool one = false, two = false; // set line vectors lFrom = from - ball.circle.centre; // localised lTo = to - ball.circle.centre; // localised lLine = lFrom - lTo; // localised line = from - to; // calculate a, b & c values a = lLine.dot(lLine); b = 2 * (lLine.dot(lFrom)); c = (lFrom.dot(lFrom)) - (ball.circle.radius * ball.circle.radius); // discriminant disc = (b * b) - (4 * a * c); if (disc < 0.0f) { // no intersections return false; } else if (disc == 0.0f) { // one intersection u = -b / (2 * a); intersectPt1 = from + (lLine.scale(u)); one = pointOnLine(intersectPt1, from, to); if (!one) return false; return true; } else { // two intersections sqrt_disc = sqrt(disc); u = (-b + sqrt_disc) / (2 * a); v = (-b - sqrt_disc) / (2 * a); intersectPt1 = from + (lLine.scale(u)); intersectPt2 = from + (lLine.scale(v)); one = pointOnLine(intersectPt1, from, to); two = pointOnLine(intersectPt2, from, to); if (!one && !two) return false; return true; } } bool pointOnLine(Vec2f p, Vec2f from, Vec2f to) { if (p.x >= min(from.x, to.x) && p.x <= max(from.x, to.x) && p.y >= min(from.y, to.y) && p.y <= max(from.y, to.y)) return true; return false; }

    Read the article

  • Why won't my vertex buffer render in GLFW3?

    - by sm81095
    I have started to try to learn OpenGL, and I decided to use GLFW to assist in window creation. The problem is, since GLFW3 is so new, there are no tutorials on it or how to use it with modern OpenGL (3.3, specifically). Using the GLFW3 tutorial found on the website, which uses older OpenGL rendering (glBegin(GL_TRIANGLES), glVertex3f(), and such), I can get a triangle to render to the screen. The problem is, using new OpenGL, I can't get the same triangle to render to the screen. I am new to OpenGL, and GLFW3 is new to most people, so I may be completely missing something obvious, but here is my code: static const GLuint g_vertex_buffer_data[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f }; int main(void) { GLFWwindow* window; if(!glfwInit()) { fprintf(stderr, "Failed to initialize GLFW."); return -1; } glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); window = glfwCreateWindow(800, 600, "Test Window", NULL, NULL); if(!window) { glfwTerminate(); fprintf(stderr, "Failed to create a GLFW window"); return -1; } glfwMakeContextCurrent(window); glewExperimental = GL_TRUE; GLenum err = glewInit(); if(err != GLEW_OK) { glfwTerminate(); fprintf(stderr, "Failed to initialize GLEW"); fprintf(stderr, (char*)glewGetErrorString(err)); return -1; } GLuint VertexArrayID; glGenVertexArrays(1, &VertexArrayID); glBindVertexArray(VertexArrayID); GLuint programID = LoadShaders("SimpleVertexShader.glsl", "SimpleFragmentShader.glsl"); GLuint vertexBuffer; glGenBuffers(1, &vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW); while(!glfwWindowShouldClose(window)) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(programID); glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_TRIANGLES, 0, 3); glDisableVertexAttribArray(0); glfwSwapBuffers(window); glfwPollEvents(); } glDeleteBuffers(1, &vertexBuffer); glDeleteProgram(programID); glfwDestroyWindow(window); glfwTerminate(); exit(EXIT_SUCCESS); } I know it is not my shaders, they are super simple and I've checked them against GLFW 2.7 so I know that they work. I'm assuming that I've missed something crucial to using the OpenGL context with GLFW3, so any help locating the problem would be greatly appreciated.

    Read the article

  • What data should be cached in a multiplayer server, relative to AI and players?

    - by DevilWithin
    In a virtual place, fully network driven, with an arbitrary number of players and an arbitrary number of enemies, what data should be cached in the server memory, in order to optimize smooth AI simulation? Trying to explain, lets say player A sees player B to E, and enemy A to G. Each of those players, see player A, but not necessarily each other. Same applies to enemies. Think of this question from a topdown perspective please. In many cases, for example, when a player shoots his gun, the server handles the sound as a radial "signal" that every other entity within reach "hear" and react upon. Doing these searches all the time for a whole area, containing possibly a lot of unrelated players and enemies, seems to be an issue, when the budget for each AI agent is so small. Should every entity cache whatever enters and exits from its radius of awareness? Is there a great way to trace the entities close by without flooding the memory with such caches? What about other AI related problems that may arise, after assuming the previous one works well? We're talking about environments with possibly hundreds of enemies, a swarm.

    Read the article

  • Game engine like Unity 3D that allow me to use .NET code

    - by Pking
    I've been looking at Unity 3D for developing a 3D PC game and I really like the scene editor and how it simplifies the process of constructing 3D scenes, managing assets, animations, transitions etc. However, I don't want to restrict myself to using the Unity 3D scripts for handling every bit of game logic in the game. E.g. If I want to construct a RPG dialogue system I don't want to do it with unity 3d scripts - I'd like to use C#/.net. Also, I might want to use e.g. windows azure and sql azure as backend, and use 3rd party .net libraries such as reactive-extensions etc. Is there a .net engine out there that helps me with asset loading, animations, physics, transitions, etc. with a scene editor, but allow me to plug it into a visual studio .net project? Thanks

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Where can I find affordable legal advice for game software related inquiries?

    - by Steven Lu
    I am working on simulation middleware which is applicable for game engine implementations. What I would like to do is to make it freely available for use for all non-commercial purposes, while at the same time imposing some percentage of royalty on revenue (above a certain threshold) that is derived from my work. Something very similar to Epic's UDK licensing model. To facilitate the use of my software, I plan to offer binaries (static libs) for several platforms, as well as obfuscated source code which I will freely distribute, in addition to documentation of the API. I simply want to impose the restriction that if you try to make money from it, I get a cut eventually. I'm wondering if there are online forums and such where I am likely to find people who are willing to assist me in terms of learning what sort of things I have to do to get things down on the right kinds of documents. So far a site like this seems to be the most promising.

    Read the article

  • When mapping the surface of a sphere with tiles, how might you deal with polar distortion?

    - by clweeks
    It's easy to deal with the way locations interact on a clean Cartesian grid. It's just vanilla math. And you can kind of ignore the geometry of the sphere's surface for a bunch of it if you want to just truncate the poles or something. But I keep coming up with ideas for games where the polar space matters. Geo-coded ARGs and global roguelikes and stuff. I want square(ish?) locations -- reasonably representable by square tiles of the same size across the globe, anyway. This has to be a solved problem, right? What are the solutions? ETA: At the equator -- and assuming that your square locations are reasonably small, it's close enough to true that you can get away with having one square in the rows north and south of the most equatorial row. And you could probably get away with that by just hand-waving the difference up to like 45-degrees or so. But eventually, you need to have fewer squares in a pole-ward circumferential row. If I reduce the length of the row by one and offset the squares by 1/2 then they're just like hexes and it's relatively easy to do the coding to keep track of the connections. But as you get pole-ward, it gets more and more extreme. Projecting the surface of the world onto the surface of a cube is tempting. But I figured there must be more elegant solutions already in use. If I did the cube thing (not dissecting it further through geodesy) Are there any pros and cons related to placing the pole at the center of a face or at the vertex of three sides?

    Read the article

  • Can I animate render targets or the swap chain?

    - by Eric F.
    I want to animate some synthetic video bits to fullscreen w/o tearing. Can I set up D3D 9/10/11 in exclusive mode, and have it present a series of buffers that I'm writing to? I know how to copy system memory bits into a texture, then draw that texture as a fullscreen quad, but it seems like overkill. Why should I use the triangle rasterizer when I want to do something so simple? All I want to do is set up a long (4-8 buffer) swapchain and set the bits of the back buffer that is about to be displayed. Or, I want to allocate 4-8 RenderTargets, and on each frame, copy the bits from system memory to the RenderTarget, then set it as the next thing to display. I've never seen or heard about anybody doing this, but it seems so dead simple!

    Read the article

  • How should bots be recognised in a game?

    - by Bane
    I'm interested in how bots are usually written. Here's my situation: I plan to make an online 2D mecha game in HTML5, and the server-side will be done with node. It is intended to be multiplayer, but I also want to make bots in case there aren't enough players. How does my game logic see them, as players or as bots? Is there a standard by which I should make them? Also, any general tips and hints will be OK.

    Read the article

  • Alternatives to multiple sprite batches for achieving 2D particle system depth

    - by Ergwun
    In my 2D XNA game, I render all my sprites with a single sprite batch using SpriteSortMode.BackToFront and BlendState.AlphaBlend. I'm adding a particle system based on the App Hub particles sample. Since this uses SpriteSortMode.Deferred and BlendState.Additive, I will need to have two SpriteBatch.Begin / SpriteBatch.End pairs: one for 'regular' sprites, and one for particles. In my top-down shooter, If I want to have explosions appear under planes, but above the ground, then I believe I will have to have three Begin/End pairs, first to draw everything under the explosions, then to draw the explosions, then to draw everything above the explosions. If I want to have particle effects at multiple different depths, then I'm going to need even more Begin/Endpairs. This is all easy to code, but I'm wondering if there is an alternative way to handle this?

    Read the article

  • Will making players pay a virtual currency before entering a match discourage them from playing?

    - by Bane
    I'm making a multiplayer match-making game, and by my current design, people will need to pay a small fee before joining a match. At the end of the match, the team that won will get the money. That will be a virtual currency, but still, will it discourage people to enter matches? I introduced it to make the matches matter more, because there's always a fear that you will loose your investments. I'm not talking about anything big here, but even a small amount might have a similar psychological effect as a bigger one.

    Read the article

  • Dynamically load images inside jar

    - by Rahat Ahmed
    I'm using Slick2d for a game, and while it runs fine in Eclipse, i'm trying to figure out how to make it work when exported to a runnable .jar. I have it set up to where I load every image located in the res/ directory. Here's the code /** * Loads all .png images located in source folders. * @throws SlickException */ public static void init() throws SlickException { loadedImages = new HashMap<>(); try { URI uri = new URI(ResourceLoader.getResource("res").toString()); File[] files = new File(uri).listFiles(new FilenameFilter(){ @Override public boolean accept(File dir, String name) { if(name.endsWith(".png")) return true; return false; } }); System.out.println("Naming filenames now."); for(File f:files) { System.out.println(f.getName()); FileInputStream fis = new FileInputStream(f); Image image = new Image(fis, f.getName(), false); loadedImages.put(f.getName(), image); } } catch (URISyntaxException | FileNotFoundException e) { System.err.println("UNABLE TO LOAD IMAGES FROM RES FOLDER!"); e.printStackTrace(); } font = new AngelCodeFont("res/bitmapfont.fnt",Art.get("bitmapfont.png")); } Now the obvious problem is the line URI uri = new URI(ResourceLoader.getResource("res").toString()); If I pack the res folder into the .jar there will not be a res folder on the filesystem. How can I iterate through all the images in the compiled .jar itself, or what is a better system to automatically load all images?

    Read the article

  • cocos2d/OpenGL multitexturing problem

    - by Gajoo
    I've got a simple shader to test multitextureing the problem is both samplers are using same image as their reference. the shader code is basically just this : vec4 mid = texture2D(u_texture,v_texCoord); float g = texture2D(u_guide,v_guideCoord); gl_FragColor = vec4(g , mid.g,0,1); and this is how I'm calling draw function : int last_State; glGetIntegerv(GL_ACTIVE_TEXTURE, &last_State); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, getTexture()->getName()); glActiveTexture(GL_TEXTURE1); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, mGuideTexture->getName()); ccGLEnableVertexAttribs( kCCVertexAttribFlag_TexCoords |kCCVertexAttribFlag_Position); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, 0, vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, 0, texCoord); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisable(GL_TEXTURE_2D); I've already check mGuideTexture->getName() and getTexture()->getName() are returning correct textures. but looking at the result I can tell, both samplers are reading from getTexture()->getName(). here are some screen shots showing what is happening : The image rendered Using above codes The image rendered when I change textures passed to samples I'm expecting to see green objects from the first picture with red objects hanging from the top.

    Read the article

  • How important is a single-player mode in a 2-player game?

    - by Davy8
    So say you have a 2 player game, taking Chess as an example (except it's an original game with no ready-to-go AI available). Let's say there's also a social-aspect to the meta-game, so let's say it's a Chess game on Facebook where you can challenge your friends. How important is it to have a single-player mode, knowing that an AI will need to be created (I've done minimax AI for tic tac toe, but nothing too sophisticated)? Is it important enough that it should be in the initial launch of the game? Can it wait for a future iteration (knowing that being hosted on the web means the game can be updated at any time)?

    Read the article

  • Bitmap Font Displays in Center Always Without Coding it Manually (Fix Coordinate Problem onText)

    - by David Dimalanta
    Is there a way on how to stay the texts in center without manually coding it or something, especially when making an update? I'm making a display for the highest score. Let's say that the score is 9. However, if the score is 9,999,999, the text displays still only at the fixed X and Y coordinate. Is there really a way to stay the text in center especially when there is changes when a player beats the new world record? Here's my code inside Sprite Batch: font.setScale(1.5f); font.draw(batch, "HIGHEST SCORE:", (900/10)*1 + 60, (1280/16)*10); font.draw(batch, "" + 9999999 + "", (900/10)*4, (1280/16)*8); batch.draw(grid_guide, 0, 0, 900, 1280); // --> For testing purpose only. // Where 9999999 is a new record score for example. Here's the image shown as example. I add it some red grid so that I could check if the display of score when updated will always display on center no matter how many digits takes place in. However, it is fixed, so I have to figure it out how to display it automatically on center regardless of the number of digits while updating for the new highscore. I have used the LibGDX preferences very well though to save and load records for the highscore.

    Read the article

  • 2D Car Simulation with Throttle Linear Physics

    - by James
    I'm trying to make a simulation game for an automatic cruise control system. The system simulates a car on varying inclinations and throttle speeds. I've coded up to the car physics but these do note make sense. The dynamics of the simulation are specified as follows: a = V' - V T = (k1)V + ?(k2) + ma V' = (1 - (k1 / m) V) + T - ( k2 / m) * ? Where T = throttle position k1 = viscous friction V = speed V' = next speed ? = angle of incline k2 = m g sin ? a = acceleration m = mass Notice that the angle of incline in the equation is not chopped up by sin or cos. Even the equation for acceleration isn't right. Can anyone correct them or am I misinterpreting the physics?

    Read the article

  • Why doesn't my texture display with this GLSL shader?

    - by Chewy Gumball
    I am trying to display a DXT1 compressed texture on a quad using a VBO and shaders, but I have been unable to get it working. All I get is a black square. I know my texture is uploaded properly because when I use immediate mode without shaders the texture displays fine but I will include that part just in case. Also, when I change the gl_FragColor to something like vec4 (0.0, 1.0, 1.0, 1.0) then I get a nice blue quad so I know that my shader is able to set the colour. It appears to be either the texture is not being bound correctly in the shader or the texture coordinates are not being picked up. However, I can't find the error! What am I doing wrong? I am using OpenTK in C# (not xna). Vertex Shader: void main() { gl_TexCoord[0] = gl_MultiTexCoord0; // Set the position of the current vertex gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } Fragment Shader: uniform sampler2D diffuseTexture; void main() { // Set the output color of our current pixel gl_FragColor = texture2D(diffuseTexture, gl_TexCoord[0].st); //gl_FragColor = vec4 (0.0,1.0,1.0,1.0); } Drawing Code: int vb, eb; GL.GenBuffers(1, out vb); GL.GenBuffers(1, out eb); // Position Texture float[] verts = { 0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 1.9f, 0.1f, 0.0f, 1.0f, 0.0f, 1.9f, 1.9f, 0.0f, 1.0f, 1.0f, 0.1f, 1.9f, 0.0f, 0.0f, 1.0f }; uint[] indices = { 0, 1, 2, 0, 2, 3 }; //upload data to the VBO GL.BindBuffer(BufferTarget.ArrayBuffer, vb); GL.BindBuffer(BufferTarget.ElementArrayBuffer, eb); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verts.Length * sizeof(float)), verts, BufferUsageHint.StaticDraw); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(indices.Length * sizeof(uint)), indices, BufferUsageHint.StaticDraw); //Upload texture int buffer = GL.GenTexture(); GL.BindTexture(TextureTarget.Texture2D, buffer); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (float)TextureWrapMode.Repeat); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (float)TextureWrapMode.Repeat); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (float)TextureMagFilter.Linear); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (float)TextureMinFilter.Linear); GL.TexEnv(TextureEnvTarget.TextureEnv, TextureEnvParameter.TextureEnvMode, (float)TextureEnvMode.Modulate); GL.CompressedTexImage2D(TextureTarget.Texture2D, 0, texture.format, texture.width, texture.height, 0, texture.data.Length, texture.data); //Draw GL.UseProgram(shaderProgram); GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.VertexPointer(3, VertexPointerType.Float, 5 * sizeof(float), 0); GL.TexCoordPointer(2, TexCoordPointerType.Float, 5 * sizeof(float), 3); GL.ActiveTexture(TextureUnit.Texture0); GL.Uniform1(GL.GetUniformLocation(shaderProgram, "diffuseTexture"), 0); GL.DrawElements(BeginMode.Triangles, indices.Length, DrawElementsType.UnsignedInt, 0);

    Read the article

  • Finding furthermost point in game world

    - by user13414
    I am attempting to find the furthermost point in my game world given the player's current location and a normalized direction vector in screen space. My current algorithm is: convert player world location to screen space multiply the direction vector by a large number (2000) and add it to the player's screen location to get the distant screen location convert the distant screen location to world space create a line running from the player's world location to the distant world location loop over the bounding "walls" (of which there are always 4) of my game world check whether the wall and the line intersect if so, where they intersect is the furthermost point of my game world in the direction of the vector Here it is, more or less, in code: public Vector2 GetFurthermostWorldPoint(Vector2 directionVector) { var screenLocation = entity.WorldPointToScreen(entity.Location); var distantScreenLocation = screenLocation + (directionVector * 2000); var distantWorldLocation = entity.ScreenPointToWorld(distantScreenLocation); var line = new Line(entity.Center, distantWorldLocation); float intersectionDistance; Vector2 intersectionPoint; foreach (var boundingWall in entity.Level.BoundingWalls) { if (boundingWall.Intersects(line, out intersectionDistance, out intersectionPoint)) { return intersectionPoint; } } Debug.Assert(false, "No intersection found!"); return Vector2.Zero; } Now this works, for some definition of "works". I've found that the further out my distant screen location is, the less chance it has of working. When digging into the reasons why, I noticed that calls to Viewport.Unproject could result in wildly varying return values for points that are "far away". I wrote this stupid little "test" to try and understand what was going on: [Fact] public void wtf() { var screenPositions = new Vector2[] { new Vector2(400, 240), new Vector2(400, -2000), }; var viewport = new Viewport(0, 0, 800, 480); var projectionMatrix = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, viewport.Width / viewport.Height, 1, 200000); var viewMatrix = Matrix.CreateLookAt(new Vector3(400, 630, 600), new Vector3(400, 345, 0), new Vector3(0, 0, 1)); var worldMatrix = Matrix.Identity; foreach (var screenPosition in screenPositions) { var nearPoint = viewport.Unproject(new Vector3(screenPosition, 0), projectionMatrix, viewMatrix, worldMatrix); var farPoint = viewport.Unproject(new Vector3(screenPosition, 1), projectionMatrix, viewMatrix, worldMatrix); Console.WriteLine("For screen position {0}:", screenPosition); Console.WriteLine(" Projected Near Point = {0}", nearPoint.TruncateZ()); Console.WriteLine(" Projected Far Point = {0}", farPoint.TruncateZ()); Console.WriteLine(); } } The output I get on the console is: For screen position {X:400 Y:240}: Projected Near Point = {X:400 Y:629.571 Z:599.0967} Projected Far Point = {X:392.9302 Y:-83074.98 Z:-175627.9} For screen position {X:400 Y:-2000}: Projected Near Point = {X:400 Y:626.079 Z:600.7554} Projected Far Point = {X:390.2068 Y:-767438.6 Z:148564.2} My question is really twofold: what am I doing wrong with the unprojection such that it varies so wildly and, thus, does not allow me to determine the corresponding world point for my distant screen point? is there a better way altogether to determine the furthermost point in world space given a current world space location, and a directional vector in screen space?

    Read the article

  • Logarithmic spacing of FFT subbands

    - by Mykel Stone
    I'm trying to do the examples within the GameDev.net Beat Detection article ( http://archive.gamedev.net/archive/reference/programming/features/beatdetection/index.html ) I have no issue with performing a FFT and getting the frequency data and doing most of the article. I'm running into trouble though in the section 2.B, Enhancements and beat decision factors. in this section the author gives 3 equations numbered R10-R12 to be used to determine how many bins go into each subband: R10 - Linear increase of the width of the subband with its index R11 - We can choose for example the width of the first subband R12 - The sum of all the widths must not exceed 1024 He says the following in the article: "Once you have equations (R11) and (R12) it is fairly easy to extract 'a' and 'b', and thus to find the law of the 'wi'. This calculus of 'a' and 'b' must be made manually and 'a' and 'b' defined as constants in the source; indeed they do not vary during the song." However, I cannot seem to understand how these values are calculated...I'm probably missing something simple, but learning fourier analysis in a couple of weeks has left me Decimated-in-Mind and I cannot seem to see it.

    Read the article

  • Matrix.CreateBillboard centre rotation problem

    - by Chris88
    I'm having an issue with Matrix.CreateBillboard and a textured Quad where the center axis seems to be positioned incorrectly to the quad object which is rotating around a center point: Using: BasicEffect quadEffect; Drawing the quad shape: Left = Vector3.Cross(Normal, Up); Vector3 uppercenter = (Up * height / 2) + origin; LowerLeft = uppercenter + (Left * width / 2); LowerRight = uppercenter - (Left * width / 2); UpperLeft = LowerLeft - (Up * height); UpperRight = LowerRight - (Up * height); Where height and width are float values passed in (it draws a square) Draw method: quadEffect.View = camera.view; quadEffect.Projection = camera.projection; quadEffect.World = Matrix.CreateBillboard(Origin, camera.cameraPosition, Vector3.Up, camera.cameraDirection); GraphicsDevice.BlendState = BlendState.Additive; foreach (EffectPass pass in quadEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawUserIndexedPrimitives <VertexPositionNormalTexture>( PrimitiveType.TriangleList, Vertices, 0, 4, Indexes, 0, 2); } GraphicsDevice.BlendState = BlendState.Opaque; In the screenshots below i draw the image at Vector3(32f, 0f, 32f) The screenshots below show you the position of the quad in relation to the red cross. The red cross shows where it should be drawn http://i.imgur.com/YwRYj.jpg http://i.imgur.com/ZtoHL.jpg It rotates around the red cross position

    Read the article

  • How do produce a "mucus spreading" effect in a 2D environment?

    - by nathan
    Here is an example of such a mucus spreading. The substance is spread around the source (in this example, the source would be the main alien building). The game is starcraft, the purple substance is called creep. How this kind of substance spreading would be achieved in a top down 2D environment? Recalculating the substance progression and regenerate the effect on the fly each frame or rather use a large collection of tiles or something else?

    Read the article

< Previous Page | 468 469 470 471 472 473 474 475 476 477 478 479  | Next Page >