Search Results

Search found 25952 results on 1039 pages for 'development lifecycle'.

Page 505/1039 | < Previous Page | 501 502 503 504 505 506 507 508 509 510 511 512  | Next Page >

  • how to keep display tick rate steady when using continuous collision detection?

    - by nas Ns
    (I've just found about this forum). I hope it is ok to repost my question again here. I posted this question at stackoverflow, but it looks like I might get better help here. Here is the question: I've implemented basic particles motion simulation with continuous collision detection. But there is small issue in display. Assume simple case of circles moving inside square. All elastic collisions. no firction. All motion is constant speed. No forces are involved, no gravity. So when a particle is moving, it is always moving at constant speed (in between collisions) What I do now is this: Let the simulation time step be 1 second (for example). This is the time step simulation is advanced before displaying the new state (unless there is a collision sooner than this). At start of each time step, time for the next collision between any particles or a particle with a wall is determined. Call this the TOC time; let’s say TOC was .5 seconds in this case. Since TOC is smaller than the standard time step, then the system is moved by TOC and the new system is displayed so that the new display shows any collisions as just taking place (say 2 circles just touched each other’s, or a circle just touched a wall) Next, the collision(s) are resolved (i.e. speeds updated, changed directions etc..). A new step is started. The same thing happens. Now assume there is no collision detected within the next 1 second (those 2 circles above will not be in collision any more, even though they are still touching, due to their speeds showing they are moving apart now), Hence, simulation time is advanced now by the full one second, the standard time step, and particles are moved on the screen using 1 second simulation time and new display is shown. You see what has just happened: One frame ran for .5 seconds, but the next frame runs for 1 second, may be the 3rd frame is displayed after 2 seconds, may be the 4th frame is displayed after 2.8 seconds (because TOC was .8 seconds then) and so on. What happens is that the motion of a particle on the screen appears to speed up or slow down, even though it is moving at constant speed and was not even involved in a collision. i.e. Looking at one particle on its own, I see it suddenly speeding up or slowing down, becuase another particle had hit a wall. This is because the display tick is not uniform. i.e. the frame rate update is changing, giving the false illusion that a particle is moving at non-constant speed while in fact it is moving at constant speed. The motion on the screen is not smooth, since the screen is not updating at constant rate. I am not able to figure how to fix this. If I want to show 2 particles at the moment of the collision, I must draw the screen at different times. Drawing the screen always at the same tick interval, results in seeing 2 particles before the collision, and then after the collision, and not just when they colliding, which looked bad when I tried it. So, how do real games handle this issue? How to display things in order to show collisions when it happen, yet keep the display tick constant? These 2 requirements seem to contradict each other’s.

    Read the article

  • List<T>.AddRange is causing a brief Update/Draw delay

    - by Justin Skiles
    I have a list of entities which implement an ICollidable interface. This interface is used to resolve collisions between entities. My entities are thus: Players Enemies Projectiles Items Tiles On each game update (about 60 t/s), I am clearing the list and adding the current entities based on the game state. I am accomplishing this via: collidableEntities.Clear(); collidableEntities.AddRange(players); collidableEntities.AddRange(enemies); collidableEntities.AddRange(projectiles); collidableEntities.AddRange(items); collidableEntities.AddRange(camera.VisibleTiles); Everything works fine until I add the visible tiles to the list. The first ~1-2 seconds of running the game loop causes a visible hiccup that delays drawing (so I can see a jitter in the rendering). I can literally remove/add the line that adds the tiles and see the jitter occur and not occur, so I have narrowed it down to that line. My question is, why? The list of VisibleTiles is about 450-500 tiles, so it's really not that much data. Each tile contains a Texture2D (image) and a Vector2 (position) to determine what is rendered and where. I'm going to keep looking, but from the top of my head, I can't understand why only the first 1-2 seconds hiccups but is then smooth from there on out. Any advice is appreciated.

    Read the article

  • Bouncing ball isssue

    - by user
    I am currently working on the 2D Bouncing ball physics that bounces the ball up and down. The physics behaviour works fine but at the end the velocity keep +3 then 0 non-stop even the ball has stopped bouncing. How should I modify the code to fix this issue? ballPos = D3DXVECTOR2( 50, 100 ); velocity = 0; accelaration = 3.0f; isBallUp = false; void GameClass::Update() { velocity += accelaration; ballPos.y += velocity; if ( ballPos.y >= 590 ) isBallUp = true; else isBallUp = false; if ( isBallUp ) { ballPos.y = 590; velocity *= -1; } // Graphics Rendering m_Graphics.BeginFrame(); ComposeFrame(); m_Graphics.EndFrame(); }

    Read the article

  • Should developers make their games easier with new versions?

    - by Gil Kalai
    It seems that the game Angry Birds is becoming gradually easier with new versions. Maybe so people get the illusion of progress and satisfaction of breaking new records? I would like to know if gradual small modifications of games to enhance the sense of improvement and learning by users is known/common/standard practice in game developing. (I don't mean to say that there is anything wrong with such a practice.)

    Read the article

  • How do I make A* check all diagonal and orthogonal directions?

    - by Munezane
    I'm making a turn-based tactical game and I'm trying to implement the A* algorithm. I've been following a tutorial and got to this point, but my characters can't move diagonally up and left. Can anyone help me with this? The return x and y are int pointers which the characters are using to move towards the target. void level::aStar(int startx, int starty, int targetx, int targety, int* returnx, int* returny) { aStarGridSquare* currentSquare = new aStarGridSquare(); aStarGridSquare* startSquare = new aStarGridSquare(); aStarGridSquare* targetSquare = new aStarGridSquare(); aStarGridSquare* adjacentSquare = new aStarGridSquare(); aStarOpenList.clear(); for(unsigned int i=0; i<aStarGridSquareList.size(); i++) { aStarGridSquareList[i]->open=false; aStarGridSquareList[i]->closed=false; } startSquare=getaStarGridSquare(startx, starty); targetSquare=getaStarGridSquare(targetx, targety); if(startSquare==targetSquare) { *returnx=startx; *returny=starty; return; } startSquare->CostFromStart=0; startSquare->CostToTraverse=0; startSquare->parent = NULL; currentSquare=startSquare; aStarOpenList.push_back(currentSquare); while(currentSquare!=targetSquare && aStarOpenList.size()>0) { //unsigned int totalCostEstimate=aStarOpenList[0]->TotalCostEstimate; //currentSquare=aStarOpenList[0]; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList.size()>1) { for(unsigned int j=1; j<aStarOpenList.size()-1; j++) { if(aStarOpenList[i]->TotalCostEstimate<aStarOpenList[j]->TotalCostEstimate) { currentSquare=aStarOpenList[i]; } else { currentSquare=aStarOpenList[j]; } } } else { currentSquare = aStarOpenList[i]; } } currentSquare->closed=true; currentSquare->open=false; for(unsigned int i=0; i<aStarOpenList.size(); i++) { if(aStarOpenList[i]==currentSquare) { aStarOpenList.erase(aStarOpenList.begin()+i); } } for(unsigned int i = currentSquare->blocky - 32; i <= currentSquare->blocky + 32; i+=32) { for(unsigned int j = currentSquare->blockx - 32; j<= currentSquare->blockx + 32; j+=32) { adjacentSquare=getaStarGridSquare(j/32, i/32); if(adjacentSquare!=NULL) { if(adjacentSquare->blocked==false && adjacentSquare->closed==false) { if(adjacentSquare->open==false) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->open = true; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx- targetSquare->blockx) + abs(adjacentSquare->blocky-targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; //adjacentSquare->open=true;*/ aStarOpenList.push_back(adjacentSquare); } else { if(adjacentSquare->parent->CostFromStart > currentSquare->CostFromStart) { adjacentSquare->parent=currentSquare; if(currentSquare->parent!=NULL) { currentSquare->CostFromStart = currentSquare->parent->CostFromStart + currentSquare->CostToTraverse + startSquare->CostFromStart; } else { currentSquare->CostFromStart=0; } adjacentSquare->CostFromStart =currentSquare->CostFromStart + adjacentSquare->CostToTraverse;// adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; //currentSquare->CostToEndEstimate = abs(currentSquare->blockx - targetSquare->blockx) + abs(currentSquare->blocky - targetSquare->blocky); //currentSquare->TotalCostEstimate = currentSquare->CostFromStart + currentSquare->CostToEndEstimate; adjacentSquare->CostFromStart = adjacentSquare->parent->CostFromStart + adjacentSquare->CostToTraverse; adjacentSquare->CostToEndEstimate=abs(adjacentSquare->blockx - targetSquare->blockx) + abs(adjacentSquare->blocky - targetSquare->blocky); adjacentSquare->TotalCostEstimate = adjacentSquare->CostFromStart+adjacentSquare->CostToEndEstimate; } } } } } } } if(aStarOpenList.size()==0)//if empty { *returnx =startx; *returny =starty; return; } else { for(unsigned int i=0; i< aStarOpenList.size(); i++) { if(currentSquare->parent==NULL) { //int tempX = targetSquare->blockx; //int tempY = targetSquare->blocky; *returnx=targetSquare->blockx; *returny=targetSquare->blocky; break; } else { currentSquare=currentSquare->parent; } } } }

    Read the article

  • Do all mods simply alter game files? [on hold]

    - by Starkers
    When you install some mods you drag certain files into your game directory and replace the files. Other mods, though, come with an installer where you can set parameters first. Does the installer then go and automatically replace the certain files? At the end of the day, is that all the installation of any mod is? Is the installation of a mod simply the replacement of certain files inside the game's root directory? Do mods exist which don't fit the above statement? That install outside the game's root? Why do they do this? All the mods I can think of do just replace certain files inside the game's root. However, I know Team Fortress was spawned from a multiplayer halflife 1 mod. Do you reckon that mod installed files outside the root to enable multiplayer via a network for a single player game? How rare are these mods? Or do they not even exist? Do even extensive mods make all their changes inside the root?

    Read the article

  • Which physics phenomenons can be simulated properly with Box2d or bullet physics? [on hold]

    - by user3585425
    Knowing that box2d or bullet physics can't simulate Newton's cradle (because of multiple bodies being in contact at the same time if I understand correctly), is there a sets of physics phenomenons that imply two or more objects that still can be simulated properly ? For example, I'm thinking about lightweight objects launched towards heavyweight objects. If the object is destroyed on contact, this would not make a difference if the energy is not transmitted correctly on impact.

    Read the article

  • 2D Polygon Triangulation

    - by BleedObsidian
    I am creating a game engine using the JBox2D physics engine. It only allows you to create polygon fixtures up to 8 vertices, To create a body with more than 8 vertices, you need to create multiple fixtures for the body. My question is, How can I split the polygons a user creates into smaller polygons for JBox2D? Also, what topology should I use when splitting the polygons and why? (If JBox2D can have up to 8 vertices, why not split polygons into 8 per polygon)

    Read the article

  • techniques for displaying vehicle damage

    - by norca
    I wonder how I can displaying vehicle damage. I am talking about an good way to show damage on screen. Witch kind of model are common in games and what are the benefits of them. What is state of the art? One way i can imagine is to save a set of textures (normal/color/lightmaps, etc) to a state of the car (normal, damage, burnt out) and switch or blending them. But is this really good without changing the model? Another way i was thinking about is preparing animations for different locations on my car, something like damage on the front, on the leftside/rightside or on the back. And start blending the specific animation. But is this working with good textures? Whats about physik engines? Is it usefull to use it for deforming vertexdata? i think losing parts of my car (doors, sirens, weapons) can looks really nice. my game is a kind of rts in a top down view. vehicles are not the really most importend units (its no racing game), but i have quite a lot in. thx for help

    Read the article

  • GLSL, all in one or many shader programs?

    - by stjepano
    I am doing some 3D demos using OpenGL and I noticed that GLSL is somewhat "limited" (or is it just me?). Anyway I have many different types of materials. Some materials have ambient and diffuse color, some materials have ambient occlusion map, some have specular map and bump map etc. Is it better to support everything in one vertex/fragment shader pair or is it better to create many vertex/fragment shaders and select them based on currently selected material? What is the usual shader strategy in OpenGL or D3D?

    Read the article

  • One-way platform collision

    - by TheBroodian
    I hate asking questions that are specific to my own code like this, but I've run into a pesky roadblock and could use some help getting around it. I'm coding floating platforms into my game that will allow a player to jump onto them from underneath, but then will not allow players to fall through them once they are on top, which require some custom collision detection code. The code I have written so far isn't working, the character passes through it on the way up, and on the way down, stops for a moment on the platform, and then falls right through it. Here is the code to handle collisions with floating platforms: protected void HandleFloatingPlatforms(Vector2 moveAmount) { //if character is traveling downward. if (moveAmount.Y > 0) { Rectangle afterMoveRect = collisionRectangle; afterMoveRect.Offset((int)moveAmount.X, (int)moveAmount.Y); foreach (World_Objects.GameObject platform in gameplayScreen.Entities) { if (platform is World_Objects.Inanimate_Objects.FloatingPlatform) { //wideProximityArea is just a rectangle surrounding the collision //box of an entity to check for nearby entities. if (wideProximityArea.Intersects(platform.CollisionRectangle) || wideProximityArea.Contains(platform.CollisionRectangle)) { if (afterMoveRect.Intersects(platform.CollisionRectangle)) { //This, in my mind would denote that after the character is moved, its feet have fallen below the top of the platform, but before he had moved its feet were above it... if (collisionRectangle.Bottom <= platform.CollisionRectangle.Top) { if (afterMoveRect.Bottom > platform.CollisionRectangle.Top) { //And then after detecting that he has fallen through the platform, reposition him on top of it... worldLocation.Y = platform.CollisionRectangle.Y - frameHeight; hasCollidedVertically = true; } } } } } } } } In case you are curious, the parameter moveAmount is found through this code: elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; float totalX = 0; float totalY = 0; foreach (Vector2 vector in velocities) { totalX += vector.X; totalY += vector.Y; } velocities.Clear(); velocity.X = totalX; velocity.Y = totalY; velocity.Y = Math.Min(velocity.Y, 1000); Vector2 moveAmount = velocity * elapsed;

    Read the article

  • Avatar creation / dressing feature

    - by milesmeow
    What is the effort required to use a game engine such as Unreal or Unity, etc. and create an avatar customization features...complete with clothes. The user should be able to customize the body features and the clothes need to then fit onto the customized body. What is needed? Can you create one set of 3D models for clothes and somehow programatically have the clothes adapt to the body shape? I.e. The same shirt model will be able to fit on a skinny person vs. someone with a big beer belly. How difficult is this? What are the steps needed to implement this avatar creation/dressing feature. I'm basically talking about something like in Rockband 3.

    Read the article

  • Animation Color [on hold]

    - by user2425429
    I'm having problems in my java program for animation. I'm trying to draw a hexagon with a shape similar to that of a trapezoid. Then, I'm making it move to the right for a certain amount of time (DEMO_TIME). Animation and ScreenManager are "API" classes, and AnimationTest1 is a demo. In my test program, it runs with a black screen and white stroke color. I'd like to know why this happened and how to fix it. I'm a beginner, so I apologize for this question being stupid to all you game programmers. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • C to C++ Conversion [closed]

    - by Annalyne
    Can someone convert this code to C++, pretty please? :( #include <stdio.h> #include <stdlib.h> #include <time.h> #define WEAPON_ROPE 10 #define WEAPON_REVOLVER 20 #define WEAPON_LEADPIPE 30 #define WEAPON_CANDLESTICK 40 #define WEAPON_KNIFE 50 #define WEAPON_WRENCH 60 #define PEOPLE_MRGREEN 100 #define PEOPLE_MSSCARLET 200 #define PEOPLE_CONLMUSTARD 300 #define PEOPLE_PROFPLUM 400 #define PEOPLE_MISPEACOCK 500 #define PEOPLE_MISWHITE 600 #define PLACE_KITCHEN 1 #define PLACE_HALL 2 #define PLACE_POOLROOM 3 #define PLACE_STUDY 4 #define PLACE_LOUNG 5 #define PLACE_LIBRARY 6 #define PLACE_CONSERVATORY 7 #define PLACE_DINING 8 #define PLACE_BILLIARDS 9 int main() { int die = 0; int players[6][9] = {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}}; int allCards[] = {WEAPON_ROPE, WEAPON_REVOLVER, WEAPON_LEADPIPE, WEAPON_CANDLESTICK, WEAPON_CANDLESTICK, WEAPON_KNIFE, WEAPON_WRENCH, PEOPLE_MRGREEN, PEOPLE_MSSCARLET, PEOPLE_CONLMUSTARD, PEOPLE_CONLMUSTARD, PEOPLE_PROFPLUM, PEOPLE_MISPEACOCK, PEOPLE_MISWHITE, PLACE_KITCHEN, PLACE_HALL, PLACE_POOLROOM, PLACE_STUDY, PLACE_LOUNG, PLACE_LIBRARY, PLACE_CONSERVATORY, PLACE_DINING, PLACE_BILLIARDS}; int deckSize = 23; // number of cards in allCards array int count; for (count = 0; count < deckSize; ++count) { printf(", %d", allCards[count]); } // End for // These three array's are so you can put a card back, if need be... int weaponCards[] = {WEAPON_ROPE, WEAPON_REVOLVER, WEAPON_LEADPIPE, WEAPON_CANDLESTICK, WEAPON_CANDLESTICK, WEAPON_KNIFE, WEAPON_WRENCH}; int weaponDeckSize = 7; int peopleCards[] = {PEOPLE_MRGREEN, PEOPLE_MSSCARLET, PEOPLE_CONLMUSTARD, PEOPLE_CONLMUSTARD, PEOPLE_PROFPLUM, PEOPLE_MISPEACOCK, PEOPLE_MISWHITE}; int peopleDeckSize = 7; int placeCards[] = {PLACE_KITCHEN, PLACE_HALL, PLACE_POOLROOM, PLACE_STUDY, PLACE_LOUNG, PLACE_LIBRARY, PLACE_CONSERVATORY, PLACE_DINING, PLACE_BILLIARDS}; int placeDeckSize = 9; srand(clock()); // seed rand() using clock() which gives // the current tick your processor is at... int killer[3]; // no need to initialize yet. killer[0-2] will initialize int deckShuffle = rand() % weaponDeckSize; // picks one number out of the deck killer[0] = weaponCards[deckShuffle]; allCards[deckShuffle] = 0; // Card drawn. No longer exists in deck deckShuffle = rand() % peopleDeckSize; // picks another random card out of the deck killer[1] = peopleCards[deckShuffle]; allCards[deckShuffle + weaponDeckSize] = 0; // Card drawn. No longer exists in deck deckShuffle = rand() % placeDeckSize; // randomly picks the last card needed killer[2] = placeCards[deckShuffle]; allCards[deckShuffle + weaponDeckSize + peopleDeckSize] = 0; // Card drawn. No longer exists in deck int numberOfCards = 0; printf("CLUE\n"); printf("written by John Schintone\n"); printf("Origonal game delvoped by Hasbro\n"); int numberOfPlayers = 0; while ((numberOfPlayers < 3) || (numberOfPlayers > 6)) { printf("How many players are Going to play :\n"); printf("[number] > "); scanf("%d",&numberOfPlayers); // A very fast if statement which only uses integers/char's switch(numberOfPlayers) { case 6: { numberOfCards = 3; } break; case 5: { numberOfCards = 4; } break; case 4: { numberOfCards = 5; } break; case 3: { numberOfCards = 6; } break; default: { printf("You must enter a number between 3 and 6...\n"); } // End default } // End switch } // End while int index1, index2; // Note: ++index1; is faster than index1++; and will almost always // produce better code (index1++ happens after this statement line. // ++index1 increments index1 before this statement line) for (index1 = 0; index1 < numberOfPlayers; ++index1) { printf("Player %d", index1); for (index2 = 0; index2 < numberOfCards; ++index2) { // Remember that allCards[deckShuffle] == 0 because we removed that // card ages ago... works out well, just don't forget you did that : ) while (allCards[deckShuffle] == 0) { deckShuffle = rand() % deckSize; } // End while players[index1][index2] = allCards[deckShuffle]; allCards[deckShuffle] = 0; // Card removed for after loop... printf(", %d", players[index1][index2]); switch(players[index1][index2]) { case WEAPON_ROPE: { } break; // Add more... case PEOPLE_MRGREEN: { } break; // Add more... case PLACE_KITCHEN: { } break; // Add more... default: { printf("Program has caught player %d cheating...", index1); } // End default } // End switch } // End for printf("\n"); } // End for printf("The killer is %d, with the %d, and in the %d \n\n", killer[0], killer[1], killer[2]); printf("Type h for this help... \n"); printf("Type e to escape... \n"); printf("Type r to roll the die... \n"); char command = '\0'; // \0 represents zero, or the null character while (command != 'e') { printf("[one character] > "); scanf("%c", &command); if (command == 'r') { die = rand() % 6 + 1; printf("Your number is: %d \n", die); } // end while if (command == 'h') { printf("Type h for this help... \n"); printf("Type e to escape... \n"); printf("Type r to roll the die... \n"); } // End if printf("\n"); } // End while return(0); // Success. Program worked ok } // End main() Function

    Read the article

  • Designing a simple snake A.I

    - by DillPixel
    I've looked at some stuff online regarding this specific topic, and a lot of the info that I read involved graphs and path finding. I really don't want to get involved in something too complex & out of my level, and also I don't need my snake to be that intelligent (it will be a large board with the snake not growing in size on every munch). How could you structure a simpler AI for the snake that gets the job done relatively well? I would be able to get the snake to move towards the food item correctly, but my issue is that I'm not sure how to deal with the snake colliding with itself. Say the snake has a look ahead, and it finds that its tail is in the way, it could change direction, but what happens next? Any ideas on how to tackle this? Should the snake build an instruction set from every square, or should it think on the go?

    Read the article

  • In OpenGl ES 2, should I allocate multiple transformation matrices?

    - by thm4ter
    In OpenGl ES 2, should I declare just one transformation matrix, and share it across all objects or should I declare a transformation matrix in each object that needs it? for clarification... something like this: public class someclass{ public static float[16] transMatrix = new float[16]; ... public static void translate(int x, int y){ //do translation here } } public class someotherclass{ ... void draw(GL10 unused){ someclass.translate(10,10); //draw } } verses something like this: public class obj1{ public static float[16] transMatrix = new float[16]; ... void draw(GL10 unused){ //translate //draw } } public class obj2{ public static float[16] transMatrix = new float[16]; ... void draw(GL10 unused){ //translate //draw } }

    Read the article

  • OpenGL ES 2.0 gluUnProject

    - by secheung
    I've spent more time than I should trying to get my ray picking program working. I'm pretty convinced my math is solid with respect to line plane intersection, but I believe the problem lies with the changing of the mouse screen touch into 3D world space. Heres my code: public void passTouchEvents(MotionEvent e){ int[] viewport = {0,0,viewportWidth,viewportHeight}; float x = e.getX(), y = viewportHeight - e.getY(); float[] pos1 = new float[4]; float[] pos2 = new float[4]; GLU.gluUnProject( x, y, 0.0f, mViewMatrix, 0, mProjectionMatrix, 0, viewport, 0, pos1, 0); GLU.gluUnProject( x, y, 1.0f, mViewMatrix, 0, mProjectionMatrix, 0, viewport, 0, pos2, 0); } Just as a reference I've tried transforming the coordinates 0,0,0 and got an offset. It would be appreciated if you would answer using OpenGL ES 2.0 code.

    Read the article

  • Scan-Line Z-Buffering Dilemma

    - by Belgin
    I have a set of vertices in 3D space, and for each I retain the following information: Its 3D coordinates (x, y, z). A list of pointers to some of the other vertices with which it's connected by edges. Right now, I'm doing perspective projection with the projecting plane being XY and the eye placed somewhere at (0, 0, d), with d < 0. By doing Z-Buffering, I need to find the depth of the point of a polygon (they're all planar) which corresponds to a certain pixel on the screen so I can hide the surfaces that are not visible. My questions are the following: How do I determine to which polygon does a pixel belong to so I could use the formula of the plane which contains the polygon to find the Z-coordinate? Are my data structures correct? Do I need to store something else entirely in order for this to work? I'm just projecting the vertices onto the projection plane and joining them with lines based on the pointer lists.

    Read the article

  • Handling buildings in isometric tile based games

    - by MustSeeMelons
    A simple question, to which i couldn't find a definitive answer - how to manage buildings on a tiled map? Should the building be sliced in to tiles or one big image? EDIT: The game is being built from scratch using C++/SDL 2.0, it will be a turn based strategy, something like Fallout 1 & 2 without the hex grid, a simple square grid, where the Y axis is squished by 50%. Buildings can span multiple tiles, the characters move tile by tile. For now, the terrain is completely flat. Some basic functionality is in place, so I'm aiming to advancing the terrain and levels them selves - adding buildings, gates, cliffs, not sure about the elevation.

    Read the article

  • Where does the light come from, using Maya/Panda3D?

    - by Aerovistae
    Total noob to Maya. Total noob to Panda3D. Planning on becoming really good at both as soon as I have free time to do so, but right now I have an assignment due in a few hours which requires this: (The part which confuses me is bolded.) Model and texture a vehicle and two different obstacles Build a scene graph in Panda with a plane, the vehicle, several copies of each of the obstacles, and (at least) a direction light Program vehicle movement, constrained to a plane (no terrain) Working headlights Vehicle collides with obstacles How do I attach a light source to a model? I'm assuming this is done in Panda3D but I'm sufficiently new to this that I wouldn't be astonished to hear it's part of the model.

    Read the article

  • Using multiplication and division with delta time

    - by tesselode
    Using delta time with addition and subtraction is easy. player.x += 100 * dt However, multiplication and division complicate things a bit. For example, let's say I want the player to double his speed every second. player.x = player.x * 2 * dt I can't do this because it'll slow down the player (unless delta time is really high). Division is the same way, except it'll speed things way up. How can I handle multiplication and division with delta time?

    Read the article

  • Setting a leader from a sprite array

    - by Craig
    I'm looking to set a leader from an array of sprites, I keep on getting a NullReferenceException was unhandled error from within my main game class when calling the UpdateMouse Method. What have I dont wrong here? class MouseSprite { Random random = new Random(); private MouseSprite leader; public void UpdateBoundaryBox() { mouseBounds.X = (int)mousePosition.X - mouseTexture.Width / 2; mouseBounds.Y = (int)mousePosition.Y - mouseTexture.Height / 2; } public void UpdateMouse(Vector2 position, MouseSprite [] mice, int numberMice, int index) { Vector2 catPosition = position; int enemies = numberMice; this.alive = true; mice[random.Next(0, mice.Length)] = leader;

    Read the article

  • 2D Smooth Turning in a Tile-Based Game

    - by ApoorvaJ
    I am working on a 2D top-view grid-based game. A ball that rolls on the grid made up of different tiles. The tiles interact with the ball in a variety of ways. I am having difficulty cleanly implementing the turning tile. The image below represents a single tile in the grid, which turns the ball by a right angle. If the ball rolls in from the bottom, it smoothly changes direction and rolls to the right. If it rolls in from the right, it is turned smoothly to the bottom. If the ball rolls in from top or left, its trajectory remains unchanged by the tile. The tile shouldn't change the magnitude of the velocity of the ball - only change its direction. The ball has Velocity and Position vectors, and the tile has Position and Dimension vectors. I have already implemented this, but the code is messy and buggy. What is an elegant way to achieve this, preferably by modification of the ball's Velocity vector by a formula?

    Read the article

  • How can I model a pendulum blade?

    - by Micah Delane Bolen
    Like this one from Saw V: What primitive shape/s would you start out with? How would you transform the primitive shape/s to give it a nice, smooth, sharp blade on one side without distorting the entire object in a weird way? I tried starting out with a cylinder and then subtracting the top half using a duplicate cylinder and a difference modifier, but I ended up distorting the entire object when I tried to pull the "blade" edges together. I think I need to add lattices to smoothly "sharpen" the edge of the blade.

    Read the article

  • Spherical to Cartesian Coordinates

    - by user1258455
    Well I'm reading the Frank's Luna DirectX10 book and, while I'm trying to understand the first demo, I found something that's not very clear at least for me. In the updateScene method, when I press A, S, W or D, the angles mTheta and mPhi change, but after that, there are three lines of code that I don't understand exactly what they do: // Convert Spherical to Cartesian coordinates: mPhi measured from +y // and mTheta measured counterclockwise from -z. float x = 5.0f*sinf(mPhi)*sinf(mTheta); float z = -5.0f*sinf(mPhi)*cosf(mTheta); float y = 5.0f*cosf(mPhi); I mean, this explains that they do, it says that it converts the spherical coordinates to cartesian coordinates, but, mathematically, why? why the x value is calculated by the product of the sins of both angles? And the z by the product of the sine and cosine? and why the y just uses the cosine? After that, those values (x, y and z) are used to build the view matrix. The book doesn't explain (mathematically) why those values are calculated like that (and I didn't find anything to help me to understand it at the first Part of the book: "Mathematical prerequisites"), so it would be good if someone could explain me what exactly happen in those code lines or just give me a link that helps me to understand the math part. Thanks in advance!

    Read the article

< Previous Page | 501 502 503 504 505 506 507 508 509 510 511 512  | Next Page >