Search Results

Search found 25550 results on 1022 pages for 'umbraco development'.

Page 501/1022 | < Previous Page | 497 498 499 500 501 502 503 504 505 506 507 508  | Next Page >

  • Very basic OpenGL ES 2 error

    - by user16547
    This is an incredibly simple shader, yet I'm having a lot of trouble understanding what's wrong with it. I'm trying to send a float to my fragment shader. Its purpose is to adjust the alpha of the fragment colour. Here is my fragment shader: precision mediump float; uniform sampler2D u_Texture; uniform float u_Alpha; varying vec2 v_TexCoordinate; void main() { gl_FragColor = texture2D(u_Texture, v_TexCoordinate); gl_FragColor.a *= u_Alpha; } and below is my rendering method. I get a 1282 (invalid operation) on the GLES20.glUniform1f(u_Alpha, alpha); line. alpha is 1 (but I tried other values as well) and transparent is true: public void render() { GLES20.glUseProgram(mProgram); if(transparent) { GLES20.glEnable(GLES20.GL_BLEND); GLES20.glBlendFunc(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE_MINUS_SRC_ALPHA); GLES20.glUniform1f(u_Alpha, alpha); } Matrix.setIdentityM(mModelMatrix, 0); Matrix.rotateM(mModelMatrix, 0, angle, 0, 0, 1); Matrix.translateM(mModelMatrix, 0, x, y, z); Matrix.multiplyMM(mMVPMatrix, 0, mViewMatrix, 0, mModelMatrix, 0); Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mMVPMatrix, 0); GLES20.glUniformMatrix4fv(u_MVPMatrix, 1, false, mMVPMatrix, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, vbo[0]); GLES20.glVertexAttribPointer(a_Position, 3, GLES20.GL_FLOAT, false, 12, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, vbo[1]); GLES20.glVertexAttribPointer(a_TexCoordinate, 2, GLES20.GL_FLOAT, false, 8, 0); //snowTexture start GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureHandle[0]); GLES20.glUniform1i(u_Texture, 0); GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, ibo[0]); GLES20.glDrawElements(GLES20.GL_TRIANGLE_STRIP, indices.capacity(), GLES20.GL_UNSIGNED_BYTE, 0); GLES20.glBindBuffer(GLES20.GL_ARRAY_BUFFER, 0); GLES20.glBindBuffer(GLES20.GL_ELEMENT_ARRAY_BUFFER, 0); if(transparent) { GLES20.glDisable(GLES20.GL_BLEND); } GLES20.glUseProgram(0); }

    Read the article

  • Bounding Box Collision Glitching Problem (Pygame)

    - by Ericson Willians
    So far the "Bounding Box" method is the only one that I know. It's efficient enough to deal with simple games. Nevertheless, the game I'm developing is not that simple anymore and for that reason, I've made a simplified example of the problem. (It's worth noticing that I don't have rotating sprites on my game or anything like that. After showing the code, I'll explain better). Here's the whole code: from pygame import * DONE = False screen = display.set_mode((1024,768)) class Thing(): def __init__(self,x,y,w,h,s,c): self.x = x self.y = y self.w = w self.h = h self.s = s self.sur = Surface((64,48)) draw.rect(self.sur,c,(self.x,self.y,w,h),1) self.sur.fill(c) def draw(self): screen.blit(self.sur,(self.x,self.y)) def move(self,x): if key.get_pressed()[K_w] or key.get_pressed()[K_UP]: if x == 1: self.y -= self.s else: self.y += self.s if key.get_pressed()[K_s] or key.get_pressed()[K_DOWN]: if x == 1: self.y += self.s else: self.y -= self.s if key.get_pressed()[K_a] or key.get_pressed()[K_LEFT]: if x == 1: self.x -= self.s else: self.x += self.s if key.get_pressed()[K_d] or key.get_pressed()[K_RIGHT]: if x == 1: self.x += self.s else: self.x -= self.s def warp(self): if self.y < -48: self.y = 768 if self.y > 768 + 48: self.y = 0 if self.x < -64: self.x = 1024 + 64 if self.x > 1024 + 64: self.x = -64 r1 = Thing(0,0,64,48,1,(0,255,0)) r2 = Thing(6*64,6*48,64,48,1,(255,0,0)) while not DONE: screen.fill((0,0,0)) r2.draw() r1.draw() # If not intersecting, then moves, else, it moves in the opposite direction. if not ((((r1.x + r1.w) > (r2.x - r1.s)) and (r1.x < ((r2.x + r2.w) + r1.s))) and (((r1.y + r1.h) > (r2.y - r1.s)) and (r1.y < ((r2.y + r2.h) + r1.s)))): r1.move(1) else: r1.move(0) r1.warp() if key.get_pressed()[K_ESCAPE]: DONE = True for ev in event.get(): if ev.type == QUIT: DONE = True display.update() quit() The problem: In my actual game, the grid is fixed and each tile has 64 by 48 pixels. I know how to deal with collision perfectly if I moved by that size. Nevertheless, obviously, the player moves really fast. In the example, the collision is detected pretty well (Just as I see in many examples throughout the internet). The problem is that if I put the player to move WHEN IS NOT intersecting, then, when it touches the obstacle, it does not move anymore. Giving that problem, I began switching the directions, but then, when it touches and I press the opposite key, it "glitches through". My actual game has many walls, and the player will touch them many times, and I can't afford letting the player go through them. The code-problem illustrated: When the player goes towards the wall (Fine). When the player goes towards the wall and press the opposite direction. (It glitches through). Here is the logic I've designed before implementing it: I don't know any other method, and I really just want to have walls fixed in a grid, but move by 1 or 2 or 3 pixels (Slowly) and have perfect collision without glitching-possibilities. What do you suggest?

    Read the article

  • How can I port a MonoGame Windows Phone 8 game to iOS?

    - by Homer_Simpson
    I downloaded the trial version of Xamarin Studio and installed it on my iMac. In addition, I installed Xcode on my iMac so that I can use the iPhone emulators in Xamarin Studio. But I don't know how to use my MonoGame Windows Phone 8 source files in a Xamarin iPhone project. How can I use my Windows Phone code in an iPhone project? Can I import all my existing classes(for example Game1.cs) in an iPhone project without changing something? How can I port a MonoGame Windows Phone 8 game to iOS?

    Read the article

  • 2D Polygon Triangulation

    - by BleedObsidian
    I am creating a game engine using the JBox2D physics engine. It only allows you to create polygon fixtures up to 8 vertices, To create a body with more than 8 vertices, you need to create multiple fixtures for the body. My question is, How can I split the polygons a user creates into smaller polygons for JBox2D? Also, what topology should I use when splitting the polygons and why? (If JBox2D can have up to 8 vertices, why not split polygons into 8 per polygon)

    Read the article

  • Handling player/background movements in 2D games

    - by lukeluke
    Suppose you have your animated character controlled by the player and a 2D world (like the old 2D side-scrolling games). When the user press right on the keyboard, the background is moved to the right. If the path is always horizontal, this is simple to do (incrementation/decrementation of the x-coordinate). But suppose that the path is instead a polygonal chain. My questions are: How do you move the background? How do you move the background if the game objects are managed with a physics engine like box2D?

    Read the article

  • AABB vs OBB Collision Resolution jitter on corners

    - by patt4179
    I've implemented a collision library for a character who is an AABB and am resolving collisions between AABB vs AABB and AABB vs OBB. I wanted slopes for certain sections, so I've toyed around with using several OBBs to make one, and it's working great except for one glaring issue; The collision resolution on the corner of an OBB makes the player's AABB jitter up and down constantly. I've tried a few things I've thought of, but I just can't wrap my head around what's going on exactly. Here's a video of what's happening as well as my code: Here's the function to get the collision resolution (I'm likely not doing this the right way, so this may be where the issue lies): public Vector2 GetCollisionResolveAmount(RectangleCollisionObject resolvedObject, OrientedRectangleCollisionObject b) { Vector2 overlap = Vector2.Zero; LineSegment edge = GetOrientedRectangleEdge(b, 0); if (!SeparatingAxisForRectangle(edge, resolvedObject)) { LineSegment rEdgeA = new LineSegment(), rEdgeB = new LineSegment(); Range axisRange = new Range(), rEdgeARange = new Range(), rEdgeBRange = new Range(), rProjection = new Range(); Vector2 n = edge.PointA - edge.PointB; rEdgeA.PointA = RectangleCorner(resolvedObject, 0); rEdgeA.PointB = RectangleCorner(resolvedObject, 1); rEdgeB.PointA = RectangleCorner(resolvedObject, 2); rEdgeB.PointB = RectangleCorner(resolvedObject, 3); rEdgeARange = ProjectLineSegment(rEdgeA, n); rEdgeBRange = ProjectLineSegment(rEdgeB, n); rProjection = GetRangeHull(rEdgeARange, rEdgeBRange); axisRange = ProjectLineSegment(edge, n); float axisMid = (axisRange.Maximum + axisRange.Minimum) / 2; float projectionMid = (rProjection.Maximum + rProjection.Minimum) / 2; if (projectionMid > axisMid) { overlap.X = axisRange.Maximum - rProjection.Minimum; } else { overlap.X = rProjection.Maximum - axisRange.Minimum; overlap.X = -overlap.X; } } edge = GetOrientedRectangleEdge(b, 1); if (!SeparatingAxisForRectangle(edge, resolvedObject)) { LineSegment rEdgeA = new LineSegment(), rEdgeB = new LineSegment(); Range axisRange = new Range(), rEdgeARange = new Range(), rEdgeBRange = new Range(), rProjection = new Range(); Vector2 n = edge.PointA - edge.PointB; rEdgeA.PointA = RectangleCorner(resolvedObject, 0); rEdgeA.PointB = RectangleCorner(resolvedObject, 1); rEdgeB.PointA = RectangleCorner(resolvedObject, 2); rEdgeB.PointB = RectangleCorner(resolvedObject, 3); rEdgeARange = ProjectLineSegment(rEdgeA, n); rEdgeBRange = ProjectLineSegment(rEdgeB, n); rProjection = GetRangeHull(rEdgeARange, rEdgeBRange); axisRange = ProjectLineSegment(edge, n); float axisMid = (axisRange.Maximum + axisRange.Minimum) / 2; float projectionMid = (rProjection.Maximum + rProjection.Minimum) / 2; if (projectionMid > axisMid) { overlap.Y = axisRange.Maximum - rProjection.Minimum; overlap.Y = -overlap.Y; } else { overlap.Y = rProjection.Maximum - axisRange.Minimum; } } return overlap; } And here is what I'm doing to resolve it right now: if (collisionDetection.OrientedRectangleAndRectangleCollide(obb, player.PlayerCollision)) { var resolveAmount = collisionDetection.GetCollisionResolveAmount(player.PlayerCollision, obb); if (Math.Abs(resolveAmount.Y) < Math.Abs(resolveAmount.X)) { var roundedAmount = (float)Math.Floor(resolveAmount.Y); player.PlayerCollision._position.Y -= roundedAmount; } else if (Math.Abs(resolveAmount.Y) <= 30.0f) //Catch cases where the player should be able to step over the top of something { var roundedAmount = (float)Math.Floor(resolveAmount.Y); player.PlayerCollision._position.Y -= roundedAmount; } else { var roundedAmount = (float)Math.Floor(resolveAmount.X); player.PlayerCollision._position.X -= roundedAmount; } } Can anyone see what might be the issue here, or has anyone experienced this before that knows a possible solution? I've tried for a few days to figure this out on my own, but I'm just stumped.

    Read the article

  • How do I improve terrain rendering batch counts using DirectX?

    - by gamer747
    We have determined that our terrain rendering system needs some work to minimize the number of batches being transferred to the GPU in order to improve performance. I'm looking for suggestions on how best to improve what we're trying to accomplish. We logically split our terrain mesh into smaller grid cells which are 32x32 world units. Each cell has meta data that dictates the four 256x256 textures that are used for spatting along with the alpha blend data, shadow, and light mappings. Each cell contains 81 vertices in a 9x9 grid. Presently, we examine each cell and determine the four textures that are being used to spat the cell. We combine that geometry with any other cell that perhaps uses the same four textures regardless of spat order. If the spat order for a cell differs, the blend map is adjusted so that the spat order is maintained the same as other like cells and blending happens in the right order too. But even with this batching approach, it isn't uncommon when looking out across an area of open terrain to have between 1200-1700 batch count depending upon how frequently textures differ or have different texture blends are between cells. We are only doing frustum culling presently. So using texture spatting, are there other alternatives that can reduce the batch count and allow rendering to be extremely performance-friendly even under DirectX9c? We considered using texture atlases since we're targeting DirectX 9c & older OpenGL platforms but trying to repeat textures using atlases and shaders result in seam artifacts which we haven't been able to eliminate with the exception of disabling mipmapping. Disabling mipmapping results in poor quality textures from a distance. How have others batched together terrain geometry such that one could spat terrain using various textures, minimizing batch count and texture state switches so that rendering performance isn't negatively impacted?

    Read the article

  • Cutting out smaller rectangles from a larger rectangle

    - by Mauro Destro
    The world is initially a rectangle. The player can move on the world border and then "cut" the world via orthogonal paths (not oblique). When the player reaches the border again I have a list of path segments they just made. I'm trying to calculate and compare the two areas created by the path cut and select the smaller one to remove it from world. After the first iteration, the world is no longer a rectangle and player must move on border of this new shape. How can I do this? Is it possible to have a non rectangular path? How can I move the player character only on path? EDIT Here you see an example of what I'm trying to achieve: Initial screen layout. Character moves inside the world and than reaches the border again. Segment of the border present in the smaller area is deleted and last path becomes part of the world border. Character moves again inside the world. Segments of border present in the smaller area are deleted etc.

    Read the article

  • How do I make A* check all diagonal and orthogonal directions?

    - by Munezane
    I'm making a turn-based tactical game and I'm trying to implement the A* algorithm. I've been following a tutorial and got to this point, but my characters can't move diagonally up and left. Can anyone help me with this? The return x and y are int pointers which the characters are using to move towards the target. void level::aStar(int startx, int starty, int targetx, int targety, int* returnx, int* returny) { aStarGridSquare* currentSquare = new aStarGridSquare(); aStarGridSquare* startSquare = new aStarGridSquare(); aStarGridSquare* targetSquare = new aStarGridSquare(); aStarGridSquare* adjacentSquare = new aStarGridSquare(); aStarOpenList.clear(); for(unsigned int i=0; i<aStarGridSquareList.size(); i++) { aStarGridSquareList[i]->open=false; aStarGridSquareList[i]->closed=false; } startSquare=getaStarGridSquare(startx, starty); targetSquare=getaStarGridSquare(targetx, targety); if(startSquare==targetSquare) { *returnx=startx; *returny=starty; return; } startSquare->CostFromStart=0; startSquare->CostToTraverse=0; startSquare->parent = NULL; currentSquare=startSquare; aStarOpenList.push_back(currentSquare); while(currentSquare!=targetSquare && aStarOpenList.size()>0) { //unsigned int totalCostEstimate=aStarOpenList[0]->TotalCostEstimate; //currentSquare=aStarOpenList[0]; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList.size()>1) { for(unsigned int j=1; j<aStarOpenList.size()-1; j++) { if(aStarOpenList[i]->TotalCostEstimate<aStarOpenList[j]->TotalCostEstimate) { currentSquare=aStarOpenList[i]; } else { currentSquare=aStarOpenList[j]; } } } else { currentSquare = aStarOpenList[i]; } } currentSquare->closed=true; currentSquare->open=false; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList[i]==currentSquare) { aStarOpenList.erase(aStarOpenList.begin()+i); } } for(unsigned int i = currentSquare->blocky - 32; i <= currentSquare->blocky + 32; i+=32) { for(unsigned int j = currentSquare->blockx - 32; j<= currentSquare->blockx + 32; j+=32) { adjacentSquare=getaStarGridSquare(j/32, i/32); if(adjacentSquare!=NULL) { if(adjacentSquare->blocked==false && adjacentSquare->closed==false) { if(adjacentSquare->open==false) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->open = true; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx- targetSquare->blockx) + abs(adjacentSquare->blocky-targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; //adjacentSquare->open=true;*/ aStarOpenList.push_back(adjacentSquare); } else { if(adjacentSquare->parent->CostFromStart > currentSquare->CostFromStart) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->CostFromStart = adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx - targetSquare->blockx) + abs(adjacentSquare->blocky - targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; } } } } } } } if(aStarOpenList.size()==0)//if empty { *returnx =startx; *returny =starty; return; } else { for(unsigned int i=0; i< aStarOpenList.size(); i++) { if(currentSquare->parent==NULL) { //int tempX = targetSquare->blockx; //int tempY = targetSquare->blocky; *returnx=targetSquare->blockx; *returny=targetSquare->blocky; break; } else { currentSquare=currentSquare->parent; } } } }

    Read the article

  • Animation Color [on hold]

    - by user2425429
    I'm having problems in my java program for animation. I'm trying to draw a hexagon with a shape similar to that of a trapezoid. Then, I'm making it move to the right for a certain amount of time (DEMO_TIME). Animation and ScreenManager are "API" classes, and AnimationTest1 is a demo. In my test program, it runs with a black screen and white stroke color. I'd like to know why this happened and how to fix it. I'm a beginner, so I apologize for this question being stupid to all you game programmers. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • Draw contour around object in Opengl

    - by Maciekp
    I need to draw contour around 2d objects in 3d space. I tried drawing lines around object(+points to fill the gap), but due to line width, some part of it(~50%) was covering object. I tried to use stencil buffer, to eliminate this problem, but I got sth like this(contour is green): http://goo.gl/OI5uc (sorry I can't post images, due to my reputation) You can see(where arrow points), that some parts of line are behind object, and some are above. This changes when I move camera, but always there is some part, that is covering it. Here is code, that I use for drawing object: glColorMask(1,1,1,1); std::list<CObjectOnScene*>::iterator objIter=ptr->objects.begin(),objEnd=ptr->objects.end(); int countStencilBit=1; while(objIter!=objEnd) { glColorMask(1,1,1,1); glStencilFunc(GL_ALWAYS,countStencilBit,countStencilBit); glStencilOp(GL_REPLACE,GL_KEEP,GL_REPLACE ); (*objIter)->DrawYourVertices(); glStencilFunc(GL_NOTEQUAL,countStencilBit,countStencilBit); glStencilOp(GL_KEEP,GL_KEEP,GL_REPLACE); (*objIter)->DrawYourBorder(); ++objIter; ++countStencilBit; } I've tried different settings of stencil buffer, but always I was getting sth like that. Here is question: 1.Am I setting stencil buffer wrong? 2. Are there any other simple ways to create contour on such objects? Thanks in advance. EDIT: 1. I don't have normals of objects. 2. Object can be concave. 3. I can't use shaders(see below why).

    Read the article

  • Setting density for Android game

    - by Asghar
    I am developing an Android game, in which a ball (bitmap) translates( is in motion). So I have provided motion equations for the ball. I have checked my app on Samsung galaxy S2 whose actual density is roundly 252 dpi, and It works fine on that. So my question is that Does these motions of bitmaps in surfaceView, depends on actual density of phone( i.e 252 dpi for S2) or generalized density(i.e 240 dpi). I am confused whether if I run this app on 235 dpi smartphone, So will it have the same performance of motion as it is on Galaxy S2( with 252 dpi) or it would be little slow ? Any help will be appreciated.

    Read the article

  • How do I deal with the problems of a fast side-scroller?

    - by Ska
    I'm making a side scrolling airplane game and when I begin going very fast I begin to experience some problems as a player: Elements are not distinguishable, like power-ups from bullets, etc I start to feel dizzy and uncomfortable There isn't enough time to see what's coming How can I sort this out? Do I use less details in all the grahpics? Tiny Wings has the same horizontal movement speed as in my game but it doesn't suffer from these problems. Are there any other really fast side-scrollers I could take as a reference?

    Read the article

  • HTML5 game programming style

    - by fnx
    I am currently trying learn javascript in form of HTML5 games. Stuff that I've done so far isn't too fancy since I'm still a beginner. My biggest concern so far has been that I don't really know what is the best way to code since I don't know the pros and cons of different methods, nor I've found any good explanations about them. So far I've been using the worst (and propably easiest) method of all (I think) since I'm just starting out, for example like this: var canvas = document.getElementById("canvas"); var ctx = canvas.getContext("2d"); var width = 640; var height = 480; var player = new Player("pic.png", 100, 100, ...); also some other global vars... function Player(imgSrc, x, y, ...) { this.sprite = new Image(); this.sprite.src = imgSrc; this.x = x; this.y = y; ... } Player.prototype.update = function() { // blah blah... } Player.prototype.draw = function() { // yada yada... } function GameLoop() { player.update(); player.draw(); setTimeout(GameLoop, 1000/60); } However, I've seen a few examples on the internet that look interesting, but I don't know how to properly code in these styles, nor do I know if there are names for them. These might not be the best examples but hopefully you'll get the point: 1: Game = { variables: { width: 640, height: 480, stuff: value }, init: function(args) { // some stuff here }, update: function(args) { // some stuff here }, draw: function(args) { // some stuff here }, }; // from http://codeincomplete.com/posts/2011/5/14/javascript_pong/ 2: function Game() { this.Initialize = function () { } this.LoadContent = function () { this.GameLoop = setInterval(this.RunGameLoop, this.DrawInterval); } this.RunGameLoop = function (game) { this.Update(); this.Draw(); } this.Update = function () { // update } this.Draw = function () { // draw game frame } } // from http://www.felinesoft.com/blog/index.php/2010/09/accelerated-game-programming-with-html5-and-canvas/ 3: var engine = {}; engine.canvas = document.getElementById('canvas'); engine.ctx = engine.canvas.getContext('2d'); engine.map = {}; engine.map.draw = function() { // draw map } engine.player = {}; engine.player.draw = function() { // draw player } // from http://that-guy.net/articles/ So I guess my questions are: Which is most CPU efficient, is there any difference between these styles at runtime? Which one allows for easy expandability? Which one is the most safe, or at least harder to hack? Are there any good websites where stuff like this is explained? or... Does it all come to just personal preferance? :)

    Read the article

  • Syncing properties across a game server

    - by Vaughan Hilts
    I'm beginning to implement a simple scripting system into my networked server, and I've hit a snag. Before, I've been wrapping my calls into functions on objects that manipulate objects, but lately I've been finding this to be a pain for simple things. For example, if I set 'player.HP = 1'.. this works server-side. But the player side never sees this change unless I explicitly send a packet to inform the client. For many things like map swapping that require more complicated changes, like change X, Y, Map and do this.. I have a function. That's fine. But what about these small properties I want to sync?

    Read the article

  • Implement Fast Inverse Square Root in Javascript?

    - by BBz
    The Fast Inverse Square Root from Quake III seems to use a floating-point trick. As I understand, floating-point representation can have some different implementations. So is it possible to implement the Fast Inverse Square Root in Javascript? Would it return the same result? float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); return y; }

    Read the article

  • how to keep display tick rate steady when using continuous collision detection?

    - by nas Ns
    (I've just found about this forum). I hope it is ok to repost my question again here. I posted this question at stackoverflow, but it looks like I might get better help here. Here is the question: I've implemented basic particles motion simulation with continuous collision detection. But there is small issue in display. Assume simple case of circles moving inside square. All elastic collisions. no firction. All motion is constant speed. No forces are involved, no gravity. So when a particle is moving, it is always moving at constant speed (in between collisions) What I do now is this: Let the simulation time step be 1 second (for example). This is the time step simulation is advanced before displaying the new state (unless there is a collision sooner than this). At start of each time step, time for the next collision between any particles or a particle with a wall is determined. Call this the TOC time; let’s say TOC was .5 seconds in this case. Since TOC is smaller than the standard time step, then the system is moved by TOC and the new system is displayed so that the new display shows any collisions as just taking place (say 2 circles just touched each other’s, or a circle just touched a wall) Next, the collision(s) are resolved (i.e. speeds updated, changed directions etc..). A new step is started. The same thing happens. Now assume there is no collision detected within the next 1 second (those 2 circles above will not be in collision any more, even though they are still touching, due to their speeds showing they are moving apart now), Hence, simulation time is advanced now by the full one second, the standard time step, and particles are moved on the screen using 1 second simulation time and new display is shown. You see what has just happened: One frame ran for .5 seconds, but the next frame runs for 1 second, may be the 3rd frame is displayed after 2 seconds, may be the 4th frame is displayed after 2.8 seconds (because TOC was .8 seconds then) and so on. What happens is that the motion of a particle on the screen appears to speed up or slow down, even though it is moving at constant speed and was not even involved in a collision. i.e. Looking at one particle on its own, I see it suddenly speeding up or slowing down, becuase another particle had hit a wall. This is because the display tick is not uniform. i.e. the frame rate update is changing, giving the false illusion that a particle is moving at non-constant speed while in fact it is moving at constant speed. The motion on the screen is not smooth, since the screen is not updating at constant rate. I am not able to figure how to fix this. If I want to show 2 particles at the moment of the collision, I must draw the screen at different times. Drawing the screen always at the same tick interval, results in seeing 2 particles before the collision, and then after the collision, and not just when they colliding, which looked bad when I tried it. So, how do real games handle this issue? How to display things in order to show collisions when it happen, yet keep the display tick constant? These 2 requirements seem to contradict each other’s.

    Read the article

  • Ouya / Android : button mapping biwise

    - by scorvi
    I am programming a game with the Gameplay3d Engine. But the Android site has no gamepad support and that is what I need to port my game to Ouya. So I implemented a simple gamepad support and it supports 2 gamepads. So my problem is that I put the button stats in a float array for every gamepad. But the Gameplay3d engine saves their stats in a unsigned int _buttons variable. It is set with bitwise operations and I have no clue how to translate my array to this.

    Read the article

  • One-way platform collision

    - by TheBroodian
    I hate asking questions that are specific to my own code like this, but I've run into a pesky roadblock and could use some help getting around it. I'm coding floating platforms into my game that will allow a player to jump onto them from underneath, but then will not allow players to fall through them once they are on top, which require some custom collision detection code. The code I have written so far isn't working, the character passes through it on the way up, and on the way down, stops for a moment on the platform, and then falls right through it. Here is the code to handle collisions with floating platforms: protected void HandleFloatingPlatforms(Vector2 moveAmount) { //if character is traveling downward. if (moveAmount.Y > 0) { Rectangle afterMoveRect = collisionRectangle; afterMoveRect.Offset((int)moveAmount.X, (int)moveAmount.Y); foreach (World_Objects.GameObject platform in gameplayScreen.Entities) { if (platform is World_Objects.Inanimate_Objects.FloatingPlatform) { //wideProximityArea is just a rectangle surrounding the collision //box of an entity to check for nearby entities. if (wideProximityArea.Intersects(platform.CollisionRectangle) || wideProximityArea.Contains(platform.CollisionRectangle)) { if (afterMoveRect.Intersects(platform.CollisionRectangle)) { //This, in my mind would denote that after the character is moved, its feet have fallen below the top of the platform, but before he had moved its feet were above it... if (collisionRectangle.Bottom <= platform.CollisionRectangle.Top) { if (afterMoveRect.Bottom > platform.CollisionRectangle.Top) { //And then after detecting that he has fallen through the platform, reposition him on top of it... worldLocation.Y = platform.CollisionRectangle.Y - frameHeight; hasCollidedVertically = true; } } } } } } } } In case you are curious, the parameter moveAmount is found through this code: elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; float totalX = 0; float totalY = 0; foreach (Vector2 vector in velocities) { totalX += vector.X; totalY += vector.Y; } velocities.Clear(); velocity.X = totalX; velocity.Y = totalY; velocity.Y = Math.Min(velocity.Y, 1000); Vector2 moveAmount = velocity * elapsed;

    Read the article

  • 2D Topdown Shooter - Player Movement Relative to Mouse

    - by Jarmo
    I'm trying to make a topdown 2D space game for my school project. I'm almost done but I just want to add a few little things to make the game more fun to play. if (keystate.IsKeyDown(Keys.W)) { vPlayerPos += Vector2.Normalize(new Vector2(Mouse.GetState().X - vPlayerPos.X, Mouse.GetState().Y - vPlayerPos.Y)) * 3; rPlayer.X = (int)vPlayerPos.X; rPlayer.Y = (int)vPlayerPos.Y; } if (keystate.IsKeyDown(Keys.S)) { vPlayerPos += Vector2.Normalize(new Vector2(Mouse.GetState().X - vPlayerPos.X, Mouse.GetState().Y - vPlayerPos.Y)) * -3; rPlayer.X = (int)vPlayerPos.X; rPlayer.Y = (int)vPlayerPos.Y; } This is what i use to move towards and away from my mouse crossair. I tried to make a somewhat similar function to make it strafe with "A" and "D". But for some reason I just couldn't get it done. Any thoughts?

    Read the article

  • rotate player based off of joystick

    - by pengume
    Hey everyone I have this game that i am making in android and I have a touch screen joystick that moves the player around based on the joysticks position. I cant figure out how to also get the player to rotate at the same angle of the joystick. so when the joystick is to the left the players bitmap is rotated to the left as well. Maybe someone here has some sample code I could look at here is the joysticks class that I am using. `public class GameControls implements OnTouchListener { public float initx = DroidzActivity.screenWidth - 45; //255; // 320 og 425 public float inity = DroidzActivity.screenHeight - 45;//425; // 480 og 267 public Point _touchingPoint = new Point( DroidzActivity.screenWidth - 45, DroidzActivity.screenHeight - 45); public Point _pointerPosition = new Point(DroidzActivity.screenWidth - 100, DroidzActivity.screenHeight - 100); // ogx 220 ogy 150 private Boolean _dragging = false; private boolean attackMode = false; @Override public boolean onTouch(View v, MotionEvent event) { update(event); return true; } private MotionEvent lastEvent; public boolean ControlDragged; private static double angle; public void update(MotionEvent event) { if (event == null && lastEvent == null) { return; } else if (event == null && lastEvent != null) { event = lastEvent; } else { lastEvent = event; } // drag drop if (event.getAction() == MotionEvent.ACTION_DOWN) { if ((int) event.getX() > 0 && (int) event.getX() < 50 && (int) event.getY() > DroidzActivity.screenHeight - 160 && (int) event.getY() < DroidzActivity.screenHeight - 0) { setAttackMode(true); } else { _dragging = true; } } else if (event.getAction() == MotionEvent.ACTION_UP) { if(isAttackMode()){ setAttackMode(false); } _dragging = false; } if (_dragging) { ControlDragged = true; // get the pos _touchingPoint.x = (int) event.getX(); _touchingPoint.y = (int) event.getY(); // Log.d("GameControls", "x = " + _touchingPoint.x + " y = " //+ _touchingPoint.y); // bound to a box if (_touchingPoint.x < DroidzActivity.screenWidth - 75) { // og 400 _touchingPoint.x = DroidzActivity.screenWidth - 75; } if (_touchingPoint.x > DroidzActivity.screenWidth - 15) {// og 450 _touchingPoint.x = DroidzActivity.screenWidth - 15; } if (_touchingPoint.y < DroidzActivity.screenHeight - 75) {// og 240 _touchingPoint.y = DroidzActivity.screenHeight - 75; } if (_touchingPoint.y > DroidzActivity.screenHeight - 15) {// og 290 _touchingPoint.y = DroidzActivity.screenHeight - 15; } // get the angle setAngle(Math.atan2(_touchingPoint.y - inity, _touchingPoint.x - initx) / (Math.PI / 180)); // Move the ninja in proportion to how far // the joystick is dragged from its center _pointerPosition.y += Math.sin(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // og 180 70 _pointerPosition.x += Math.cos(getAngle() * (Math.PI / 180)) * (_touchingPoint.x / 70); // make the pointer go thru if (_pointerPosition.x > DroidzActivity.screenWidth) { _pointerPosition.x = 0; } if (_pointerPosition.x < 0) { _pointerPosition.x = DroidzActivity.screenWidth; } if (_pointerPosition.y > DroidzActivity.screenHeight) { _pointerPosition.y = 0; } if (_pointerPosition.y < 0) { _pointerPosition.y = DroidzActivity.screenHeight; } } else if (!_dragging) { ControlDragged = false; // Snap back to center when the joystick is released _touchingPoint.x = (int) initx; _touchingPoint.y = (int) inity; // shaft.alpha = 0; } } public void setAttackMode(boolean attackMode) { this.attackMode = attackMode; } public boolean isAttackMode() { return attackMode; } public void setAngle(double angle) { this.angle = angle; } public static double getAngle() { return angle; } }` I should also note that the player has animations based on when he is moving or attacking. EDIT: I got the angle and am rotating the sprite around in the correct angle however it rotates on the wrong spot. My sprite is one giant bitmap that gets cut into four pieces and only one shown at a time to animate walking. here is the code I am using to rotate him right now. ` public void draw(Canvas canvas,int pointerX, int pointerY) { Matrix m; if (setRotation){ // canvas.save(); m = new Matrix(); m.reset(); // spriteWidth and spriteHeight are for just the current frame showed //m.setTranslate(spriteWidth / 2, spriteHeight / 2); //get and set rotation for ninja based off of joystick m.preRotate((float) GameControls.getRotation()); //create the rotated bitmap flipedSprite = Bitmap.createBitmap(bitmap , 0, 0,bitmap.getWidth(),bitmap.getHeight() , m, true); //set new bitmap to rotated ninja setBitmap(flipedSprite); setRotation = false; // canvas.restore(); Log.d("Ninja View", "angle of rotation= " +(float) GameControls.getRotation()); } ` And then the draw method // create the destination rectangle for the ninjas current animation frame // pointerX and pointerY are from the joystick moving the ninja around destRect = new Rect(pointerX, pointerY, pointerX + spriteWidth, pointerY + spriteHeight); canvas.drawBitmap(bitmap, getSourceRect(), destRect, null);

    Read the article

  • C# XNA Make rendered screen a texture2d

    - by redcodefinal
    I am working on a cool little city generator which makes cities in the isometric perspective. However, a problem arose where if the grid size was over a certain limit it would have awful lag. I found the main problem to be in the draw method. So I took the precautionary step of rendering only items that were onscreen. This fixed the lag but, not by much. The idea I have is to render the frame once and take a snapshot. Then, display that as a texture2d on screen. This way I don't have to render 1,000,000 objects every frame since they don't change anyways. TL;DR - I want to Take a snapshot of an already rendered frame Turn it into a Texture2D Render that to the screen instead of all the objects. Any help appreciated.

    Read the article

  • Will we see a trend of stereoscopic 3D games coming up in the near future?

    - by Vish
    I've noticed that the trend of movies is diving into the world of movies with 3-dimensional camera.For me it provoked a thought as if it was the same feeling people got when they saw a colour movie for the first time, like in the transition from black and white to colour it is a whole new experience. For the first time we are experiencing the Z(depth) factor and I really mean when I said "experiencing". So my question is or maybe if not a question, but Is there a possibility of a genre of 3d camera games upcoming?

    Read the article

  • How could I implement 3D player collision with rotation in LWJGL?

    - by Tinfoilboy
    I have a problem with my current collision implementation. Currently for player collision, I just use an AABB where I check if another AABB is in the way of the player, as shown in this code. (The code below is a sample of checking for collisions in the Z axis) for (int z = (int) (this.position.getZ()); z > this.position.getZ() - moveSpeed - boundingBoxDepth; z--) { // The maximum Z you can get. int maxZ = (int) (this.position.getZ() - moveSpeed - boundingBoxDepth) + 1; AxisAlignedBoundingBox aabb = WarmupWeekend.getInstance().currentLevel.getAxisAlignedBoundingBoxAt(new Vector3f(this.position.getX(), this.position.getY(), z)); AxisAlignedBoundingBox potentialCameraBB = new AxisAlignedBoundingBox(this, "collider", new Vector3f(this.position.getX(), this.position.getY(), z), boundingBoxWidth, boundingBoxHeight, boundingBoxDepth); if (aabb != null) { if (potentialCameraBB.colliding(aabb) && aabb.COLLIDER_TYPE.equalsIgnoreCase("collider")) { break; } else if (!potentialCameraBB.colliding(aabb) && z == maxZ) { if (this.grounded) { playFootstep(); } this.position.z -= moveSpeed; break; } } else if (z == maxZ) { if (this.grounded) { playFootstep(); } this.position.z -= moveSpeed; break; } } Now, when I tried to implement rotation to this method, everything broke. I'm wondering how I could implement rotation to this block (and as all other checks in each axis are the same) and others. Thanks in advance.

    Read the article

  • OpenGL - Rendering from part of an index and vertex array depending on an element count

    - by user1423893
    I'm currently drawing my shapes as lines by using a VAO and then assigning the dynamic vertices and indices each frame. // Bind VAO glBindVertexArray(m_vao); // Update the vertex buffer with the new data (Copy data into the vertex buffer object) glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); // Update the index buffer with the new data (Copy data into the index buffer object) glBufferData(GL_ELEMENT_ARRAY_BUFFER, numIndices * sizeof(unsigned short), indices.data(), GL_DYNAMIC_DRAW); glDrawElements(GL_LINES, numIndices, GL_UNSIGNED_SHORT, BUFFER_OFFSET(0)); // Unbind VAO glBindVertexArray(0); What I would like to do is draw the lines using only part of the data stored in the index and vertex buffer objects. The vertex buffer has its vertices set from an array of defined maximum size: std::array<VertexPosition, maxVertices> m_vertices; The index buffer has its elements set from an array of defined maximum size: std::array<unsigned short, maxIndices> indices = { 0 }; A running total is kept of the number of vertices and indices needed for each draw call numVertices numIndices Can I not specify that the buffer data contain the entire array and only read from part of it when drawing? For example using the vertex buffer object glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); m_vertices.data() = Entire array is stored numVertices * sizeof(VertexPosition) = Amount of data to read from the entire array Is this not the correct way to approach this? I do not wish to use std::vector if possible.

    Read the article

< Previous Page | 497 498 499 500 501 502 503 504 505 506 507 508  | Next Page >