Search Results

Search found 32375 results on 1295 pages for 'dnn module development'.

Page 491/1295 | < Previous Page | 487 488 489 490 491 492 493 494 495 496 497 498  | Next Page >

  • Most efficient way to implement delta time

    - by Starkers
    Here's one way to implement delta time: /// init /// var duration = 5000, currentTime = Date.now(); // and create cube, scene, camera ect ////// function animate() { /// determine delta /// var now = Date.now(), deltat = now - currentTime, currentTime = now, scalar = deltat / duration, angle = (Math.PI * 2) * scalar; ////// /// animate /// cube.rotation.y += angle; ////// /// update /// requestAnimationFrame(render); ////// } Could someone confirm I know how it works? Here what I think is going on: Firstly, we set duration at 5000, which how long the loop will take to complete in an ideal world. With a computer that is slow/busy, let's say the animation loop takes twice as long as it should, so 10000: When this happens, the scalar is set to 2.0: scalar = deltat / duration scalar = 10000 / 5000 scalar = 2.0 We now times all animation by twice as much: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 2.0; angle = (Math.PI * 4) // which is 2 rotations When we do this, the cube rotation will appear to 'jump', but this is good because the animation remains real-time. With a computer that is going too quickly, let's say the animation loop takes half as long as it should, so 2500: When this happens, the scalar is set to 0.5: scalar = deltat / duration scalar = 2500 / 5000 scalar = 0.5 We now times all animation by a half: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 0.5; angle = (Math.PI * 1) // which is half a rotation When we do this, the cube won't jump at all, and the animation remains real time, and doesn't speed up. However, would I be right in thinking this doesn't alter how hard the computer is working? I mean it still goes through the loop as fast as it can, and it still has render the whole scene, just with different smaller angles! So this a bad way to implement delta time, right? Now let's pretend the computer is taking exactly as long as it should, so 5000: When this happens, the scalar is set to 1.0: angle = (Math.PI * 2) * scalar; angle = (Math.PI * 2) * 1; angle = (Math.PI * 2) // which is 1 rotation When we do this, everything is timsed by 1, so nothing is changed. We'd get the same result if we weren't using delta time at all! My questions are as follows Mostly importantly, have I got the right end of the stick here? How do we know to set the duration to 5000 ? Or can it be any number? I'm a bit vague about the "computer going too quickly". Is there a way loop less often rather than reduce the animation steps? Seems like a better idea. Using this method, do all of our animations need to be timesed by the scalar? Do we have to hunt down every last one and times it? Is this the best way to implement delta time? I think not, due to the fact the computer can go nuts and all we do is divide each animation step and because we need to hunt down every step and times it by the scalar. Not a very nice DSL, as it were. So what is the best way to implement delta time? Below is one way that I do not really get but may be a better way to implement delta time. Could someone explain please? // Globals INV_MAX_FPS = 1 / 60; frameDelta = 0; clock = new THREE.Clock(); // In the animation loop (the requestAnimationFrame callback)… frameDelta += clock.getDelta(); // API: "Get the seconds passed since the last call to this method." while (frameDelta >= INV_MAX_FPS) { update(INV_MAX_FPS); // calculate physics frameDelta -= INV_MAX_FPS; } How I think this works: Firstly we set INV_MAX_FPS to 0.01666666666 How we will use this number number does not jump out at me. We then intialize a frameDelta which stores how long the last loop took to run. Come the first loop frameDelta is not greater than INV_MAX_FPS so the loop is not run (0 = 0.01666666666). So nothing happens. Now I really don't know what would cause this to happen, but let's pretend that the loop we just went through took 2 seconds to complete: We set frameDelta to 2: frameDelta += clock.getDelta(); frameDelta += 2.00 Now we run an animation thanks to update(0.01666666666). Again what is relevance of 0.01666666666?? And then we take away 0.01666666666 from the frameDelta: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 2 - 0.01666666666 frameDelta = 1.98333333334 So let's go into the second loop. Let's say it took 2(? Why not 2? Or 12? I am a bit confused): frameDelta += clock.getDelta(); frameDelta = frameDelta + clock.getDelta(); frameDelta = 1.98333333334 + 2 frameDelta = 3.98333333334 This time we enter the while loop because 3.98333333334 = 0.01666666666 We run update We take away 0.01666666666 from frameDelta again: frameDelta -= INV_MAX_FPS; frameDelta = frameDelta - INV_MAX_FPS; frameDelta = 3.98333333334 - 0.01666666666 frameDelta = 3.96666666668 Now let's pretend the loop is super quick and runs in just 0.1 seconds and continues to do this. (Because the computer isn't busy any more). Basically, the update function will be run, and every loop we take away 0.01666666666 from the frameDelta untill the frameDelta is less than 0.01666666666. And then nothing happens until the computer runs slowly again? Could someone shed some light please? Does the update() update the scalar or something like that and we still have to times everything by the scalar like in the first example?

    Read the article

  • Character creation using spritesheets

    - by Patrick Developer
    I am currently creating a 2D fighting game and have implemented a system where upon starting a new game, the player is presented with the option to create a custom character. I have a set of string arrays set with values that correspond to hair, headgear, chest, lower body and shoes. When done selecting a variety of items from the lists, a code is generated based off the index of each item (i.e 01123), which is then used to assign the correct Spritesheet to the player character. This has already presented a lot of work as I have had to create quite a few spreadsheets based of possible combinations, but I am now looking at a massive amount of work to implement each variation. I have started to look into setting layers for each item to reduce workload, but I am also looking at having different stances for the character - Depending on the currently equipped weapon - so this may present a lot of work either way. My question is, do I have any alternatives or am I stuck creating masses of Spritesheets to cover all combinations? As a side note, how much impact will assigning layered items have on overall performance?

    Read the article

  • A problem with texture atlasing in Unity

    - by Hamzeh Soboh
    I have the texture below and I need to get rectangular parts from it. I could finally combine meshes of different quads to improve performance, but I with quads of different tilings, this means different materials, then combining meshes will fail. Can anybody tell me how to have a part of that texture in C#? Such that all quads will be of the same material only then combining meshes passes. Thanks in advance.

    Read the article

  • Updating games for iOS 6 and new iPhone/iPod Touch

    - by SundayMonday
    Say I have a game that runs full-screen on iPhone 4S and older devices. The balance of the game is just right for the 480 x 320 screen and associated aspect ratio. Now I want to update my game to run full-screen on the new iPhone/iPod Touch where the aspect ratio of the screen is different. It seems like this can be challenging for some games in terms of maintaining the "balance". For example if the extra screen space was just tacked onto the right side of Jet Pack Joyride the balance would be thrown off since the user now has more time to see and react to obstacles. Also it could be challenging in terms of code maintenance. Perhaps Jet Pack Joyride would slightly increase the speed of approaching obstacles when the game is played on newer devices. However this quickly becomes messy when extra conditional statements are added all over the code. One solution is to have some parameters that are set in once place at start-up depending on the device type. What are some strategies for updating iOS games to run on the new iPhone and iPod Touch?

    Read the article

  • Most efficient way to handle coordinate maps in Java

    - by glowcoder
    I have a rectangular tile-based layout. It's your typical Cartesian system. I would like to have a single class that handles two lookup styles Get me the set of players at position X,Y Get me the position of player with key K My current implementation is this: class CoordinateMap<V> { Map<Long,Set<V>> coords2value; Map<V,Long> value2coords; // convert (int x, int y) to long key - this is tested, works for all values -1bil to +1bil // My map will NOT require more than 1 bil tiles from the origin :) private Long keyFor(int x, int y) { int kx = x + 1000000000; int ky = y + 1000000000; return (long)kx | (long)ky << 32; } // extract the x and y from the keys private int[] coordsFor(long k) { int x = (int)(k & 0xFFFFFFFF) - 1000000000; int y = (int)((k >>> 32) & 0xFFFFFFFF) - 1000000000; return new int[] { x,y }; } } From there, I proceed to have other methods that manipulate or access the two maps accordingly. My question is... is there a better way to do this? Sure, I've tested my class and it works fine. And sure, something inside tells me if I want to reference the data by two different keys, I need two different maps. But I can also bet I'm not the first to run into this scenario. Thanks!

    Read the article

  • Clear edged sprite

    - by Ananth
    I am a newbie to cocos2d. I would like make user to draw similar to what a painting brush would do. I am using CCSprite for that. I almost implemented the velocity, color and opacity factors for that tool, but I couldn't get the Sprite to be as clear as it should be. I can draw only in the below image http://i.imgur.com/KBe0L.png which has blunt edges. But I want it to be harder / clear outside edges as in http://i.stack.imgur.com/GrFlv.png. I am getting no idea to make it clear edged. The piece of code Im using is glEnable(GL_BLEND); [brush.texture setAliasTexParameters]; [brush setBlendFunc:(ccBlendFunc){GL_ONE, GL_ONE_MINUS_SRC_ALPHA}]; [brush visit]; I suspect the problem would be on blending mode. I tried some blending modes, but with no expected results. I am trying this for the past five days and so confused. Can some one help me sort this out? Thanks in advance.

    Read the article

  • Collision detection, stop gravity

    - by Scott Beeson
    I just started using Gamemaker Studio and so far it seems fairly intuitive. However, I set a room to "Room is Physics World" and set gravity to 10. I then enabled physics on my player object and created a block object to match a platform on my background sprite. I set up a Collision Detection event for the player and the block objects that sets the gravity to 0 (and even sets the vspeed to 0). I also put a notification in the collision event and I don't get that either. I have my key down and key up events working well, moving the player left and right and changing the sprites appropriately, so I think I understand the event system. I must just be missing something simple with the physics. I've tried making both and neither of the objects "solid". Pretty frustrating since it looks so easy. The player starting point is directly above the block object in the grid and the player does fall through the block. I even made the block sprite solid red so I could see it (initially it was invisible, obviously).

    Read the article

  • How does Minecraft renders its sunset and sky?

    - by Nick
    In Minecraft, the sunset looks really beautiful and I've always wanted to know how they do it. Do they use several skyboxes rendered over eachother? That is, one for the sky (which can turn dark and light depending on the time of the day), one for the sun and moon, and one for the orange horizon effect? I was hoping someone could enlighten me... I wish I could enter wireframe or something like that but as far as I know that is not possible.

    Read the article

  • Creating models in 3ds max and exporting as .x for XNA

    - by Sweta Dwivedi
    I have created a few models in 3DS max which contains textures, geometry and animations . .however .fbx doesnt really support textures.. So im planning to use .x format.. I have seen a few converters in pandasoft but once i unzip the file and place the .dle file in the plugins folder of 3D max gives an error saying failed to initialize.. Is there any way to convert my .max models into .x format ? ? I dont know blender so that isnt an option. . I'm currently using 3ds max 2013 After adding the .3DS object content importer. . i get the following error:

    Read the article

  • Pixel Collision - Detecting corners

    - by Milkboat
    How would I go about detecting the corners of a texture when I use pixel collision detection? I read about corner collision with rectangles, but I am unsure how to adapt it to my situation. Right now my map is tile based and I do rectangular collision until the player is intersecting with a blocked tile, then I switch to pixel collision. The effect I would like to achieve is when the player hits the corner of an object to push him around the side so he doesn't just hit the edge and stop. Any ideas?

    Read the article

  • From simple physics with a ball, to a more complicated shape

    - by Maximus
    Hello fellow game devs and stack overflowers... I recently made a transition from OpenGL ES 1.1 to 2.0 (on Android via NDK) and things are going well so far. I'm working on doing a dice rolling application (gaming dice up to 20 sided, not just regular 6 sided die) as a way to learn more about how physics is implemented in a gaming environment. I've explored implementing existing engine options (such as Bullet) and I don't think I need to implement something quite so sophisticated. I've found several tutorials that handle a lot of the general physics involved with initial trajectory, velocity, angle of contact and reflection angle, etc. I'm confident that I'd be able to implement ball-like behavior without much trouble. My question lies in when I attempt to make the interaction of the die shape with another surface more "realistic," for example... the die strikes the floor surface at such an angle where only one corner makes contact with the floor. In my mind, the center of gravity of the object would play a part in determining how the die bounces away, possibly even spinning it it faster, etc... but I am not sure what the actual math involved is. Are there any recommended resources for getting into this level of detail? Initial searches haven't turned up much... Thanks to everyone in the community, -Jeremiah

    Read the article

  • Dynamic Dijkstra

    - by Dani
    I need dynamic dijkstra algorithm that can update itself when edge's cost is changed without a full recalculation. Full recalculation is not an option. I've tryed to "brew" my own implemantion with no success. I've also tryed to find on the Internet but found nothing. A link to an article explaining the algorithm or even it's name will be good. Edit: Thanks everyone for answering. I managed to make algorithm of my own that runs in O(V+E) time, if anyone wishes to know the algorithm just say so and I will post it.

    Read the article

  • Achieving certain rendering styles

    - by milesmeow
    I'm trying to assess the difficulty of creating a rendering style that is more like the game Okami and the Quake mods (as shown on this page...search for 'okami','quake npr'). Here's a better page describing the Quake rendering mod. Can a game engine such as Unity be used and programmed to achieve these kind of rendering styles? I'm doing research and am totally new to this so any insight into this would help tremendously.

    Read the article

  • How can I prevent seams from showing up on objects using lower mipmap levels?

    - by Shivan Dragon
    Disclaimer: kindly right click on the images and open them separately so that they're at full size, as there are fine details which don't show up otherwise. Thank you. I made a simple Blender model, it's a cylinder with the top cap removed: I've exported the UVs: Then imported them into Photoshop, and painted the inner area in yellow and the outer area in red. I made sure I cover well the UV lines: I then save the image and load it as texture on the model in Blender. Actually, I just reload it as the image where the UVs are exported, and change the viewport view mode to textured. When I look at the mesh up-close, there's yellow everywhere, everything seems fine: However, if I start zooming out, I start seeing red (literally and metaphorically) where the texture edges are: And the more I zoom, the more I see it: Same thing happends in Unity, though the effect seems less pronounced. Up close is fine and yellow: Zoom out and you see red at the seams: Now, obviously, for this simple example a workaround is to spread the yellow well outside the UV margins, and its fine from all distances. However this is an issue when you try making a complex texture that should tile seamlessly at the edges. In this situation I either make a few lines of pixels overlap (in which case it looks bad from upclose and ok from far away), or I leave them seamless and then I have those seams when seeing it from far away. So my question is, is there something I'm missing, or some extra thing I must do to have my texture look seamless from all distances?

    Read the article

  • Collision detection in 3D space

    - by dreta
    I've got to write, what can be summed up as, a compelte 3D game from scratch this semester. Up untill now i have only programmed 2D games in my spare time, the transition doesn't seem tough, the game's simple. The only issue i have is collision detection. The only thing i could find was AABB, bounding spheres or recommendations of various physics engines. I have to program a submarine that's going to be moving freely inside of a cave system, AFAIK i can't use physics libraries, so none of the above solves my problem. Up untill now i was using SAT for my collision detection. Are there any similar, great algorithms, but crafted for 3D collision? I'm not talking about octrees, or other optimalizations, i'm talking about direct collision detection of one set of 3D polygons with annother set of 3D polygons. I thought about using SAT twice, project the mesh from the top and the side, but then it seems so hard to even divide 3D space into convex shapes. Also that seems like far too much computation even with octrees. How do proffessionals do it? Could somebody shed some light.

    Read the article

  • C++ OpenGL wireframe cube rendering blank

    - by caleb.breckon
    I'm just trying to draw a bunch of lines that make up a "cube". I can't for the life of me figure out why this is producing a black screen. The debugger does not break at any point. I'm sure it's a problem with my pointers, as I'm only decent at them in regular c++ and in OpenGL it gets even worse. const char* vertexSource = "#version 150\n" "in vec3 position;" "void main() {" " gl_Position = vec4(position, 1.0);" "}"; const char* fragmentSource = "#version 150\n" "out vec4 outColor;" "void main() {" " outColor = vec4(1.0, 1.0, 1.0, 1.0);" "}"; int main() { initializeGLFW(); // Initialize GLEW glewExperimental = GL_TRUE; glewInit(); // Create Vertex Array Object GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); // Create a Vertex Buffer Object and copy the vertex data to it GLuint vbo; glGenBuffers( 1, &vbo ); float vertices[] = { 1.0f, 1.0f, 1.0f, // Vertex 0 (X, Y, Z) -1.0f, 1.0f, 1.0f, // Vertex 1 (X, Y, Z) -1.0f, -1.0f, 1.0f, // Vertex 2 (X, Y, Z) 1.0f, -1.0f, 1.0f, // Vertex 3 (X, Y, Z) 1.0f, 1.0f, -1.0f, // Vertex 4 (X, Y, Z) -1.0f, 1.0f, -1.0f, // Vertex 5 (X, Y, Z) -1.0f, -1.0f, -1.0f, // Vertex 6 (X, Y, Z) 1.0f, -1.0f, -1.0f // Vertex 7 (X, Y, Z) }; GLuint indices[] = { 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 }; glBindBuffer( GL_ARRAY_BUFFER, vbo ); glBufferData( GL_ARRAY_BUFFER, sizeof( vertices ), vertices, GL_STATIC_DRAW ); //glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, vbo); //glBufferData( GL_ELEMENT_ARRAY_BUFFER, sizeof( indices ), indices, GL_STATIC_DRAW ); // Create and compile the vertex shader GLuint vertexShader = glCreateShader( GL_VERTEX_SHADER ); glShaderSource( vertexShader, 1, &vertexSource, NULL ); glCompileShader( vertexShader ); // Create and compile the fragment shader GLuint fragmentShader = glCreateShader( GL_FRAGMENT_SHADER ); glShaderSource( fragmentShader, 1, &fragmentSource, NULL ); glCompileShader( fragmentShader ); // Link the vertex and fragment shader into a shader program GLuint shaderProgram = glCreateProgram(); glAttachShader( shaderProgram, vertexShader ); glAttachShader( shaderProgram, fragmentShader ); glBindFragDataLocation( shaderProgram, 0, "outColor" ); glLinkProgram (shaderProgram); glUseProgram( shaderProgram); // Specify the layout of the vertex data GLint posAttrib = glGetAttribLocation( shaderProgram, "position" ); glEnableVertexAttribArray( posAttrib ); glVertexAttribPointer( posAttrib, 3, GL_FLOAT, GL_FALSE, 0, 0 ); // Main loop while(glfwGetWindowParam(GLFW_OPENED)) { // Clear the screen to black glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); glClear( GL_COLOR_BUFFER_BIT ); // Draw lines from 2 vertices glDrawElements(GL_LINES, sizeof(indices), GL_UNSIGNED_INT, indices ); // Swap buffers glfwSwapBuffers(); } // Clean up glDeleteProgram( shaderProgram ); glDeleteShader( fragmentShader ); glDeleteShader( vertexShader ); //glDeleteBuffers( 1, &ebo ); glDeleteBuffers( 1, &vbo ); glDeleteVertexArrays( 1, &vao ); glfwTerminate(); exit( EXIT_SUCCESS ); }

    Read the article

  • How to keep balance / Unlock items / achievement rules

    - by Mark Knol
    I'm working on an engine for a game, too learn javascript and just because its fun. I'm a flashdeveloper, I know how to build websites. Now making games is a different challenge, javascript is a challenge, but I'd love to learn how to structure code and what patterns are common. I dont mind if the game ever finish, I'm mostly interested in the programming part of it. I dont have a particular endresult in mind, so I'll see where it takes me. I currently have a system where you can buy items. The items cost a specified amount of gold, silver, diamonds etc. When you have selected and bought the item, it takes time before getting rewarded. When time is over, you are getting rewarded with other properties (gold, energy, diamonds). For example, you can buy an apple for 50gold, It takes a minute, you get rewarded with 75energy. Or if you take a run, it cost 50energy, it takes 5minutes, reward is 25gold and 25silver. These definitions is what i call actions. Currently I already have a system where this already works and I can define as much actions with as much properties as I want. The definitions I have kinda looks like this: {id:101, category:544, onInit:{gold:-75}, onComplete:{energy:75}, time:2000, name:"Apple", locked: false} {id:102, category:544, onInit:{gold:-135}, onComplete:{energy:145}, time:2000, name:"Banana", locked: false} {id:106, category:302, onInit:{energy:-50, power: -25}, onComplete:{gold:100, diamonds:2}, time:10000, name:"Run", locked: false} {id:107, category:302, onInit:{energy:-70, silver: -55}, onComplete:{gold:100}, time:10000, name:"Dance", locked: false} {id:108, category:302, onInit:{energy:-230, power: -355}, onComplete:{gold:70, silver:70}, time:10000, name:"Fitness", locked: false} Now, I would love to add a system where I can lock/unlock the actions using achievement rules. Lets say, if you buy 10 apples, you unlock a new action, like bananas which cost more, and reward more. In the future I maybe want to restrict achievements and actions to levels. I am kinda stuck how to structure this. I have 2 questions: Which patterns are used to define achievements? How/where are they defined? Should it be part of the action, or should it be a separate controller? Is it a good idea to register all completed actions to it? I think I want multiple types of achievement rules, Id love to hear some ideas how to develop it. How do you create/find a good balance, so the user does not get stuck or can cheat by repeat a pattern of actions to get too much rewards. I know there is not a simple answer and i'm lacking of a good game-concept, but I wonder if anyone created such a game and how you dealed and played with it.

    Read the article

  • geomipmapping using displacement mapping (and glVertexAttribDivisor)

    - by Will
    I wake up with a clear vision, but sadly my laptop card doesn't do displacement mapping nor glVertexAttribDivisor so I can't test it out; I'm left sharing here: With geomipmapping, the grid at any factor is transposable - if you pass in an offset - say as a uniform - you can reuse the same vertex and index array again and again. If you also pass in the offset into the heightmap as a uniform, the vertex shader can do displacement mapping. If the displacement map is mipmapped, you get the advantages of trilinear filtering for distant maps. And, if the scenery is closer, rather than exposing that the you have a world made out of quads, you can use your transposable grid vertex array and indices to do vertex-shader interpolation (fancy splines) to do super-smooth infinite zoom? So I have some questions: does it work? In theory, in practice? does anyone do it? Does this technique have a name? Papers, demos, anything I can look at? does glVertexAttribDivisor mean that you can have a single glMultiDrawElementsEXT or similar approach to draw all your terrain tiles in one call rather than setting up the uniforms and emitting each tile? Would this offer any noticeable gains? does a heightmap that is GL_LUMINANCE take just one byte per pixel(=vertex)? (On mainstream cards, obviously. Does storage vary in practice?) Does going to the effort of reusing the same vertices and indices mean that you can basically fill the GPU RAM with heightmap and not a lot else, giving you either bigger landscapes or more detailed landscapes/meshes for the same bang? is mipmapping the displacement map going to work? On future cards? Is it going to introduce unsurmountable inaccuracies if it is enabled?

    Read the article

  • Actually utilizing relational databases for entity systems

    - by Marc Müller
    Recently I was researching several entity systems and obviously I came across T=Machine's fantastic articles on the subject. In Part 5 of the series the author uses a relational schema to explain how an entity system is built and works. Since reading this, I have been wondering whether or not actually using a compact SQL library would be fast enough for real-time usage in video games. Performance seems to be the main issue with a full blown SQL database for management of all entities and components. However, as mentioned in T=Machine's post, basically all access to data inside the SQLDB is done sequentlially by each system over each component. Additionally, using a library like SQLite, one could easily improve performance by storing the entity data exclusively in RAM to increase access speeds. Disregarding possible performance issues, using a SQL database, in my opinion, would allow for a very intuitive implementation of entity systems and bring a long certain other benefits like easy de/serialization of game states and consistency checks like the uniqueness of entity IDs. Edit for clarification: The main question was whether using a SQL database for the actual entity management (not just storing the game state on the disk) in a real-time game would still yield a framerate appropriate for a game or even if someone is aware of projects that demonstrate SQL in a video game.

    Read the article

  • What's wrong with this turn to face algorithm?

    - by Chan
    I implement a torpedo object that chases a rotating planet. Specifically, it will turn toward the planet each update. Initially my implement was: void move() { vector3<float> to_target = target - get_position(); to_target.normalize(); position += (to_target * speed); } which works perfectly for torpedo that is a solid sphere. Now my torpedo is actually a model, which has a forward vector, so using this method looks odd because it doesn't actually turn toward but jump toward. So I revised it a bit to get, double get_rotation_angle(vector3<float> u, vector3<float> v) const { u.normalize(); v.normalize(); double cosine_theta = u.dot(v); // domain of arccosine is [-1, 1] if (cosine_theta > 1) { cosine_theta = 1; } if (cosine_theta < -1) { cosine_theta = -1; } return math3d::to_degree(acos(cosine_theta)); } vector3<float> get_rotation_axis(vector3<float> u, vector3<float> v) const { u.normalize(); v.normalize(); // fix linear case if (u == v || u == -v) { v[0] += 0.05; v[1] += 0.0; v[2] += 0.05; v.normalize(); } vector3<float> axis = u.cross(v); return axis.normal(); } void turn_to_face() { vector3<float> to_target = (target - position); vector3<float> axis = get_rotation_axis(get_forward(), to_target); double angle = get_rotation_angle(get_forward(), to_target); double distance = math3d::distance(position, target); gl_matrix_mode(GL_MODELVIEW); gl_push_matrix(); { gl_load_identity(); gl_translate_f(position.get_x(), position.get_y(), position.get_z()); gl_rotate_f(angle, axis.get_x(), axis.get_y(), axis.get_z()); gl_get_float_v(GL_MODELVIEW_MATRIX, OM); } gl_pop_matrix(); move(); } void move() { vector3<float> to_target = target - get_position(); to_target.normalize(); position += (get_forward() * speed); } The logic is simple, I find the rotation axis by cross product, the angle to rotate by dot product, then turn toward the target position each update. Unfortunately, it looks extremely odds since the rotation happens too fast that it always turns back and forth. The forward vector for torpedo is from the ModelView matrix, the third column A: MODELVIEW MATRIX -------------------------------------------------- R U A T -------------------------------------------------- 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 -------------------------------------------------- Any suggestion or idea would be greatly appreciated.

    Read the article

  • Scanline filling of polygons that share edges and vertices

    - by Belgin
    In this picture (a perspective projection of an icosahedron), the scanline (red) intersects that vertex at the top. In an icosahedron each edge belongs to two triangles. From edge a, only one triangle is visible, the other one is in the back. Same for edge d. Also, in order to determine what color the current pixel should be, each polygon has a flag which can either be 'in' or 'out', depending upon where on the scanline we currently are. Flags are flipped according to the intersection of the scanline with the edges. Now, as we go from a to d (because all edges are intersected with the scanline at that vertex), this happens: the triangle behind triangle 1 and triangle 1 itself are set 'in', then 2 is set in and 1 is 'out', then 3 is set 'in', 2 is 'out' and finally 3 is 'out' and the one behind it is set 'in', which is not the desired behavior because we only need the triangles which are facing us to be set 'in', the rest should be 'out'. How do process the edges in the Active Edge List (a list of edges that are currently intersected by the scanline) so the right polys are set 'in'? Also, I should mention that the edges are unique, which means there exists an array of edges in the data structure of the icosahedron which are pointed to by edge pointers in each of the triangles.

    Read the article

  • Ensuring that saved data has not been edited in a game with both offline and online components

    - by Omar Kooheji
    I'm in the pre-planning phase of coming up with a game design and I was wondering if there was a sensible way to stop people from editing saves in a game with offline and online components. The offline component would allow the player to play through the game and the online component would allow them to play against other players, so I would need to make sure that people hadn't edited the source code/save files while offline to gain an advantage while online. Game likely to be developed in either .Net or Java, both of which are unfortunately easy to decompile.

    Read the article

  • Most efficient AABB - Ray intersection algorithm for input/output distance calculation

    - by Tobbey
    Thanks to the following thread : most efficient AABB vs Ray collision algorithms I have seen very fast algorithm for ray/AABB intersection point computation. Unfortunately, most of the recent algorithm are accelerated by omitting the "output" intersection point of the box. In my application, I would interested in getting both the the distance from source ray to input: t0 and source ray to output of bounding box: t1. I have seen for instance Eisemann designed a very fast version regarding plucker, smits, ... , but it does not compare the case when both input/output distance should be computed see: http://www.cg.cs.tu-bs.de/publications/Eisemann07FRA/ Does someone know where I can find more information on algorithm performances for the specific input/output problem ? Thank you in advance

    Read the article

  • Per-pixel displacement mapping GLSL

    - by Chris
    Im trying to implement a per-pixel displacement shader in GLSL. I read through several papers and "tutorials" I found and ended up with trying to implement the approach NVIDIA used in their Cascade Demo (http://www.slideshare.net/icastano/cascades-demo-secrets) starting at Slide 82. At the moment I am completly stuck with following problem: When I am far away the displacement seems to work. But as more I move closer to my surface, the texture gets bent in x-axis and somehow it looks like there is a little bent in general in one direction. EDIT: I added a video: click I added some screen to illustrate the problem: Well I tried lots of things already and I am starting to get a bit frustrated as my ideas run out. I added my full VS and FS code: VS: #version 400 layout(location = 0) in vec3 IN_VS_Position; layout(location = 1) in vec3 IN_VS_Normal; layout(location = 2) in vec2 IN_VS_Texcoord; layout(location = 3) in vec3 IN_VS_Tangent; layout(location = 4) in vec3 IN_VS_BiTangent; uniform vec3 uLightPos; uniform vec3 uCameraDirection; uniform mat4 uViewProjection; uniform mat4 uModel; uniform mat4 uView; uniform mat3 uNormalMatrix; out vec2 IN_FS_Texcoord; out vec3 IN_FS_CameraDir_Tangent; out vec3 IN_FS_LightDir_Tangent; void main( void ) { IN_FS_Texcoord = IN_VS_Texcoord; vec4 posObject = uModel * vec4(IN_VS_Position, 1.0); vec3 normalObject = (uModel * vec4(IN_VS_Normal, 0.0)).xyz; vec3 tangentObject = (uModel * vec4(IN_VS_Tangent, 0.0)).xyz; //vec3 binormalObject = (uModel * vec4(IN_VS_BiTangent, 0.0)).xyz; vec3 binormalObject = normalize(cross(tangentObject, normalObject)); // uCameraDirection is the camera position, just bad named vec3 fvViewDirection = normalize( uCameraDirection - posObject.xyz); vec3 fvLightDirection = normalize( uLightPos.xyz - posObject.xyz ); IN_FS_CameraDir_Tangent.x = dot( tangentObject, fvViewDirection ); IN_FS_CameraDir_Tangent.y = dot( binormalObject, fvViewDirection ); IN_FS_CameraDir_Tangent.z = dot( normalObject, fvViewDirection ); IN_FS_LightDir_Tangent.x = dot( tangentObject, fvLightDirection ); IN_FS_LightDir_Tangent.y = dot( binormalObject, fvLightDirection ); IN_FS_LightDir_Tangent.z = dot( normalObject, fvLightDirection ); gl_Position = (uViewProjection*uModel) * vec4(IN_VS_Position, 1.0); } The VS just builds the TBN matrix, from incoming normal, tangent and binormal in world space. Calculates the light and eye direction in worldspace. And finally transforms the light and eye direction into tangent space. FS: #version 400 // uniforms uniform Light { vec4 fvDiffuse; vec4 fvAmbient; vec4 fvSpecular; }; uniform Material { vec4 diffuse; vec4 ambient; vec4 specular; vec4 emissive; float fSpecularPower; float shininessStrength; }; uniform sampler2D colorSampler; uniform sampler2D normalMapSampler; uniform sampler2D heightMapSampler; in vec2 IN_FS_Texcoord; in vec3 IN_FS_CameraDir_Tangent; in vec3 IN_FS_LightDir_Tangent; out vec4 color; vec2 TraceRay(in float height, in vec2 coords, in vec3 dir, in float mipmap){ vec2 NewCoords = coords; vec2 dUV = - dir.xy * height * 0.08; float SearchHeight = 1.0; float prev_hits = 0.0; float hit_h = 0.0; for(int i=0;i<10;i++){ SearchHeight -= 0.1; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = coords + dUV * (1.0-hit_h) * 10.0f - dUV; vec2 Temp = NewCoords; SearchHeight = hit_h+0.1; float Start = SearchHeight; dUV *= 0.2; prev_hits = 0.0; hit_h = 0.0; for(int i=0;i<5;i++){ SearchHeight -= 0.02; NewCoords += dUV; float CurrentHeight = textureLod(heightMapSampler,NewCoords.xy, mipmap).r; float first_hit = clamp((CurrentHeight - SearchHeight - prev_hits) * 499999.0,0.0,1.0); hit_h += first_hit * SearchHeight; prev_hits += first_hit; } NewCoords = Temp + dUV * (Start - hit_h) * 50.0f; return NewCoords; } void main( void ) { vec3 fvLightDirection = normalize( IN_FS_LightDir_Tangent ); vec3 fvViewDirection = normalize( IN_FS_CameraDir_Tangent ); float mipmap = 0; vec2 NewCoord = TraceRay(0.1,IN_FS_Texcoord,fvViewDirection,mipmap); //vec2 ddx = dFdx(NewCoord); //vec2 ddy = dFdy(NewCoord); vec3 BumpMapNormal = textureLod(normalMapSampler, NewCoord.xy, mipmap).xyz; BumpMapNormal = normalize(2.0 * BumpMapNormal - vec3(1.0, 1.0, 1.0)); vec3 fvNormal = BumpMapNormal; float fNDotL = dot( fvNormal, fvLightDirection ); vec3 fvReflection = normalize( ( ( 2.0 * fvNormal ) * fNDotL ) - fvLightDirection ); float fRDotV = max( 0.0, dot( fvReflection, fvViewDirection ) ); vec4 fvBaseColor = textureLod( colorSampler, NewCoord.xy,mipmap); vec4 fvTotalAmbient = fvAmbient * fvBaseColor; vec4 fvTotalDiffuse = fvDiffuse * fNDotL * fvBaseColor; vec4 fvTotalSpecular = fvSpecular * ( pow( fRDotV, fSpecularPower ) ); color = ( fvTotalAmbient + (fvTotalDiffuse + fvTotalSpecular) ); } The FS implements the displacement technique in TraceRay method, while always using mipmap level 0. Most of the code is from NVIDIA sample and another paper I found on the web, so I guess there cannot be much wrong in here. At the end it uses the modified UV coords for getting the displaced normal from the normal map and the color from the color map. I looking forward for some ideas. Thanks in advance! Edit: Here is the code loading the heightmap: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, mWidth, mHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, mImageData); glGenerateMipmap(GL_TEXTURE_2D); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); Maybe something wrong in here?

    Read the article

  • Making a Background Scrolling in Stacking Game

    - by David Dimalanta
    Hmmm...Is it a good idea to use a LibGDX parallax background for making a stacking game (i.e. PAPA STACKer Lite)? For example, I'm starting to use the blocks to drag-n-drop it. Next, when the next piece reaches the top of the screen, it automatically scrolls to the next one where the available space left. Aside from that, is it also involved with the camera code (Orthographic Camera) that the screen size appeared like 720x1280 but actually it's 1440x2560 for example? And another thing, does the background scrolling have the option to scroll from start to finish and infinite?

    Read the article

< Previous Page | 487 488 489 490 491 492 493 494 495 496 497 498  | Next Page >