Search Results

Search found 41789 results on 1672 pages for 'software development'.

Page 590/1672 | < Previous Page | 586 587 588 589 590 591 592 593 594 595 596 597  | Next Page >

  • Where to store shaders

    - by Mark Ingram
    I have an OpenGL renderer which has a Scene member variable. The Scene object can contain N SceneObjects. I use these SceneObjects for storing the vertex position and any transforms. My question is, where should shaders be stored in this arrangement? I guess they need to be in a central location because multiple objects can use the same shader. But then each object needs access to the shader because it needs to set attributes into the shader. Does anyone have any advice?

    Read the article

  • Painting with pixel shaders

    - by Gustavo Maciel
    I have an almost full understanding of how 2D Lighting works, saw this post and was tempted to try implementing this in HLSL. I planned to paint each of the layers with shaders, and then, combine them just drawing one on top of another, or just pass the 3 textures to the shader and getting a better way to combine them. Working almost as planned, but I got a little question in the matter. I'm drawing each layer this way: GraphicsDevice.SetRenderTarget(lighting); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, lightingShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); GraphicsDevice.SetRenderTarget(darkMask); GraphicsDevice.Clear(Color.Transparent); //... Setup shader SpriteBatch.Begin(SpriteSortMode.Immediate, BlendState.AlphaBlend, SamplerState.LinearClamp, DepthStencilState.None, RasterizerState.CullNone, darkMaskShader); SpriteBatch.Draw(texture, fullscreen, Color.White); SpriteBatch.End(); Where lightingShader and darkMaskShader are shaders that, with parameters (view and proj matrices, light pos, color and range, etc) generate a texture meant to be that layer. It works fine, but I'm not sure if drawing a transparent quad on top of a transparent render target is the best way of doing it. Because I actually just need the position and params. Concluding: Can I paint a texture with shaders without having to clear it and then draw a transparent texture on top of it?

    Read the article

  • Pathfinding results in false path costs that are too high

    - by user2144536
    I'm trying to implement pathfinding in a game I'm programming using this method. I'm implementing it with recursion but some of the values after the immediate circle of tiles around the player are way off. For some reason I cannot find the problem with it. This is a screen cap of the problem: The pathfinding values are displayed in the center of every tile. Clipped blocks are displayed with the value of 'c' because the values were too high and were covering up the next value. The red circle is the first value that is incorrect. The code below is the recursive method. //tileX is the coordinates of the current tile, val is the current pathfinding value, used[][] is a boolean //array to keep track of which tiles' values have already been assigned public void pathFind(int tileX, int tileY, int val, boolean[][] used) { //increment pathfinding value int curVal = val + 1; //set current tile to true if it hasn't been already used[tileX][tileY] = true; //booleans to know which tiles the recursive call needs to be used on boolean topLeftUsed = false, topUsed = false, topRightUsed = false, leftUsed = false, rightUsed = false, botomLeftUsed = false, botomUsed = false, botomRightUsed = false; //set value of top left tile if necessary if(tileX - 1 >= 0 && tileY - 1 >= 0) { //isClipped(int x, int y) returns true if the coordinates givin are in a tile that can't be walked through (IE walls) //occupied[][] is an array that keeps track of which tiles have an enemy in them // //if the tile is not clipped and not occupied set the pathfinding value if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX - 1][tileY - 1] == false && !(used[tileX - 1][tileY - 1])) { pathFindingValues[tileX - 1][tileY - 1] = curVal; topLeftUsed = true; used[tileX - 1][tileY - 1] = true; } //if it is occupied set it to an arbitrary high number so enemies find alternate routes if the best is clogged if(occupied[tileX - 1][tileY - 1] == true) pathFindingValues[tileX - 1][tileY - 1] = 1000000000; //if it is clipped set it to an arbitrary higher number so enemies don't travel through walls if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY - 1] = 2000000000; } //top middle if(tileY - 1 >= 0 ) { if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX][tileY - 1] == false && !(used[tileX][tileY - 1])) { pathFindingValues[tileX][tileY - 1] = curVal; topUsed = true; used[tileX][tileY - 1] = true; } if(occupied[tileX][tileY - 1] == true) pathFindingValues[tileX][tileY - 1] = 1000000000; if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX][tileY - 1] = 2000000000; } //top right if(tileX + 1 <= used.length && tileY - 1 >= 0) { if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX + 1][tileY - 1] == false && !(used[tileX + 1][tileY - 1])) { pathFindingValues[tileX + 1][tileY - 1] = curVal; topRightUsed = true; used[tileX + 1][tileY - 1] = true; } if(occupied[tileX + 1][tileY - 1] == true) pathFindingValues[tileX + 1][tileY - 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY - 1] = 2000000000; } //left if(tileX - 1 >= 0) { if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX - 1][tileY] == false && !(used[tileX - 1][tileY])) { pathFindingValues[tileX - 1][tileY] = curVal; leftUsed = true; used[tileX - 1][tileY] = true; } if(occupied[tileX - 1][tileY] == true) pathFindingValues[tileX - 1][tileY] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY] = 2000000000; } //right if(tileX + 1 <= used.length) { if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX + 1][tileY] == false && !(used[tileX + 1][tileY])) { pathFindingValues[tileX + 1][tileY] = curVal; rightUsed = true; used[tileX + 1][tileY] = true; } if(occupied[tileX + 1][tileY] == true) pathFindingValues[tileX + 1][tileY] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY] = 2000000000; } //botom left if(tileX - 1 >= 0 && tileY + 1 <= used[0].length) { if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX - 1][tileY + 1] == false && !(used[tileX - 1][tileY + 1])) { pathFindingValues[tileX - 1][tileY + 1] = curVal; botomLeftUsed = true; used[tileX - 1][tileY + 1] = true; } if(occupied[tileX - 1][tileY + 1] == true) pathFindingValues[tileX - 1][tileY + 1] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY + 1] = 2000000000; } //botom middle if(tileY + 1 <= used[0].length) { if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX][tileY + 1] == false && !(used[tileX][tileY + 1])) { pathFindingValues[tileX][tileY + 1] = curVal; botomUsed = true; used[tileX][tileY + 1] = true; } if(occupied[tileX][tileY + 1] == true) pathFindingValues[tileX][tileY + 1] = 1000000000; if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX][tileY + 1] = 2000000000; } //botom right if(tileX + 1 <= used.length && tileY + 1 <= used[0].length) { if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX + 1][tileY + 1] == false && !(used[tileX + 1][tileY + 1])) { pathFindingValues[tileX + 1][tileY + 1] = curVal; botomRightUsed = true; used[tileX + 1][tileY + 1] = true; } if(occupied[tileX + 1][tileY + 1] == true) pathFindingValues[tileX + 1][tileY + 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY + 1] = 2000000000; } //call the method on the tiles that need it if(tileX - 1 >= 0 && tileY - 1 >= 0 && topLeftUsed) pathFind(tileX - 1, tileY - 1, curVal, used); if(tileY - 1 >= 0 && topUsed) pathFind(tileX , tileY - 1, curVal, used); if(tileX + 1 <= used.length && tileY - 1 >= 0 && topRightUsed) pathFind(tileX + 1, tileY - 1, curVal, used); if(tileX - 1 >= 0 && leftUsed) pathFind(tileX - 1, tileY, curVal, used); if(tileX + 1 <= used.length && rightUsed) pathFind(tileX + 1, tileY, curVal, used); if(tileX - 1 >= 0 && tileY + 1 <= used[0].length && botomLeftUsed) pathFind(tileX - 1, tileY + 1, curVal, used); if(tileY + 1 <= used[0].length && botomUsed) pathFind(tileX, tileY + 1, curVal, used); if(tileX + 1 <= used.length && tileY + 1 <= used[0].length && botomRightUsed) pathFind(tileX + 1, tileY + 1, curVal, used); }

    Read the article

  • Texture and Lighting Issue in 3D world

    - by noah
    Im using OpenGL ES 1.1 for iPhone. I'm attempting to implement a skybox in my 3d world and started out by following one of Jeff Lamarches tutorials on creating textures. Heres the tutorial: iphonedevelopment.blogspot.com/2009/05/opengl-es-from-ground-up-part-6_25.html Ive successfully added the image to my 3d world but am not sure why the lighting on the other shapes has changed so much. I want the shapes to be the original color and have the image in the background. Before: https://www.dropbox.com/s/ojmb8793vj514h0/Screen%20Shot%202012-10-01%20at%205.34.44%20PM.png After: https://www.dropbox.com/s/8v6yvur8amgudia/Screen%20Shot%202012-10-01%20at%205.35.31%20PM.png Heres the init OpenGL: - (void)initOpenGLES1 { glShadeModel(GL_SMOOTH); // Enable lighting glEnable(GL_LIGHTING); // Turn the first light on glEnable(GL_LIGHT0); const GLfloat lightAmbient[] = {0.2, 0.2, 0.2, 1.0}; const GLfloat lightDiffuse[] = {0.8, 0.8, 0.8, 1.0}; const GLfloat matAmbient[] = {0.3, 0.3, 0.3, 0.5}; const GLfloat matDiffuse[] = {1.0, 1.0, 1.0, 1.0}; const GLfloat matSpecular[] = {1.0, 1.0, 1.0, 1.0}; const GLfloat lightPosition[] = {0.0, 0.0, 1.0, 0.0}; const GLfloat lightShininess = 100.0; //Configure OpenGL lighting glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, matAmbient); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, matDiffuse); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, matSpecular); glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, lightShininess); glLightfv(GL_LIGHT0, GL_AMBIENT, lightAmbient); glLightfv(GL_LIGHT0, GL_DIFFUSE, lightDiffuse); glLightfv(GL_LIGHT0, GL_POSITION, lightPosition); // Define a cutoff angle glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 40.0); // Set the clear color glClearColor(0, 0, 0, 1.0f); // Projection Matrix config glMatrixMode(GL_PROJECTION); glLoadIdentity(); CGSize layerSize = self.view.layer.frame.size; // Swapped height and width for landscape mode gluPerspective(45.0f, (GLfloat)layerSize.height / (GLfloat)layerSize.width, 0.1f, 750.0f); [self initSkyBox]; // Modelview Matrix config glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // This next line is not really needed as it is the default for OpenGL ES glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_BLEND); // Enable depth testing glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDepthMask(GL_TRUE); } Heres the drawSkybox that gets called in the drawFrame method: -(void)drawSkyBox { glDisable(GL_LIGHTING); glDisable(GL_DEPTH_TEST); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); static const SSVertex3D vertices[] = { {-1.0, 1.0, -0.0}, { 1.0, 1.0, -0.0}, {-1.0, -1.0, -0.0}, { 1.0, -1.0, -0.0} }; static const SSVertex3D normals[] = { {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0} }; static const GLfloat texCoords[] = { 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.5, 0.0 }; glLoadIdentity(); glTranslatef(0.0, 0.0, -3.0); glBindTexture(GL_TEXTURE_2D, texture[0]); glVertexPointer(3, GL_FLOAT, 0, vertices); glNormalPointer(GL_FLOAT, 0, normals); glTexCoordPointer(2, GL_FLOAT, 0, texCoords); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glEnable(GL_LIGHTING); glEnable(GL_DEPTH_TEST); } Heres the init Skybox: -(void)initSkyBox { // Turn necessary features on glEnable(GL_TEXTURE_2D); glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_SRC_COLOR); // Bind the number of textures we need, in this case one. glGenTextures(1, &texture[0]); // create a texture obj, give unique ID glBindTexture(GL_TEXTURE_2D, texture[0]); // load our new texture name into the current texture glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); NSString *path = [[NSBundle mainBundle] pathForResource:@"space" ofType:@"jpg"]; NSData *texData = [[NSData alloc] initWithContentsOfFile:path]; UIImage *image = [[UIImage alloc] initWithData:texData]; GLuint width = CGImageGetWidth(image.CGImage); GLuint height = CGImageGetHeight(image.CGImage); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); void *imageData = malloc( height * width * 4 ); // times 4 because will write one byte for rgb and alpha CGContextRef cgContext = CGBitmapContextCreate( imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big ); // Flip the Y-axis CGContextTranslateCTM (cgContext, 0, height); CGContextScaleCTM (cgContext, 1.0, -1.0); CGColorSpaceRelease( colorSpace ); CGContextClearRect( cgContext, CGRectMake( 0, 0, width, height ) ); CGContextDrawImage( cgContext, CGRectMake( 0, 0, width, height ), image.CGImage ); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); CGContextRelease(cgContext); free(imageData); [image release]; [texData release]; } Any help is greatly appreciated.

    Read the article

  • Push or Pull Input Data In the Game Logic?

    - by Qua
    In the process of preparing my game for networking I'm adding a layer of seperation between the physical input (mouse/keyboard) and the actual game "engine"/logic. All input that has any relation to the game logic is wrapped inside action objects such as BuildBuildingAction. I was thinking of having an action processing layer that would determine what to do with the input. This layer could then be set up to either just pass the actions locally to the game engine or send it via sockets to the network server depending on whether the game was single- or multiplayer. In network games it would make sense that the player's actions should be sent to the server, but should the game logic be pulling (polling?) the data through some sort of interface or should the action processing layer be adding the actions to an input queue in the game logic code?

    Read the article

  • 3D Camera Problem

    - by Chris
    I allow the user to look around the scene by holding down the left mouse button and moving the mouse. The problem that I have is I can be facing one direction, I move the mouse up and the view tilts up, I move down and the view titles down. If I spin around 180 my left and right still works fine, but when I move the mouse up the view tilts down, and when I move the mouse down the view titles up. This is the code I am using, can anyone see what the problem with the logic is? var viewDir = g_math.subVector(target, g_eye); var rotatedViewDir = []; rotatedViewDir[0] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[0]) - (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[2]); rotatedViewDir[1] = viewDir[1]; rotatedViewDir[2] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[2]) + (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[0]); viewDir = rotatedViewDir; rotatedViewDir[0] = viewDir[0]; rotatedViewDir[1] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]) - (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]); rotatedViewDir[2] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]) + (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]); g_lookingDir = rotatedViewDir; var newtarget = g_math.addVector(rotatedViewDir, g_eye);

    Read the article

  • How can I perform 2D side-scroller collision checks in a tile-based map?

    - by bill
    I am trying to create a game where you have a player that can move horizontally and jump. It's kind of like Mario but it isn't a side scroller. I'm using a 2D array to implement a tile map. My problem is that I don't understand how to check for collisions using this implementation. After spending about two weeks thinking about it, I've got two possible solutions, but both of them have some problems. Let's say that my map is defined by the following tiles: 0 = sky 1 = player 2 = ground The data for the map itself might look like: 00000 10002 22022 For solution 1, I'd move the player (the 1) a complete tile and update the map directly. This make the collision easy because you can check if the player is touching the ground simply by looking at the tile directly below the player: // x and y are the tile coordinates of the player. The tile origin is the upper-left. if (grid[x][y+1] == 2){ // The player is standing on top of a ground tile. } The problem with this approach is that the player moves in discrete tile steps, so the animation isn't smooth. For solution 2, I thought about moving the player via pixel coordinates and not updating the tile map. This will make the animation much smoother because I have a smaller movement unit per frame. However, this means I can't really accurately store the player in the tile map because sometimes he would logically be between two tiles. But the bigger problem here is that I think the only way to check for collision is to use Java's intersection method, which means the player would need to be at least a single pixel "into" the ground to register collision, and that won't look good. How can I solve this problem?

    Read the article

  • Strange 3D game engine camera with X,Y,Zoom instead of X,Y,Z

    - by Jenko
    I'm using a 3D game engine, that uses a 4x4 matrix to modify the camera projection, in this format: r r r x r r r y r r r z - - - zoom Strangely though, the camera does not respond to the Z translation parameter, and so you're forced to use X, Y, Zoom to move the camera around. Technically this is plausible for isometric-style games such as Age Of Empires III. But this is a 3D engine, and so why would they have designed the camera to ignore Z and respond only to zoom? Am I missing something here? I've tried every method of setting the camera and it really seems to ignore Z. So currently I have to resort to moving the main object in the scene graph instead of moving the camera in relation to the objects. My question: Do you have any idea why the engine would use such a scheme? Is it common? Why? Or does it seem like I'm missing something and the SetProjection(Matrix) function is broken and somehow ignores the Z translation in the matrix? (unlikely, but possible) Anyhow, what are the workarounds? Is moving objects around the only way? Edit: I'm sorry I cannot reveal much about the engine because we're in a binding contract. It's a locally developed engine (Australia) written in managed C# used for data visualizations. Edit: The default mode of the engine is orthographic, although I've switched it into perspective mode. Its probably more effective to use X, Y, Zoom in orthographic mode, but I need to use perspective mode to render everyday objects as well.

    Read the article

  • How or why would this mechanic (not) work to bring game balance to a singleplayer RPG? [closed]

    - by 0xFFF1
    Mechanic details The player, the monsters, and the merchants act as three separate parties. The player needs to beat up monsters for exp points and resources to sell and to buy potions from merchants to continue to fight. The monsters need healing and reviving to survive (also bought from merchants) and the merchants need potion ingredients from the player and the monsters to make potions to sell. These potions are only able to be processed in such bulk by merchants thus their potions would be cheaper than making them yourself. Only the monsters can farm ingredients in bulk. Only the player is or has to be overly aggressive (in bulk). Monsters can farm and produce "Level up candies" that do the work of exp. they are eaten right away after they are made and are never stockpiled or held for fear of the player and merchants who want to sell to the player. The monsters will defend themselves. Reviving is very expensive. The merchants can be found either with a concerned expression or a grinning expression based on how much profit they are making compared to their morale standing. The economies of each monster town and merchant city are distinct but interconnected. Magic Swords are worth a lot. So what I need to know is what concerns would there be to design a game around this mechanic and/or design this mechanic around a developing game. which would fare better? Is game balance an issue here? (how strong the monsters get or how quickly they die off based on the player's input into the system), Or is game balance solely in the hands of the player? (he decides if he overkills monsters or get underleveled.) What do I need to think about to make sure it isn't too easy or too hard to swing the amount/strength of monsters compared to the player and the amount of profit the merchants get vs the player. Would indicating how out of whack things are getting in game help with this?

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • Balancing game difficulty against player progression

    - by Raven Dreamer
    It seems that the current climate of games seems to cater to an obvious progression of player power, whether that means getting a bigger, more explosive gun in Halo, leveling up in an RPG, or unlocking new options in Command and Conquer 4. Yet this concept is not exclusive to video or computer games -- even in Dungeons and Dragons players can strive to acquire a +2 sword to replace the +1 weapon they've been using. Yet as a systems designer, the concept of player progression is giving me headache after headache. Should I balance around the players exact capabilities and give up on a simple linear progression? (I think ESIV:Oblivion is a good example of this) Is it better to throw the players into an "arms race" with their opponents, where if the players don't progress in an orderly manner, it is only a matter of time until gameplay is unbearably difficult? (4th Edition DnD strikes me as a good example of this) Perhaps it would make most sense to untether the core gameplay mechanics from progression at all -- give them flashier, more interesting (but not more powerful!) ways to grow?

    Read the article

  • How can I convert a 2D bitmap (Used for terrain) to a 2D polygon mesh for collision?

    - by Megadanxzero
    So I'm making an artillery type game, sort of similar to Worms with all the usual stuff like destructible terrain etc... and while I could use per-pixel collision that doesn't give me collision normals or anything like that. Converting it all to a mesh would also mean I could use an existing physics library, which would be better than anything I can make by myself. I've seen people mention doing this by using Marching Squares to get contours in the bitmap, but I can't find anything which mentions how to turn these into a mesh (Unless it refers to a 3D mesh with contour lines defining different heights, which is NOT what I want). At the moment I can get a basic Marching Squares contour which looks something like this (Where the grid-like lines in the background would be the Marching Squares 'cells'): That needs to be interpolated to get a smoother, more accurate result but that's the general idea. I had a couple ideas for how to turn this into a mesh, but many of them wouldn't work in certain cases, and the one which I thought would work perfectly has turned out to be very slow and I've not even finished it yet! Ideally I'd like whatever I end up using to be fast enough to do every frame for cases such as rapidly-firing weapons, or digging tools. I'm thinking there must be some kind of existing algorithm/technique for turning something like this into a mesh, but I can't seem to find anything. I've looked at some things like Delaunay Triangulation, but as far as I can tell that won't correctly handle concave shapes like the above example, and also wouldn't account for holes within the terrain. I'll go through the technique I came up with for comparison and I guess I'll see if anyone has a better idea. First of all interpolate the Marching Squares contour lines, creating vertices from the line ends, and getting vertices where lines cross cell edges (Important). Then, for each cell containing vertices create polygons by using 2 vertices, and a cell corner as the 3rd vertex (Probably the closest corner). Do this for each cell and I think you should have a mesh which accurately represents the original bitmap (Though there will only be polygons at the edges of the bitmap, and large filled in areas in between will be empty). The only problem with this is that it involves lopping through every pixel once for the initial Marching Squares, then looping through every cell (image height + 1 x image width + 1) at least twice, which ends up being really slow for any decently sized image...

    Read the article

  • Odd Android touch event problem

    - by user22241
    Overview When testing my game I came across a bizarre problem with my touch controls. Note this isn't related to multi-touch as I completely removed my ACTION_POINTER_UP and ACTION_POINTER_DOWN along with my ACTION_MOVE code. So I'm simply working with ACTION_UP and ACTION_DOWN now and still get the problem. The problem I have a left and right button on the left of the screen and a jump button on the right. Everything works as it should but if I touch a large area of my hand (the fleshy part at the base of the thumb for instance) onto the screen, then release it and then press one of my arrows, the sprite moves in that direction for a few seconds, and then ACTION_UP is mysteriously triggered. The sprite stops and then if I release my finger and re-apply it to an arrow, the same thing happens. This goes on and on and eventually (randomly??) stops and everything work OK again. Test device & OS Google Nexus 10 Tablet running Jellybean 4.2.2 Code //Action upon which to switch actionMask = event.getActionMasked(); //Pointer Index of the currently touching pointer pointerIndex = event.getActionIndex(); //Number of pointers (for multi-touch) pointerCount = event.getPointerCount(); //ID of the pointer currently being processed (Multitouch) pointerID = event.getPointerId(pointerIndex); switch (actionMask){ //Primary pointer down case MotionEvent.ACTION_DOWN: { //if pressing left button then set moving left if (isLeftPressed(event.getX(), event.getY())){ renderer.setSpriteLeft(); } //if pressing right button then set moving right else if (isRightPressed(event.getX(), event.getY())){ renderer.setSpriteRight(); } //if pressing jump button then set sprite jumping else if (isJumpPressed(event.getX(),event.getY())){ renderer.setSpriteState('j', true); } break; }//End of case //Primary pointer up case MotionEvent.ACTION_UP:{ //When finger leaves the screen, stop sprite's horizontal movement renderer.setSpriteStopped(); break; }

    Read the article

  • UV Atlas Generation and Seam Removal

    - by P. Avery
    I'm generating light maps for scene mesh objects using DirectX's UV Atlas Tool( D3DXUVAtlasCreate() ). I've succeeded in generating an atlas, however, when I try to render the mesh object using the atlas the seams are visible on the mesh. Below are images of a lightmap generated for a cube. Here is the code I use to generate a uv atlas for a cube: struct sVertexPosNormTex { D3DXVECTOR3 vPos, vNorm; D3DXVECTOR2 vUV; sVertexPosNormTex(){} sVertexPosNormTex( D3DXVECTOR3 v, D3DXVECTOR3 n, D3DXVECTOR2 uv ) { vPos = v; vNorm = n; vUV = uv; } ~sVertexPosNormTex() { } }; // create a light map texture to fill programatically hr = D3DXCreateTexture( pd3dDevice, 128, 128, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightmap ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXCreateTexture( lightmap )", __LINE__, hr ); return hr; } // get the zero level surface from the texture IDirect3DSurface9 *pS = NULL; pLightmap->GetSurfaceLevel( 0, &pS ); // clear surface pd3dDevice->ColorFill( pS, NULL, D3DCOLOR_XRGB( 0, 0, 0 ) ); // load a sample mesh DWORD dwcMaterials = 0; LPD3DXBUFFER pMaterialBuffer = NULL; V_RETURN( D3DXLoadMeshFromX( L"cube3.x", D3DXMESH_MANAGED, pd3dDevice, &pAdjacency, &pMaterialBuffer, NULL, &dwcMaterials, &g_pMesh ) ); // generate adjacency DWORD *pdwAdjacency = new DWORD[ 3 * g_pMesh->GetNumFaces() ]; g_pMesh->GenerateAdjacency( 1e-6f, pdwAdjacency ); // create light map coordinates LPD3DXMESH pMesh = NULL; LPD3DXBUFFER pFacePartitioning = NULL, pVertexRemapArray = NULL; FLOAT resultStretch = 0; UINT numCharts = 0; hr = D3DXUVAtlasCreate( g_pMesh, 0, 0, 128, 128, 3.5f, 0, pdwAdjacency, NULL, NULL, NULL, NULL, NULL, 0, &pMesh, &pFacePartitioning, &pVertexRemapArray, &resultStretch, &numCharts ); if( SUCCEEDED( hr ) ) { // release and set mesh SAFE_RELEASE( g_pMesh ); g_pMesh = pMesh; // write mesh to file hr = D3DXSaveMeshToX( L"cube4.x", g_pMesh, 0, ( const D3DXMATERIAL* )pMaterialBuffer->GetBufferPointer(), NULL, dwcMaterials, D3DXF_FILEFORMAT_TEXT ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXSaveMeshToX() at OnD3D9CreateDevice()", __LINE__, hr ); } // fill the the light map hr = BuildLightmap( pS, g_pMesh ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to BuildLightmap()", __LINE__, hr ); } } else { DebugStringDX( "Main", "Failed to D3DXUVAtlasCreate() at OnD3D9CreateDevice()", __LINE__, hr ); } SAFE_RELEASE( pS ); SAFE_DELETE_ARRAY( pdwAdjacency ); SAFE_RELEASE( pFacePartitioning ); SAFE_RELEASE( pVertexRemapArray ); SAFE_RELEASE( pMaterialBuffer ); Here is code to fill lightmap texture: HRESULT BuildLightmap( IDirect3DSurface9 *pS, LPD3DXMESH pMesh ) { HRESULT hr = S_OK; // validate lightmap texture surface and mesh if( !pS || !pMesh ) return E_POINTER; // lock the mesh vertex buffer sVertexPosNormTex *pV = NULL; pMesh->LockVertexBuffer( D3DLOCK_READONLY, ( void** )&pV ); // lock the mesh index buffer WORD *pI = NULL; pMesh->LockIndexBuffer( D3DLOCK_READONLY, ( void** )&pI ); // get the lightmap texture surface description D3DSURFACE_DESC desc; pS->GetDesc( &desc ); // lock the surface rect to fill with color data D3DLOCKED_RECT rct; hr = pS->LockRect( &rct, NULL, 0 ); if( FAILED( hr ) ) { DebugStringDX( "main.cpp:", "Failed to IDirect3DTexture9::LockRect()", __LINE__, hr ); return hr; } // iterate the pixels of the lightmap texture // check each pixel to see if it lies between the uv coordinates of a cube face BYTE *pBuffer = ( BYTE* )rct.pBits; for( UINT y = 0; y < desc.Height; ++y ) { BYTE* pBufferRow = ( BYTE* )pBuffer; for( UINT x = 0; x < desc.Width * 4; x+=4 ) { // determine the pixel's uv coordinate D3DXVECTOR2 p( ( ( float )x / 4.0f ) / ( float )desc.Width + 0.5f / 128.0f, y / ( float )desc.Height + 0.5f / 128.0f ); // for each face of the mesh // check to see if the pixel lies within the face's uv coordinates for( UINT i = 0; i < 3 * pMesh->GetNumFaces(); i +=3 ) { sVertexPosNormTex v[ 3 ]; v[ 0 ] = pV[ pI[ i + 0 ] ]; v[ 1 ] = pV[ pI[ i + 1 ] ]; v[ 2 ] = pV[ pI[ i + 2 ] ]; if( TexcoordIsWithinBounds( v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ) ) { // the pixel lies b/t the uv coordinates of a cube face // light contribution functions aren't needed yet //D3DXVECTOR3 vPos = TexcoordToPos( v[ 0 ].vPos, v[ 1 ].vPos, v[ 2 ].vPos, v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ); //D3DXVECTOR3 vNormal = v[ 0 ].vNorm; // set the color of this pixel red( for demo ) BYTE ba[] = { 0, 0, 255, 255, }; //ComputeContribution( vPos, vNormal, g_sLight, ba ); // copy the byte array into the light map texture memcpy( ( void* )&pBufferRow[ x ], ( void* )ba, 4 * sizeof( BYTE ) ); } } } // go to next line of the texture pBuffer += rct.Pitch; } // unlock the surface rect pS->UnlockRect(); // unlock mesh vertex and index buffers pMesh->UnlockIndexBuffer(); pMesh->UnlockVertexBuffer(); // write the surface to file hr = D3DXSaveSurfaceToFile( L"LightMap.jpg", D3DXIFF_JPG, pS, NULL, NULL ); if( FAILED( hr ) ) DebugStringDX( "Main.cpp", "Failed to D3DXSaveSurfaceToFile()", __LINE__, hr ); return hr; } bool TexcoordIsWithinBounds( const D3DXVECTOR2 &t0, const D3DXVECTOR2 &t1, const D3DXVECTOR2 &t2, const D3DXVECTOR2 &p ) { // compute vectors D3DXVECTOR2 v0 = t1 - t0, v1 = t2 - t0, v2 = p - t0; float f00 = D3DXVec2Dot( &v0, &v0 ); float f01 = D3DXVec2Dot( &v0, &v1 ); float f02 = D3DXVec2Dot( &v0, &v2 ); float f11 = D3DXVec2Dot( &v1, &v1 ); float f12 = D3DXVec2Dot( &v1, &v2 ); // Compute barycentric coordinates float invDenom = 1 / ( f00 * f11 - f01 * f01 ); float fU = ( f11 * f02 - f01 * f12 ) * invDenom; float fV = ( f00 * f12 - f01 * f02 ) * invDenom; // Check if point is in triangle if( ( fU >= 0 ) && ( fV >= 0 ) && ( fU + fV < 1 ) ) return true; return false; } Screenshot Lightmap I believe the problem comes from the difference between the lightmap uv coordinates and the pixel center coordinates...for example, here are the lightmap uv coordinates( generated by D3DXUVAtlasCreate() ) for a specific face( tri ) within the mesh, keep in mind that I'm using the mesh uv coordinates to write the pixels for the texture: v[ 0 ].uv = D3DXVECTOR2( 0.003581, 0.295631 ); v[ 1 ].uv = D3DXVECTOR2( 0.003581, 0.003581 ); v[ 2 ].uv = D3DXVECTOR2( 0.295631, 0.003581 ); the lightmap texture size is 128 x 128 pixels. The upper-left pixel center coordinates are: float halfPixel = 0.5 / 128 = 0.00390625; D3DXVECTOR2 pixelCenter = D3DXVECTOR2( halfPixel, halfPixel ); will the mapping and sampling of the lightmap texture will require that an offset be taken into account or that the uv coordinates are snapped to the pixel centers..? ...Any ideas on the best way to approach this situation would be appreciated...What are the common practices?

    Read the article

  • Capitalizing on JavaScript's prototypal inheritance

    - by keithjgrant
    JavaScript has a class-free object system in which objects inherit properties directly from other objects. This is really powerful, but it is unfamiliar to classically trained programmers. If you attempt to apply classical design patterns directly to JavaScript, you will be frustrated. But if you learn to work with JavaScript's prototypal nature, your efforts will be rewarded. ... It is Lisp in C's clothing. -Douglas Crockford What does this mean for a game developer working with canvas and HTML5? I've been looking over this question on useful design patterns in gaming, but prototypal inheritance is very different than classical inheritance, and there are surely differences in the best way to apply some of these common patterns. For example, classical inheritance allows us to create a moveableEntity class, and extend that with any classes that move in our game world (player, monster, bullet, etc.). Sure, you can strongarm JavaScript to work that way, but in doing so, you are kind of fighting against its nature. Is there a better approach to this sort of problem when we have prototypal inheritance at our fingertips?

    Read the article

  • Simplest way to use Steam Leaderboards from C# [on hold]

    - by Miau
    We are about to integrate steamworks for leaderboards and achievements into our game. I see there are many open and closed source libraries that can be used to use SteamWorks from C#. Rolling our own wrapper can be done, but if the other libraries are reliable then it would be better to use and perhaps contribute back if we see any obvious gaps. Have you used any and if so what was your experience with the different libraries? Specifically for Leaderboards and achievements The ones I found are: SteamWorks.net Steam4Net Ludosity (can be used outside of Unity apparently)

    Read the article

  • Server-side Input

    - by Thomas
    Currently in my game, the client is nothing but a renderer. When input state is changed, the client sends a packet to the server and moves the player as if it were processing the input, but the server has the final say on the position. This generally works really well, except for one big problem: falling off edges. Basically, if a player is walking towards an edge, say a cliff, and stops right before going off the edge, sometimes a second later, he'll be teleported off of the edge. This is because the "I stopped pressing W" packet is sent after the server processes the information. Here's a lag diagram to help you understand what I mean: http://i.imgur.com/Prr8K.png I could just send a "W Pressed" packet each frame for the server to process, but that would seem to be a bandwidth-costly solution. Any help is appreciated!

    Read the article

  • rotate sprite and shooting bullets from the end of a cannon

    - by Alberto
    Hi all i have a problem in my Andengine code, I need , when I touch the screen, shoot a bullet from the cannon (in the same direction of the cannon) The cannon rotates perfectly but when I touch the screen the bullet is not created at the end of the turret This is my code: private void shootProjectile(final float pX, final float pY){ int offX = (int) (pX-canon.getSceneCenterCoordinates()[0]); int offY = (int) (pY-canon.getSceneCenterCoordinates()[1]); if (offX <= 0) return ; if(offY>=0) return; double X=canon.getX()+canon.getWidth()*0,5; double Y=canon.getY()+canon.getHeight()*0,5 ; final Sprite projectile; projectile = new Sprite( (float) X, (float) Y, mProjectileTextureRegion,this.getVertexBufferObjectManager() ); mMainScene.attachChild(projectile); int realX = (int) (mCamera.getWidth()+ projectile.getWidth()/2.0f); float ratio = (float) offY / (float) offX; int realY = (int) ((realX*ratio) + projectile.getY()); int offRealX = (int) (realX- projectile.getX()); int offRealY = (int) (realY- projectile.getY()); float length = (float) Math.sqrt((offRealX*offRealX)+(offRealY*offRealY)); float velocity = (float) 480.0f/1.0f; float realMoveDuration = length/velocity; MoveModifier modifier = new MoveModifier(realMoveDuration,projectile.getX(), realX, projectile.getY(), realY); projectile.registerEntityModifier(modifier); } @Override public boolean onSceneTouchEvent(Scene pScene, TouchEvent pSceneTouchEvent) { if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_MOVE){ double dx = pSceneTouchEvent.getX() - canon.getSceneCenterCoordinates()[0]; double dy = pSceneTouchEvent.getY() - canon.getSceneCenterCoordinates()[1]; double Radius = Math.atan2(dy,dx); double Angle = Radius * 180 / Math.PI; canon.setRotation((float)Angle); return true; } else if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_DOWN){ final float touchX = pSceneTouchEvent.getX(); final float touchY = pSceneTouchEvent.getY(); double dx = pSceneTouchEvent.getX() - canon.getSceneCenterCoordinates()[0]; double dy = pSceneTouchEvent.getY() - canon.getSceneCenterCoordinates()[1]; double Radius = Math.atan2(dy,dx); double Angle = Radius * 180 / Math.PI; canon.setRotation((float)Angle); shootProjectile(touchX, touchY); } return false; } Anyone know how to calculate the coordinates (X,Y) of the end of the barrel to draw the bullet?

    Read the article

  • Can't get LWJGL lighting to work

    - by Zarkonnen
    I'm trying to enable lighting in lwjgl according to the method described by NeHe and this post. However, no matter what I try, all faces of my shapes always receive the same amount of light, or, in the case of a spinning shape, the amount of lighting seems to oscillate. All faces are lit up by the same amount, which changes as the pyramid rotates. Concrete example (apologies for the length): Note how all panels are always the same brightness, but the brightness varies with the pyramid's rotation. This is using lwjgl 2.8.3 on Mac OS X. package com; import com.zarkonnen.lwjgltest.Main; import org.lwjgl.opengl.Display; import org.lwjgl.opengl.DisplayMode; import org.lwjgl.opengl.GL11; import org.newdawn.slick.opengl.Texture; import org.newdawn.slick.opengl.TextureLoader; import org.lwjgl.util.glu.*; import org.lwjgl.input.Keyboard; import java.nio.FloatBuffer; import java.nio.ByteBuffer; import java.nio.ByteOrder; /** * * @author penguin */ public class main { public static void main(String[] args) { try { Display.setDisplayMode(new DisplayMode(800, 600)); Display.setTitle("3D Pyramid"); Display.create(); } catch (Exception e) { } initGL(); float rtri = 0.0f; Texture texture = null; try { texture = TextureLoader.getTexture("png", Main.class.getResourceAsStream("tex.png")); } catch (Exception ex) { ex.printStackTrace(); } while (!Display.isCloseRequested()) { // Draw a Triangle :D GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT); GL11.glLoadIdentity(); GL11.glTranslatef(0.0f, 0.0f, -10.0f); GL11.glRotatef(rtri, 0.0f, 1.0f, 0.0f); texture.bind(); GL11.glBegin(GL11.GL_TRIANGLES); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glEnd(); GL11.glBegin(GL11.GL_QUADS); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glEnd(); Display.update(); rtri += 0.05f; // Exit-Key = ESC boolean exitPressed = Keyboard.isKeyDown(Keyboard.KEY_ESCAPE); if (exitPressed) { System.out.println("Escape was pressed!"); Display.destroy(); } } Display.destroy(); } private static void initGL() { GL11.glEnable(GL11.GL_LIGHTING); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); GLU.gluPerspective(45.0f, ((float) 800) / ((float) 600), 0.1f, 100.0f); GL11.glMatrixMode(GL11.GL_MODELVIEW); GL11.glLoadIdentity(); GL11.glEnable(GL11.GL_TEXTURE_2D); GL11.glShadeModel(GL11.GL_SMOOTH); GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GL11.glClearDepth(1.0f); GL11.glEnable(GL11.GL_DEPTH_TEST); GL11.glDepthFunc(GL11.GL_LEQUAL); GL11.glHint(GL11.GL_PERSPECTIVE_CORRECTION_HINT, GL11.GL_NICEST); float lightAmbient[] = {0.5f, 0.5f, 0.5f, 1.0f}; // Ambient Light Values float lightDiffuse[] = {1.0f, 1.0f, 1.0f, 1.0f}; // Diffuse Light Values float lightPosition[] = {0.0f, 0.0f, 2.0f, 1.0f}; // Light Position ByteBuffer temp = ByteBuffer.allocateDirect(16); temp.order(ByteOrder.nativeOrder()); GL11.glLight(GL11.GL_LIGHT1, GL11.GL_AMBIENT, (FloatBuffer) temp.asFloatBuffer().put(lightAmbient).flip()); // Setup The Ambient Light GL11.glLight(GL11.GL_LIGHT1, GL11.GL_DIFFUSE, (FloatBuffer) temp.asFloatBuffer().put(lightDiffuse).flip()); // Setup The Diffuse Light GL11.glLight(GL11.GL_LIGHT1, GL11.GL_POSITION, (FloatBuffer) temp.asFloatBuffer().put(lightPosition).flip()); // Position The Light GL11.glEnable(GL11.GL_LIGHT1); // Enable Light One } }

    Read the article

  • multithreading problem with Nvidia PhysX

    - by xcrypt
    I'm having a multithreading problem with Nvidia PhysX. the SDK requires that you call Simulate() (starts computing new physics positions within a new thread) and FetchResults(waits 'till the physics computations are done). Inbetween Simulate() and FetchResults() you may not 'compute new physics' It is proposed (in a sample) that we create a game loop as such: Logic (you may calculate physics here and other stuff) Render + Simulate() at start of Render call and FetchResults at end of Render() call However, this has given me various little errors that stack up: since you actually render the scene that was computed in the previous iteration in the game loop. I wonder if there's a way around this? I've been trying and trying, but I can't think of a solution...

    Read the article

  • Physics timestep questions

    - by SSL
    I've got a projectile working perfectly using the code below: //initialised in loading screen 60 is the FPS - projectilEposition and velocity are Vector3 types gravity = new Vector3(0, -(float)9.81 / 60, 0); //called every frame projectilePosition += projectileVelocity; This seems to work fine but I've noticed in various projectile examples I've seen that the elapsedtime per update is taken into account. What's the difference between the two and how can I convert the above to take into account the elapsedtime? (I'm using XNA - do I use ElapsedTime.TotalSeconds or TotalMilliseconds)? Edit: Forgot to add my attempt at using elapsedtime, which seemed to break the physics: projectileVelocity.Y += -(float)((9.81 * gameTime.ElapsedGameTime.TotalSeconds * gameTime.ElapsedGameTime.TotalSeconds) * 0.5f); Thanks for the help

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • How do engines avoid "Phase Lock" (multiple objects in same location) in a Physics Engine?

    - by C0M37
    Let me explain Phase Lock first: When two objects of non zero mass occupy the same space but have zero energy (no velocity). Do they bump forever with zero velocity resolution vectors or do they just stay locked together until an outside force interacts? In my home brewed engine, I realized that if I loaded a character into a tree and moved them, they would signal a collision and hop back to their original spot. I suppose I could fix this by implementing impulses in the event of a collision instead of just jumping back to the last spot I was in (my implementation kind of sucks). But while I make my engine more robust, I'm just curious on how most other physics engines handle this case. Do objects that start in the same spot with no movement speed just shoot out from each other in a random direction? Or do they sit there until something happens? Which option is generally the best approach?

    Read the article

  • Integration error in high velocity

    - by Elektito
    I've implemented a simple simulation of two planets (simple 2D disks really) in which the only force is gravity and there is also collision detection/response (collisions are completely elastic). I can launch one planet into orbit of the other just fine. The collision detection code though does not work so well. I noticed that when one planet hits the other in a free fall it speeds backward and goes much higher than its original position. Some poking around convinced me that the simplistic Euler integration is causing the error. Consider this case. One object has a mass of 1kg and the other has a mass equal to earth. Say the object is 10 meters above ground. Assume that our dt (delta t) is 1 second. The object goes to the height of 9 meters at the end of the first iteration, 7 at the end of the second, 4 at the end of the third and 0 at the end of the fourth iteration. At this points it hits the ground and bounces back with the speed of 10 meters per second. The problem is with dt=1, on the first iteration it bounces back to a height of 10. It takes several more steps to make the object change its course. So my question is, what integration method can I use which fixes this problem. Should I split dt to smaller pieces when velocity is high? Or should I use another method altogether? What method do you suggest? EDIT: You can see the source code here at github:https://github.com/elektito/diskworld/

    Read the article

  • Is there a way to legally create a game mod?

    - by Rodrigo Guedes
    Some questions about it: If I create a funny version of a copyrighted game and sell it (crediting the original developers) would it be considered a parody or would I need to pay royalties? If I create a game mod for my own personal use would it be legal? What if I gave it for free to a friend? Is there a general rule about it or it depends on the developer will? P.S.: I'm not talking about cloning games like this question. It's all about a game clearly based on another. Something like "GTA Gotham City" ;) EDIT: This picture that I found over the internet illustrate what I'm talking about: Just in case I was not clear: I never created a mod game. I was just wondering if it would be legally possible before trying to do it. I'm not apologizing piracy. I pay dearly for my games (you guys have no idea how expensive games are in Brazil due to taxes). Once more I say that the question is not about cloning. Cloning is copy something and try to make your version look like a brand new product. Mods are intended to make reference to one or more of its source. I'm not sure if it can be done legally (if I knew I wasn't asking) but I'm sure this question is not a duplicate. Even so, I trust in the moderators and if they close my question I will not be offended - at least I had an opportunity to explain myself and got 1 good answer (by the time I write this, maybe some more will be given later).

    Read the article

< Previous Page | 586 587 588 589 590 591 592 593 594 595 596 597  | Next Page >