Search Results

Search found 41789 results on 1672 pages for 'software development'.

Page 589/1672 | < Previous Page | 585 586 587 588 589 590 591 592 593 594 595 596  | Next Page >

  • Lighting-Reflectance Models & Licensing Issues

    - by codey
    Generally, or specifically, is there any licensing issue with using any of the well known lighting/reflectance models (i.e. the BRDFs or other distribution or approximation functions): Phong, Blinn–Phong, Cook–Torrance, Blinn-Torrance-Sparrow, Lambert, Minnaert, Oren–Nayar, Ward, Strauss, Ashikhmin-Shirley and common modifications where applicable, such as: Beckmann distribution, Blinn distribution, Schlick's approximation, etc. in your shader code utilised in a commercial product? Or is it a non-issue?

    Read the article

  • XNA - Moving Background Calculations

    - by Jesse Emond
    Hi, My question is relatively hard to explain(for me, at least), so I'll go one step at a time and just tell me in the comments if it's not clear enough. So I'm making a "Defend Your Castle" type 2D game, where two players own a castle and create units that will move horizontally to try to destroy the opponent's base. Here's a screenshot of the game: The distance between both castles is much bigger in a real game though, bigger than the screen's width actually. Because the distance is bigger than the screen's width, I had to implement a simple 2D camera: Camera2D, which only holds a Location Vector2 (and I always make sure this camera is within the field area). Then, I just move all the game elements(castles, units, health bars) by that location, so that if a unit is at (5, 0), and the camera's location is (5, 0), then the unit's position will be moved by 5 units to the left, making it (0, 0) on the screen. At first, I simply used a static background with mountains and clouds(yeah, those are supposed to be mountains and clouds). Obviously, this looked awful: when you moved the camera, the background would stay immobile. Instead, I'd like to make a moving background, kind of a "scrolling" one. But rather than making a background with the same width as the distance between the castles, I'd like to make one that is a little bit smaller(but still bigger than the screen's width). I thought this would create an effect of "distance" with the background(but it might just look awful, too). Here's the background I'm testing with: I tried different ways, but none of them seems to work. I tried this: float backgroundFieldRatio = BackgroundTexture.Width / fieldWidth;//find the ratio between the background and the field. float backgroundPositionX = -cam.Location.X * backgroundFieldRatio;//move the background to the left When I run this with fieldWith = 1600, BackgroundTexture.Width = 1500 and while looking at the rightmost area, the background is offset to the left by a too big amount, and we can see the black clear color in the back, as you can see here: I hope I explained properly what I'm trying to achieve. Thank you for your time. Note: I didn't know what to look for on Google, so I thought I'd ask here.

    Read the article

  • Updating physics for animated models

    - by Mathias Hölzl
    For a new game we have do set up a scene with a minimum of 30 bone animated models.(shooter) The problem is that the update process for the animated models takes too long. Thats what I do: Each character has ~30 bones and for every update tick the animation gets calculated and every bone fires a event with the new matrix. The physics receives the event with the new matrix and updates the collision shape for that bone. The time that it takes to build the animation isn't that bad (0.2ms for 30 Bones - 6ms for 30 models). But the main problem is that the physic engine (Bullet) uses a diffrent matrix for transformation and so its necessary to convert it. Code for matrix conversion: (~0.005ms) btTransform CLEAR_PHYSICS_API Mat_to_btTransform( Mat mat ) { btMatrix3x3 bulletRotation; btVector3 bulletPosition; XMFLOAT4X4 matData = mat.GetStorage(); // copy rotation matrix for ( int row=0; row<3; ++row ) for ( int column=0; column<3; ++column ) bulletRotation[row][column] = matData.m[column][row]; for ( int column=0; column<3; ++column ) bulletPosition[column] = matData.m[3][column]; return btTransform( bulletRotation, bulletPosition ); } The function for updating the transform(Physic): void CLEAR_PHYSICS_API BulletPhysics::VKinematicMove(Mat mat, ActorId aid) { if ( btRigidBody * const body = FindActorBody( aid ) ) { btTransform tmp = Mat_to_btTransform( mat ); body->setWorldTransform( tmp ); } } The real problem is the function FindActorBody(id): ActorIDToBulletActorMap::const_iterator found = m_actorBodies.find( id ); if ( found != m_actorBodies.end() ) return found->second; All physic actors are stored in m_actorBodies and thats why the updating process takes to long. But I have no idea how I could avoid this. Friendly greedings, Mathias

    Read the article

  • Bullet Physic: Transform body after adding

    - by Mathias Hölzl
    I would like to transform a rigidbody after adding it to the btDiscreteDynamicsWorld. When I use the CF_KINEMATIC_OBJECT flag I am able to transform it but it's static (no collision response/gravity). When I don't use the CF_KINEMATIC_OBJECT flag the transform doesn't gets applied. So how to I transform non-static objects in bullet? DemoCode: btBoxShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1)); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* myMotionState = new btDefaultMotionState(); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); body->setCollisionFlags(body->getCollisionFlags()|btCollisionObject::CF_KINEMATIC_OBJECT); body->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addRigidBody(body); startTransform.setOrigin(SCALING*btVector3( btScalar(0), btScalar(20), btScalar(0) )); body->getMotionState()->setWorldTransform(startTransform);

    Read the article

  • Balancing game difficulty against player progression

    - by Raven Dreamer
    It seems that the current climate of games seems to cater to an obvious progression of player power, whether that means getting a bigger, more explosive gun in Halo, leveling up in an RPG, or unlocking new options in Command and Conquer 4. Yet this concept is not exclusive to video or computer games -- even in Dungeons and Dragons players can strive to acquire a +2 sword to replace the +1 weapon they've been using. Yet as a systems designer, the concept of player progression is giving me headache after headache. Should I balance around the players exact capabilities and give up on a simple linear progression? (I think ESIV:Oblivion is a good example of this) Is it better to throw the players into an "arms race" with their opponents, where if the players don't progress in an orderly manner, it is only a matter of time until gameplay is unbearably difficult? (4th Edition DnD strikes me as a good example of this) Perhaps it would make most sense to untether the core gameplay mechanics from progression at all -- give them flashier, more interesting (but not more powerful!) ways to grow?

    Read the article

  • Efficient mapping layout in 2D side-scroller, and collisions between character and the world

    - by Jack
    I haven't touched Visual Studio for a couple months now, but I was playing a game from the '90s toady and had an epiphany: I was looking for something what i didn't need, and I wasn't using what I knew correctly. One of those realizations was collision, so let me tell you a bit about my project that I was working on. The project's graphics looks like Mario or Dangerous Dave, etc., you get the idea - old-school pixels. So anyway I remember trying to think of something else than AABB for character form, but I couldn't think of anything. Perhaps I could get a suggestion for this? Another thing is the world - I don't want it to be just linear world, I want mountains, etc.. My idea is to use triangles, and no idea yet what to do if I want just part of the cube, say 3/4 or 2/4 or whatever. Hard-coding such things seems inefficient. P.S. I am not looking at the precision level offered by Box2D. Actually I remember trying to implement it at first, but I failed as my understanding of C++ wasn't advanced enough, as it'll be mentioned below. P.P.S. I am programming in C++, and I haven't done it for a couple months now. I have no means of testing it either, as my PC is broken down, and this one can barely run games from late '90s, not to speak about a compiler or a program with inefficient resource management... I am also not an expert (obviously), I don't even know if I can consider myself an average programmer. In short, I am simply curious about my thoughts and my past experience when programming the game. I may come back to it when my PC is fixed, I'm already filling a note about these things.

    Read the article

  • Constructive criticsm on my linear sampling Gaussian blur

    - by Aequitas
    I've been attempting to implement a gaussian blur utilising linear sampling, I've come across a few articles presented on the web and a question posed here which dealt with the topic. I've now attempted to implement my own Gaussian function and pixel shader drawing reference from these articles. This is how I'm currently calculating my weights and offsets: int support = int(sigma * 3.0) weights.push_back(exp(-(0*0)/(2*sigma*sigma))/(sqrt(2*pi)*sigma)); total += weights.back(); offsets.push_back(0); for (int i = 1; i <= support; i++) { float w1 = exp(-(i*i)/(2*sigma*sigma))/(sqrt(2*pi)*sigma); float w2 = exp(-((i+1)*(i+1))/(2*sigma*sigma))/(sqrt(2*pi)*sigma); weights.push_back(w1 + w2); total += 2.0f * weights[i]; offsets.push_back(w1 / weights[i]); } for (int i = 0; i < support; i++) { weights[i] /= total; } Here is an example of my vertical pixel shader: vec3 acc = texture2D(tex_object, v_tex_coord.st).rgb*weights[0]; vec2 pixel_size = vec2(1.0 / tex_size.x, 1.0 / tex_size.y); for (int i = 1; i < NUM_SAMPLES; i++) { acc += texture2D(tex_object, (v_tex_coord.st+(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; acc += texture2D(tex_object, (v_tex_coord.st-(vec2(0.0, offsets[i])*pixel_size))).rgb*weights[i]; } gl_FragColor = vec4(acc, 1.0); Am I taking the correct route with this? Any criticism or potential tips to improving my method would be much appreciated.

    Read the article

  • 2D game collision response: SAT & minimum displacement along a given axis?

    - by Archagon
    I'm trying to implement a collision system in a 2D game I'm making. The separating axis theorem (as described by metanet's collision tutorial) seems like an efficient and robust way of handling collision detection, but I don't quite like the collision response method they use. By blindly displacing along the axis of least overlap, the algorithm simply ignores the previous position of the moving object, which means that it doesn't collide with the stationary object so much as it enters it and then bounces out. Here's an example of a situation where this would matter: According to the SAT method described above, the rectangle would simply pop out of the triangle perpendicular to its hypotenuse: However, realistically, the rectangle should stop at the lower right corner of the triangle, as that would be the point of first collision if it were moving continuously along its displacement vector: Now, this might not actually matter during gameplay, but I'd love to know if there's a way of efficiently and generally attaining accurate displacements in this manner. I've been racking my brains over it for the past few days, and I don't want to give up yet! (Cross-posted from StackOverflow, hope that's not against the rules!)

    Read the article

  • Robust line of sight test on the inside of a polygon with tolerance

    - by David Gouveia
    Foreword This is a followup to this question and the main problem I'm trying to solve. My current solution is an hack which involves inflating the polygon, and doing most calculations on the inflated polygon instead. My goal is to remove this step completely, and correctly solve the problem with calculations only. Problem Given a concave polygon and treating all of its edges as if they were walls in a level, determine whether two points A and B are in line of sight of each other, while accounting for some degree of floating point errors. I'm currently basing my solution on a series of line-segment interection tests. In other words: If any of the end points are outside the polygon, they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B crosses any of the edges from the polygon, then they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B does not cross any of the edges from the polygon, then they are in line of sight. But the problem is dealing correctly with all the edge cases. In particular, it must be able to deal with all the situations depicted below, where red lines are examples that should be rejected, and green lines are examples that should be accepted. I probably missed a few other situations, such as when the line segment from A to B is colinear with an edge, but one of the end points is outside the polygon. One point of particular interest is the difference between 1 and 9. In both cases, both end points are vertices of the polygon, and there are no edges being intersected, but 1 should be rejected while 9 should be accepted. How to distinguish these two? I could check some middle point within the segment to see if it falls inside or not, but it's easy to come up with situations in which it would fail. Point 7 was also pretty tricky and I had to to treat it as a special case, which checks if two points are adjacent vertices of the polygon directly. But there are also other chances of line segments being col linear with the edges of the polygon, and I'm still not entirely sure how I should handle those cases. Is there any well known solution to this problem?

    Read the article

  • Undefined fireball movement behavior

    - by optimisez
    Demonstration video I try to do after the player shoot 10 times of fireball, then delete all the fireball objects and recreate a 10 new set of fireball objects. I did it but there is a weird bug happens that sometimes the fireball will come out from top and move to the right after shooting a few times. All the 10 fireballs should follow the player all the time and all the fireball should come out from player even after a new set of fireballs is recreated. Any ideas to fix it? Variables typedef struct gameObject{ float X; float Y; int length; int height; bool action; }; // Fireball #define FIREBALL_NUM 10 LPDIRECT3DTEXTURE9 fireball = NULL; RECT fireballRect; gameObject *fireballDest = new gameObject[FIREBALL_NUM]; int iFireBallAnimation; int fireballCount = 0; Set up Fireball void setUpFireBall() { // Initialize destination rectangle, rectangle height and length for (int i = 0; i < FIREBALL_NUM; i++) { fireballDest[i].X = 0; fireballDest[i].Y = 0; fireballDest[i].length = fireballRect.right - fireballRect.left; fireballDest[i].height = fireballRect.bottom - fireballRect.top; } iFireBallAnimation = fireballRect.right - fireballRect.left; // Initialize boolean for (int i = 0; i < FIREBALL_NUM; i++) { fireballDest[i].action = false; } } Initialize fireball void initFireball() { hr = D3DXCreateTextureFromFileEx(d3dDevice, "fireball.png", 512, 512, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 0), NULL, NULL, &fireball); // Initialize source rectangle fireballRect.left = 0; fireballRect.top = 256; fireballRect.right = 64; fireballRect.bottom = 320; setUpFireBall(); } Update fireball void update() { updateAnimation(); updateAI(); updatePhysics(); updateGameState(); } void updatePhysics() { motion(); collison(); } void motion() { playerMove(); playerJump(); playerGravity(); shootFireball(); fireballFollowPlayer(); } void shootFireball() { if (keyArr['Z']) fireballDest[fireballCount].action = true; if (fireballDest[fireballCount].action) { fireballDest[fireballCount].X += 10; if (fireballDest[fireballCount].X > 800) fireballCount++; } } void fireballFollowPlayer() { for (int i = 0; i < FIREBALL_NUM; i++) { if (fireballDest[i].action == false) { fireballDest[i].X = playerDest.X - 30; fireballDest[i].Y = playerDest.Y - 14; } } } void updateGameState() { // When no more fireball left, rearm fireball if (fireballCount == FIREBALL_NUM) { delete[] fireballDest; fireballDest = new gameObject[10]; fireballCount = 0; setUpFireBall(); } } Render fireball void renderFireball() { for (int i = 0; i < FIREBALL_NUM; i++) { if (fireballDest[i].action) sprite->Draw(fireball, &fireballRect, NULL, &D3DXVECTOR3(fireballDest[i].X, fireballDest[i].Y, 0), D3DCOLOR_XRGB(255,255, 255)); } }

    Read the article

  • importing BaseGameUtils library

    - by David
    Hey :) I am trying to add the BaseGameUtils library to my workspace, I am using this guide: https://developers.google.com/games/services/android/init , I have downloaded from here :https://developers.google.com/games/services/downloads/ The BaseGameUtils sample but when I am trying to import it using Eclipse it gives me so many wrong things like Main,MainActivity and not the real BaseGameUtils, what is wrong here?

    Read the article

  • How can I convert a 2D bitmap (Used for terrain) to a 2D polygon mesh for collision?

    - by Megadanxzero
    So I'm making an artillery type game, sort of similar to Worms with all the usual stuff like destructible terrain etc... and while I could use per-pixel collision that doesn't give me collision normals or anything like that. Converting it all to a mesh would also mean I could use an existing physics library, which would be better than anything I can make by myself. I've seen people mention doing this by using Marching Squares to get contours in the bitmap, but I can't find anything which mentions how to turn these into a mesh (Unless it refers to a 3D mesh with contour lines defining different heights, which is NOT what I want). At the moment I can get a basic Marching Squares contour which looks something like this (Where the grid-like lines in the background would be the Marching Squares 'cells'): That needs to be interpolated to get a smoother, more accurate result but that's the general idea. I had a couple ideas for how to turn this into a mesh, but many of them wouldn't work in certain cases, and the one which I thought would work perfectly has turned out to be very slow and I've not even finished it yet! Ideally I'd like whatever I end up using to be fast enough to do every frame for cases such as rapidly-firing weapons, or digging tools. I'm thinking there must be some kind of existing algorithm/technique for turning something like this into a mesh, but I can't seem to find anything. I've looked at some things like Delaunay Triangulation, but as far as I can tell that won't correctly handle concave shapes like the above example, and also wouldn't account for holes within the terrain. I'll go through the technique I came up with for comparison and I guess I'll see if anyone has a better idea. First of all interpolate the Marching Squares contour lines, creating vertices from the line ends, and getting vertices where lines cross cell edges (Important). Then, for each cell containing vertices create polygons by using 2 vertices, and a cell corner as the 3rd vertex (Probably the closest corner). Do this for each cell and I think you should have a mesh which accurately represents the original bitmap (Though there will only be polygons at the edges of the bitmap, and large filled in areas in between will be empty). The only problem with this is that it involves lopping through every pixel once for the initial Marching Squares, then looping through every cell (image height + 1 x image width + 1) at least twice, which ends up being really slow for any decently sized image...

    Read the article

  • Fixed timestep and interpolation question

    - by Eric
    I'm following Glenn Fiedlers excellent Fix Your Timestep! tutorial to step my 2D game. The problem I'm facing is in the interpolation phase in the end. My game has a Tween-function which lets me tween properties of my game entites. Properties such as scale, shear, position, color, rotation etc. Im curious of how I'd interpolate these values, since there's a lot of them. My first thought is to keep a previous value of every property (colorPrev, scalePrev etc.), and interpolate between those. Is this the correct method? To interpolate my characters I use their velocity; renderPostion = position + (velocity * interpolation), but I cannot apply that to color for example. So what is the desired method to interpolate various properties or a entity? Is there any rule of thumb to use?

    Read the article

  • Animating DOM elements vs refreshing a single Canvas

    - by mgibsonbr
    A few years ago, when the HTML Canvas element was still kinda fresh, I wrote a small game in a rather "unusual" way: each game element had its own canvas, and frequently animated elements even had multiple canvases, one for each animation sprite. This way, the translation would be done by manipulating the DOM position of the canvases, while the sprite animation would consist of altering the visibility of the already drawn canvases. (z-indexes, of course, were the tricky part) It worked like a charm: even in IE6 with excanvas it showed a decent performance, and everything was rather consistent between browsers, including some smartphones. Now I'm thinking in writing a larger game engine in the same fashion, so I'm wondering whether it would be a good idea to do so in the current context (with all the advances in browsers and so on). I know I'm trading memory for time, so this needs to be customizable (even at runtime) for each machine the game will be running. But I believe using separate canvases would also help to avoid the game "freezing" on CPU spikes, since the translation would still happen even if the redraws lag for a while. Besides, the browsers' rendering engines are already optimized in may ways, so I'm guessing this scheme would also reduce the load on the CPU (in contrast to doing everything in JavaScript - specially the less optimized ones). It looks good in my head, but I'd like to hear the opinion of more experienced people before proceeding further. Is there any known drawback of doing this? I'm particulartly unexperienced in dealing with the GPU, so I wonder whether this "trick" would nullify any benefit of using a single, big canvas. Or maybe on modern devices it's overkill (though I'm skeptic about the claims that canvas+js - especially WebGL - will ever be a good alternative to native code). Any thoughts?

    Read the article

  • Ideas for attack damage algorithm (language irrelevant)

    - by Dillon
    I am working on a game and I need ideas for the damage that will be done to the enemy when your player attacks. The total amount of health that the enemy has is called enemyHealth, and has a value of 1000. You start off with a weapon that does 40 points of damage (may be changed.) The player has an attack stat that you can increase, called playerAttack. This value starts off at 1, and has a possible max value of 100 after you level it up many times and make it farther into the game. The amount of damage that the weapon does is cut and dry, and subtracts 40 points from the total 1000 points of health every time the enemy is hit. But what the playerAttack does is add to that value with a percentage. Here is the algorithm I have now. (I've taken out all of the gui, classes, etc. and given the variables very forward names) double totalDamage = weaponDamage + (weaponDamage*(playerAttack*.05)) enemyHealth -= (int)totalDamage; This seemed to work great for the most part. So I statrted testing some values... //enemyHealth ALWAYS starts at 1000 weaponDamage = 50; playerAttack = 30; If I set these values, the amount of damage done on the enemy is 125. Seemed like a good number, so I wanted to see what would happen if the players attack was maxed out, but with the weakest starting weapon. weaponDamage = 50; playerAttack = 100; the totalDamage ends up being 300, which would kill an enemy in just a few hits. Even with your attack that high, I wouldn't want the weakest weapon to be able to kill the enemy that fast. I thought about adding defense, but I feel the game will lose consistency and become unbalanced in the long run. Possibly a well designed algorithm for a weapon decrease modifier would work for lower level weapons or something like that. Just need a break from trying to figure out the best way to go about this, and maybe someone that has experience with games and keeping the leveling consistent could give me some ideas/pointers.

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Calculating the position of an object with regards to current position using OpenGL like matrices

    - by spartan2417
    i have a 1st person camera that collides with walls, i also have a small sphere in front of my camera denoted by the camera position plus the distance ahead. I cannot get the postion of the sphere but i have the position of my camera. e.g. i need to find the position of the point or at the very least find away of calculating the position using the camera positions. code: static Float P_z = 0; P_z = -15; PushMatrix(); LoadMatrix(&Inv); Material(SCEGU_AMBIENT, 0x00000066); TranslateXYZ(0,0,P_z); ScaleXYZ(0.1f,0.1f,0.1f); pointer.Render(); PopMatrix(); where Inv is the camera positions (Inv.w.x,Inv.w.z), pointer is the sphere.

    Read the article

  • Pong Collision Help in C# w/ XNA

    - by Ramses Brown
    Edit: My goal is to have it function like this: Ball hits 1st Quarter = rebounds higher (aka Y++) Ball hits 2nd Quarter = rebounds higher (using random value) Ball hits 3rd Quarter = rebounds lower (using random value) Ball hits 4th Quarter = rebounds lower (aka Y--) I'm currently using Rectangle Collision for my collision detection, and it's worked. Now I wish to expand it. Instead of it simply detecting whether or not the paddle/ball intersect, I want to make it so that it can determine what section of the paddle gets hit. I wanted it in 4 parts, with each having a different reaction to impact. My first thought is to base it on the Ball's Y position compared to the Paddle's Y position. But since I want it in 4 parts, I don't know how to do that. So it's essentially be if (ball.Y > Paddle.Y) { PaddleSection1 == true; } Except modified so that instead of being top half/bottom half, it's 1st Quarter, etc.

    Read the article

  • Coordinate based travel through multi-line path over elapsed time

    - by Chris
    I have implemented A* Path finding to decide the course of a sprite through multiple waypoints. I have done this for point A to point B locations but am having trouble with multiple waypoints, because on slower devices when the FPS slows and the sprite travels PAST a waypoint I am lost as to the math to switch directions at the proper place. EDIT: To clarify my path finding code is separate in a game thread, this onUpdate method lives in a sprite like class which happens in the UI thread for sprite updating. To be even more clear the path is only updated when objects block the map, at any given point the current path could change but that should not affect the design of the algorithm if I am not mistaken. I do believe all components involved are well designed and accurate, aside from this piece :- ) Here is the scenario: public void onUpdate(float pSecondsElapsed) { // this could be 4x speed, so on slow devices the travel moved between // frames could be very large. What happens with my original algorithm // is it will start actually doing circles around the next waypoint.. pSecondsElapsed *= SomeSpeedModificationValue; final int spriteCurrentX = this.getX(); final int spriteCurrentY = this.getY(); // getCoords contains a large array of the coordinates to each waypoint. // A waypoint is a destination on the map, defined by tile column/row. The // path finder converts these waypoints to X,Y coords. // // I.E: // Given a set of waypoints of 0,0 to 12,23 to 23, 0 on a 23x23 tile map, each tile // being 32x32 pixels. This would translate in the path finder to this: // -> 0,0 to 12,23 // Coord : x=16 y=16 // Coord : x=16 y=48 // Coord : x=16 y=80 // ... // Coord : x=336 y=688 // Coord : x=336 y=720 // Coord : x=368 y=720 // // -> 12,23 to 23,0 -NOTE This direction change gives me trouble specifically // Coord : x=400 y=752 // Coord : x=400 y=720 // Coord : x=400 y=688 // ... // Coord : x=688 y=16 // Coord : x=688 y=0 // Coord : x=720 y=0 // // The current update index, the index specifies the coordinate that you see above // I.E. final int[] coords = getCoords( 2 ); -> x=16 y=80 final int[] coords = getCoords( ... ); // now I have the coords, how do I detect where to set the position? The tricky part // for me is when a direction changes, how do I calculate based on the elapsed time // how far to go up the new direction... I just can't wrap my head around this. this.setPosition(newX, newY); }

    Read the article

  • HLSL - Creating Shadows in 2D

    - by richard
    The way that I create shadows is by the following technique: http://www.catalinzima.com/2010/07/my-technique-for-the-shader-based-dynamic-2d-shadows/ But I have questions to HLSL. The way that I currently do it is, I have a black and white image, where Black means 'object', and white means 'nothing'. I then distort the image like in the tutorial. I do this with a pixel shader, but instead of rendering to the screen, I render to a texture, back to my application. I then take this, and create the shadows, and then send it back to the graphics card to undo the distortion, after the shadow has been added - this comes back and I have a stencil of shadow. I can put this ontop of the original image and send them back to the graphics card, which then puts them on the screen. To me this is alot of back and forth. Is there a way i can avoid this? The problem that I am having is that I need to basically go through all positions in the texture 3 times, and use the new new texture every time instead of the orginal one. I tried to read up on Passes, but i don't think that i am heading in the right direction there. Help?

    Read the article

  • Strange javascript error when using Kongregates API

    - by Phil
    In the hopes of finding a fellow unity3d developer also aiming for the Kongregate contest.. I've implemented the Kongregate API and can see that the game receives a call with my username and presents it ingame. I'm using Application.ExternalCall("kongregate.stats.submit",type,amount); where type is a string "Best Score" and amount is an int (1000 or something). This is the error I'm getting: You are trying to call recursively into the Flash Player which is not allowed. In most cases the JavaScript setTimeout function, can be used as a workaround. callASFunction:function(a,b){if(FABrid...tion, can be used as a workaround."); I'm wondering, has anyone else had this error or am I somehow doing something stupid? Thanks!

    Read the article

  • Android threads trouble wrapping my head around design

    - by semajhan
    I am having trouble wrapping my head around game design. On the android platform, I have an activity and set its content view with a custom surface view. The custom surface view acts as my panel and I create instances of all classes and do all the drawing and calculation in there. Question: Should I instead create the instances of other classes in my activity? Now I create a custom thread class that handles the game loop. Question: How do I use this one class in all my activities? Or do I have to create a separate thread each time? In my previous game, I had multiple levels that had to create an instance of the thread class and in the thread class I had to set constructor methods for each separate level and in the loop use a switch statement to check which level it needs to render and update. Sorry if that sounds confusing. I just want to know if the method I am using is inefficient (which it probably is) and how to go about designing it the correct way. I have read many tutorials out there and I am still having lots of trouble with this particular topic. Maybe a link to a some tutorials that explain this? Thanks.

    Read the article

  • Platformer Starter Kit - Collision Issues

    - by Cyral
    I'm having trouble with my game that is based off the XNA Platformer starter kit. My game uses smaller tiles (16x16) then the original (32x40) which I'm thinking may be having an effect on collision (Being it needs to be more precise). Standing on the edge of a tile and jumping causes the player to move off the the tile when he lands. And 80% of the time, when the player lands, he goes flying though SOLID tiles in a diagonal fashion. This is very annoying as it is almost impossible to test other features, when spawning and jumping will result in the player landing in another part of the level or falling off the edge completely. The code is as follows: /// <summary> /// Updates the player's velocity and position based on input, gravity, etc. /// </summary> public void ApplyPhysics(GameTime gameTime) { float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; Vector2 previousPosition = Position; // Base velocity is a combination of horizontal movement control and // acceleration downward due to gravity. velocity.X += movement * MoveAcceleration * elapsed; velocity.Y = MathHelper.Clamp(velocity.Y + GravityAcceleration * elapsed, -MaxFallSpeed, MaxFallSpeed); velocity.Y = DoJump(velocity.Y, gameTime); // Apply pseudo-drag horizontally. if (IsOnGround) velocity.X *= GroundDragFactor; else velocity.X *= AirDragFactor; // Prevent the player from running faster than his top speed. velocity.X = MathHelper.Clamp(velocity.X, -MaxMoveSpeed, MaxMoveSpeed); // Apply velocity. Position += velocity * elapsed; Position = new Vector2((float)Math.Round(Position.X), (float)Math.Round(Position.Y)); // If the player is now colliding with the level, separate them. HandleCollisions(); // If the collision stopped us from moving, reset the velocity to zero. if (Position.X == previousPosition.X) velocity.X = 0; if (Position.Y == previousPosition.Y) velocity.Y = 0; } /// <summary> /// Detects and resolves all collisions between the player and his neighboring /// tiles. When a collision is detected, the player is pushed away along one /// axis to prevent overlapping. There is some special logic for the Y axis to /// handle platforms which behave differently depending on direction of movement. /// </summary> private void HandleCollisions() { // Get the player's bounding rectangle and find neighboring tiles. Rectangle bounds = BoundingRectangle; int leftTile = (int)Math.Floor((float)bounds.Left / Tile.Width); int rightTile = (int)Math.Ceiling(((float)bounds.Right / Tile.Width)) - 1; int topTile = (int)Math.Floor((float)bounds.Top / Tile.Height); int bottomTile = (int)Math.Ceiling(((float)bounds.Bottom / Tile.Height)) - 1; // Reset flag to search for ground collision. isOnGround = false; // For each potentially colliding tile, for (int y = topTile; y <= bottomTile; ++y) { for (int x = leftTile; x <= rightTile; ++x) { // If this tile is collidable, ItemCollision collision = Level.GetCollision(x, y); if (collision != ItemCollision.Passable) { // Determine collision depth (with direction) and magnitude. Rectangle tileBounds = Level.GetBounds(x, y); Vector2 depth = RectangleExtensions.GetIntersectionDepth(bounds, tileBounds); if (depth != Vector2.Zero) { float absDepthX = Math.Abs(depth.X); float absDepthY = Math.Abs(depth.Y); // Resolve the collision along the shallow axis. if (absDepthY < absDepthX || collision == ItemCollision.Platform) { // If we crossed the top of a tile, we are on the ground. if (previousBottom <= tileBounds.Top) isOnGround = true; // Ignore platforms, unless we are on the ground. if (collision == ItemCollision.Impassable || IsOnGround) { // Resolve the collision along the Y axis. Position = new Vector2(Position.X, Position.Y + depth.Y); // Perform further collisions with the new bounds. bounds = BoundingRectangle; } } else if (collision == ItemCollision.Impassable) // Ignore platforms. { // Resolve the collision along the X axis. Position = new Vector2(Position.X + depth.X, Position.Y); // Perform further collisions with the new bounds. bounds = BoundingRectangle; } } } } } // Save the new bounds bottom. previousBottom = bounds.Bottom; } It also tends to jitter a little bit sometimes, I'm solved some of this with some fixes I found here on stackexchange, But Ive only seen one other case of the flying though blocks problem. This question seems to have a similar problem in the video, but mine is more crazy. Again this is a very annoying bug! Any help would be greatly appreciated! EDIT: Speed stuff // Constants for controling horizontal movement private const float MoveAcceleration = 13000.0f; private const float MaxMoveSpeed = 1750.0f; private const float GroundDragFactor = 0.48f; private const float AirDragFactor = 0.58f; // Constants for controlling vertical movement private const float MaxJumpTime = 0.35f; private const float JumpLaunchVelocity = -3500.0f; private const float GravityAcceleration = 3400.0f; private const float MaxFallSpeed = 550.0f; private const float JumpControlPower = 0.14f;

    Read the article

  • Collision resolution - Character walking on ascendent ground

    - by marcg11
    I don't know if the solution to this problem is quite straight-foward but I really don't know how to handle collision resolution on a game where the player walks on an ascendent floor which is not flat. How can the player position itself on the y axis depend on the ground x and z (opengl coords)? What if the floor's slope is too much and the player can't go up, how do you handle that? I don't need any code, just a simple explanation would be great.

    Read the article

< Previous Page | 585 586 587 588 589 590 591 592 593 594 595 596  | Next Page >