Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 619/1529 | < Previous Page | 615 616 617 618 619 620 621 622 623 624 625 626  | Next Page >

  • this.BoundingBox.Intersects(Wall[0].BoundingBox) not working properly

    - by Pieter
    I seem to be having this problem a lot, I'm still learning XNA / C# and well, trying to make a classic paddle and ball game. The problem I run into (and after debugging have no answer) is that everytime I run my game and press either of the movement keys, the Paddle won't move. Debugging shows that it never gets to the movement part, but I can't understand why not? Here's my code: // This is the If statement for checking Left movement. if (keyboardState.IsKeyDown(Keys.Left) || keyboardState.IsKeyDown(Keys.A)) { if (!CheckCollision(walls[0])) { Location.X -= Velocity; } } //This is the CheckCollision(Wall wall) boolean public bool CheckCollision(Wall wall) { if (this.BoundingBox.Intersects(wall.BoundingBox)) { return true; } return false; } As far as I can tell there should be absolutely no problem with this, I initialize the bounding box in the constructor whenever a new instance of Walls and Paddle is created. this.BoundingBox = new Rectangle(0, 0, Sprite.Width, Sprite.Height); Any idea as to why this isn't working? I have previously succeeded with using the whole Location.X < Wall.Location.X + Wall.Texture.Width code... But to me that seems like too much coding if a simple boolean check could be done.

    Read the article

  • NVidia control panel SSAO not working

    - by János Turánszki
    I am just before implementing screen space ambient occlusion in my game, but first I wanted to try enabling it from NVidia control panel only to find out that it is greyed out so that I can not enable it. With this I could enable SSAO for some other games, but not every one. I know this technique requires the depth buffer and (optionally) a normal map texture to sample information from which I already have access to given I have a deferred renderer working. After that I actually thought to roll back to a previous version of my game which still uses forward rendering so the depth buffer is actually bound to the backbuffer which I render to from the get-go so that maybe the NVidia control panel would somehow make use of it. It was not working with forward rendering either. (I also tried FXAA in the control panel and that works - but it doesn't need any depth or normal texture) So my question is that how can I enable this function so that it would work by enabling it in the NVidia control panel?

    Read the article

  • Must all AI states be able to react to any event?

    - by Prog
    FSMs implemented with the State design pattern are a common way to design AI agents. I am familiar with the State design pattern and know how to implement it. How is this used in games to design AI agents? Consider a simplified class Monster, representing an AI agent: class Monster { State state; // other fields omitted public void update(){ // called every game-loop cycle state.execute(this); } public void setState(State state){ this.state = state; } // irrelevant stuff omitted } There are several State subclasses implementing execute() differently. So far, classic State pattern. AI agents are subject to environmental effects and other objects communicating with them. For example, an AI agent might tell another AI agent to attack (i.e. agent.attack()). Or a fireball might tell an AI agent to fall down. This means that the agent must have methods such as attack() and fallDown(), or commonly some message receiving mechanism to understand such messages. With an FSM, the current State of the agent should be the one taking care of such method calls - i.e. the agent delegates to the current state upon every event. Is this correct? If correct, how is this done? Are all states obligated by their superclass to implement methods such as attack(), fallDown() etc., so the agent can always delegate to them on almost every event? Or is it done in some other way?

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • converting 2d grid of squares to polygon nav mesh

    - by Roflha
    I haven't actually started programming for this one yet, but I wanted to see how I would go about doing this anyway. Say I have a 2D matrix of squares, all of the same size, some traversable and some not. How would I go about creating a navigation mesh of polygons from this grid. Is there any reading I can look at until I get a chance to get to my computer or should I just give it a go. My idea was to take the non-traversable squares out and extend lines from there edges to make polygons.. that's all I have got so far. Any advice?

    Read the article

  • Issues implementing arcball viewer

    - by Pris
    My scene has a simple cube, and a camera built with the lookAt function (I'm using OpenGL). The scene renders fine, and I'm sure I have my model/view/projection matrices set up correctly. Now I'm trying to implement arcball rotation for my camera, but I'm having some trouble. I've got it down to calculating the angle/axis rotation for a virtual sphere in normalized screen coordinates. That means when I move my mouse left to right, I get an angle around the Y axis... and moving my mouse up/down will get me an angle about X. I'm not sure where to go from here -- what do I need to do with my axis so I can apply the angle to simulate camera rotation about its viewpoint? If I try directly applying the axis/angle rotation the camera/view transform I get what you'd expect. The view is rotated about the world axes which the mouse moving over the virtual sphere on the screen corresponds to. So if I move the mouse up/down the view rotates about the world's X axis (what I get reminds me of a first-person view)... but this isn't what I want. I think I need the axis I get to be transformed so it passes through the camera viewpoint and is oriented correct in reference to the camera... but I don't know if that's right or how to do that.

    Read the article

  • How to solve problems with movement in simple tile based multiplayer game?

    - by Murlo
    I'm making a simple tile based 2D multiplayer game in JavaScript using socket.io where you can move one tile every 200 ms. The two solutions I've tried are as follows: The client sends "walk one tile north" every 200 ms. Problem: People can easily hack the client to send the action more often. The client sends "walking north" and "stopped walking". Problem: Sometimes the player moves extra steps when "stopped walking" doesn't arrive in time. Do you know a way around these problems or is there a better way to do it? EDIT: Regarding the first solution I've tried adding validation on the server to check if it has been 200 ms since last movement. The problem is that latency still encourages people just to spam the action as much as possible, giving them an unfair advantage.

    Read the article

  • How can I solve this SAT direct corner intersection edge case?

    - by ssb
    I have a working SAT implementation, but I am running into a problem where direct collisions at a corner do not work for tiled surfaces. That is, it clips on the surface when going in a certain direction because it gets hung up on one of the tiles, and so, for example, if I walk across a floor while holding both down and left, the player will stop when meeting the next shape because the player will be colliding with the right side rather than with the top of the floor tile. This illustration shows what I mean: The top block will translate right first and then up. I have checked here and here which are helpful, but this does not address what I should do in a situation where I don't have a tile-based world. My usage of the term "tile" before isn't really accurate since what I'm doing here is manually placing square obstacles next to each other, not assigning them spots on a grid. What can I do to fix this?

    Read the article

  • Big level objects collision system for 2d game

    - by Aristarhys
    I read many variants today and get some knowledge in general, so here is a steps of mine thoughts in pictures (horrible paint.net ones). We need to develop grid system, so we check only thing near, perform simple check to cut out deep check, and at - last deep check like per-pixel collision check. Step 1 - Let p1, p2 are some sprites lets first just check with circle collision - because large distance between p1, p2 this fails and of course so we don't need test more deeply. But if we have not 2, but 20 objects, why we need to even circle test something so far outside of our view. Step 2 - Add basic column system, now we don't bother with p2 if it's in a column far from p1 column, so we even don't do circle test. But p3 is in the same col, so let do circle test, which of course will fail. Step 3 - Lets improve column system to the grid system with grid cell size just like p1, p2, p3 collision boxes, so we cut out things much top or below p1. And this is all great until comes BIG OBJs which is some kind of platforms. They are much bigger then grid cell. Circle test for will be successful, but deep check for whole big obj will fail And that the part I can't get. How do I store the grid position of big object? Like 4 grid coords for big object vertexes? And if one of them close to p1 do circle check for centre of big object then a deep one if succeed? Am I do it wrong? My possible solution:

    Read the article

  • How was 20Q made?

    - by Dan the Man
    Ever since I was a kid, I've wondered how they made the 20Q electronic game. In this game, which is it's on device, you think of an object, thing, or animal (e.g. a potato or a donkey), once you mentally choose your thing, the device goes through a series of questions such as: Is it larger than a loaf of bread? Is it found outdoors? Is it used for recreation? For each of the questions you can answer yes, no, maybe, or unknown. The way I've always thought of it to work was with immense, nested conditionals (if statements). But, I don't think that would be very likely as it would be terribly difficult to understand while coding it. I'm not looking for a discussion as SE doesn't allow it; I'm looking for concrete knowledge or solutions.

    Read the article

  • Partial Shader Signatures HLSL D3D11 C++

    - by ThePhD
    I had been debugging a problem I was having in a single shader file with 2 functions in it. I'm using DirectX 11, vs_5_0 and ps_5_0. I have stripped it down to its basic components to understand what was going wrong with the shaders, because the different named components of the Pixel and Vertex shaders were swapping the data being input: void QuadVertex ( inout float4 position : SV_Position, inout float4 color : COLOR0, inout float2 tex : TEXCOORD0 ) { // ViewProject is a 4x4 matrix, // just included here to show the simple passthrough of the data position = mul(position, ViewProjection); } And a Pixel Shader: float4 QuadPixel ( float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { // Color is filled with position data and tex is // filled with color values from the Vertex Shader return color; } The ID3D11InputLayout and associated C++ code correctly compiles the shaders and sets them up with some simple primitive data: data[0].Position.x = 0.0f * 210; data[0].Position.y = 1.0f * 160; data[0].Position.z = 0.0f; data[1].Position.x = 0.0f * 210; data[1].Position.y = 0.0f * 160; data[1].Position.z = 0.0f; data[2].Position.x = 1.0f * 210; data[2].Position.y = 1.0f * 160; data[2].Position.z = 0.0f; data[0].Colour = Colors::Red; data[1].Colour = Colors::Red; data[2].Colour = Colors::Red; data[0].Texture = Vector2::Zero; data[1].Texture = Vector2::Zero; data[2].Texture = Vector2::Zero; When used with the shader, the float4 color always ended up with the position data, and the float2 tex always ended up with the color data. After a moment, I figured out that the shader's input and output signatures needed to be in the correct order and the correct format and be laid out in the exact order of the output from the Vertex Shader, regardless of the semantics: float4 QuadPixel ( float4 pos : SV_Position, float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { return color; } After finding this out, My question is: Why don't the semantics map the appropriate components when going from Vertex Shader to Pixel Shader? Is there any way that I can make it so certain semantics are always mapped to other semantics, or do I always have to follow the rigid Shader Signature (in this case, Position, Color, and Texture) ? As a side note for why I'm asking: I know that when using XNA, my shader signatures for functions could differ in position and even drop items from Vertex Shader to Pixel Shader function parameters, having only the COLOR0 and TEXCOORD0 components being used (and it would still match up correctly). However, I also know that XNA relied on DX9 (and maybe a little DX10) implementation, and that maybe this kind of flexibility no longer exists in DX11?

    Read the article

  • X Error of failed request: BadMatch [migrated]

    - by Andrew Grabko
    I'm trying to execute some "hello world" opengl code: #include <GL/freeglut.h> void displayCall() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); ... Some more code here glutSwapBuffers(); } int main(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); glutInitWindowSize(500, 500); glutInitWindowPosition(300, 200); glutInitContextVersion(4, 2); glutInitContextFlags(GLUT_FORWARD_COMPATIBLE); glutCreateWindow("Hello World!"); glutDisplayFunc(displayCall); glutMainLoop(); return 0; } As a result I get: X Error of failed request: BadMatch (invalid parameter attributes) Major opcode of failed request: 128 (GLX) Minor opcode of failed request: 34 () Serial number of failed request: 39 Current serial number in output stream: 40 Here is the stack trace: fghCreateNewContext() at freeglut_window.c:737 0x7ffff7bbaa81 fgOpenWindow() at freeglut_window.c:878 0x7ffff7bbb2fb fgCreateWindow() at freeglut_structure.c:106 0x7ffff7bb9d86 glutCreateWindow() at freeglut_window.c:1,183 0x7ffff7bbb4f2 main() at AlphaTest.cpp:51 0x4007df Here is the last piece of code, after witch the program crashes: createContextAttribs = (CreateContextAttribsProc) fghGetProcAddress("glXCreateContextAttribsARB" ); if ( createContextAttribs == NULL ) { fgError( "glXCreateContextAttribsARB not found" ); } context = createContextAttribs( dpy, config, share_list, direct, attributes ); "glXCreateContextAttribsARB" address is obtained successfully, but the program crashes on its invocation. If I specify OpenGL version less than 4.2 in "glutInitContextVersion()" program runs without errors. Here is my glxinfo's OpelGL version: OpenGL version string: 4.2.0 NVIDIA 285.05.09 I would be very appreciate any further ideas.

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • Problem with alleg42.dll / program crashes / Allegro & Codeblocks

    - by user24152
    I'm having a serious problem with allegro. The program should display random pixels on the screen and when I build and run it I get the following error message: Below is the full code of my program: #include <stdio.h> #include <stdlib.h> #include <time.h> #include "allegro.h" #define Text_Color_Red makecol(255,0,0) int main() { int ret; int color_depth = 32; int x; int y; int red; int green; int blue; int color; //init allegro allegro_init(); //install keyboard install_keyboard(); //set color depth to 32 bits set_color_depth(color_depth); //init random seed srand(time(NULL)); //init video mode to 640 x 480 ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED,640,480,0,0); if(ret !=0) { allegro_message(allegro_error); return 1; } //Display string textprintf(screen,font,0,0,10,0,Text_Color_Red,"Screen Resolution is: %dx%d -- Press ESC to quit !",SCREEN_W,SCREEN_H); //display pixels until ESC key is pressed //wait for keypress while(!key[KEY_ESC]) { //set a random location x = 10 + rand() % (SCREEN_W-20); y = 10 + rand() % (SCREEN_H-20); //set a random color red = rand() % 255; green = rand() % 255; blue = rand() % 255; color = makecol(red,green,blue); //draw the pixel putpixel(screen, x, y, color); } //quit allegro allegro_exit(); } END_OF_MAIN() Error message: AllegroPixels1.exe has encountered a problem and needs to close. We are sorry for the inconvenience. Error signature: AppName: allegropixels1.exe AppVer: 0.0.0.0 ModName: alleg42.dll ModVer: 4.2.3.0 Offset: 0006c05c I am using Windows XP inside a virtual machine under Parallels 7.0

    Read the article

  • Preventing item duplication?

    - by PuppyKevin
    For my game, there's two types of items - stackable, and nonstackable. Nonstackable items get assigned a unique ID that stays with it forever. A character ID is assosicated with the item, as is a state (CHANGED, UNCHANGED, NEW, REMOVED). The character ID and state is used for item saving purposes. Stackable items have one unique ID, as in the entire stack has one unique ID. For example: 5 Potions (stacked ontop of each other) has one unique ID. When dropping a nonstackable item, the state gets set to REMOVED, and the unique ID and state don't change. If picked up by another player, the state gets set to NEW, and the character ID gets changed to the new character's ID. When dropping all items in a stack of stackable items (for example, 5 potions out of 5) - it behaves just like a nonstackable item. When dropping some of a stack of stackable items (for example, 3 potions out of 5)... I really have no clue what to do. The 3 dropped potions have the state of REMOVED, but the same unique ID and character ID. If another player picks it up, it has no choice but to obtain a new unique ID, and its state gets changed to NEW and its character ID to the new one. If the dropping player picks it back up, they'd just be readded to the stack. There's two issues with that though. 1. If the player who dropped the 3 potions picks it back up, there's no way to tell if they legitimately dropped the items, or if they're duped items. 2. If another player picks up the 3 potions (assuming they're duped), there's no way to know if they're duped or not. My question is: How can I create a system that detects duplicated items for both nonstackable and stackable items?

    Read the article

  • How do I implement a selectable world map?

    - by Clay
    I want to have a selectable map of the world, preferably zoomable, in a cocos2d project. When I tap on a country, I want that country to be selected so that I can perform some other operations with it. It seems that the best approach would be to use a vector world map, but I'm unsure how to implement this with cocos2d. Other options include using map tiles, but it seems that still would require the implementation of country polygons for tap/click detection. Depending on user input, I want to add icons to various countries on the map. What is a good way to approach the implementation of this type of map?

    Read the article

  • C++: Checking if an object faces a point (within a certain range)

    - by bojoradarial
    I have been working on a shooter game in C++, and am trying to add a feature whereby missiles shot must be within 90 degrees (PI/2 radians) of the direction the ship is facing. The missiles will be shot towards the mouse. My idea is that the ship's angle of rotation is compared with the angle between the ship and the mouse (std::atan2(mouseY - shipY, mouseX - shipX)), and if the difference is less than PI/4 (45 degrees) then the missile can be fired. However, I can't seem to get this to work. The ship's angle of rotation is increased and decreased with the A and D keys, so it is possible that it isn't between 0 and 2*PI, hence the use of fmod() below. Code: float userRotation = std::fmod(user->Angle(), 6.28318f); if (std::abs(userRotation - missileAngle) > 0.78f) return; Any help would be appreciated. Thanks!

    Read the article

  • How do you maintain content size vs. content quality in a mobile application?

    - by PeterK
    I am developing my first Cocos2d iPhone/iPad game that includes quite a few sprites, I would need approximately 80 different. As this is for both normal and HD displays I have 2x of each sprite. I am using TexturePacker to optimize the thing. I would like to ask if there are any rules-of-thumb, tricks, ideas etc. to adjust to in regards to size of content, quality and how you maintain high-quality HD-based graphics due to its size vs. the device memory sizes? Also, is it a good idea to only have one copy of the sprites and scale it using code?

    Read the article

  • How to shade a texture two different colors?

    - by Venesectrix
    To give an example of what I'm asking about, I'll use Saints Row 3 since I've been playing that lately. In that game you can customize your looks and your car's appearance a lot. Your coat can have a primary color and a trim color. Your car can have a primary color and a stripe color, etc. Is there just a single coat texture that is being shaded two different colors somehow or are they overlaying a transparent second texture for the trim/stripes that gets shaded differently? If it's just one texture I'd like to know how it's done. If it's two different textures it seems like it's a waste of space. The second texture would be the same size as the first one but mostly transparent if you just wanted to lay it on top of the first one. Or are they just carefully positioning a second, smaller texture so that it aligns properly with the first one?

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

  • Button click event in the Ogre3d for ios

    - by user1184398
    Is it possible to access the button click event by using the cursor? These are the steps I followed for the button click event using the SDK trays m_pTrayMgr = new OgreBites::SdkTrayManager("TrayMgr", m_pRenderWnd, m_pMouse, this); I create the buttons m_LeftBtn = tray->createButton(OgreBites:: TL_LEFT, "sdk_button_down", "Left"); m_RightBtn = tray->createButton(OgreBites::TL_RIGHT, "sdk_button_up", "Right"); And I am calling this function void OgreFramework::buttonHit(OgreBites::Button* button) { if(button->getName().compare("sdk_button_down") == 0 ) { printf("XXX"); } } But the button hit function is not getting called... Could somebody provide some sample code? I'm not using any cursor for the click.

    Read the article

  • Creating a 2D Line Branch (Part 2)

    - by Danran
    Yesterday i asked this question on how to create a 2D line branch; Creating a 2D Line Branch And thanks to the answered provided, i now have this nice looking main branch; *coloured to show the different segments in the final item. Now is the time now to branch things off as discussed in the article; http://drilian.com/2009/02/25/lightning-bolts/ Again however i am confused as to the meaning of the following pseudo code; splitEnd = Rotate(direction, randomSmallAngle)*lengthScale + midPoint; I'm unsure how to actually rotate this correctly. In all honesty i'm abit unsure what to-do completely at this part, "splitEnd" will be a Vector3, so whatever happens in the rotate function must then return some form of directional rotation which is then * by a scale to create length and then added to the midPoint. I'm not sure. If someone could explain what i'm meant to be doing in this part that would be really grateful.

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • When to use an Array vs When to use a Vector, when dealing with GameObjects?

    - by user32465
    I understand that from other answers, Arrays and Vectors are the best choices. Many on SE claim that Linked Lists and Maps are bad for video game programming. I understand that for the most part, I can use Arrays. However, I don't really understand exactly when to use Vectors over Arrays. Why even use Vectors? Wouldn't it be best if I simply always used an Array, that way I know how much memory my game needs? Specifically my game would only ever load a single "Map" area of tiles, such as Map[100][100], so I could very easily have an array of GameObjectContainer GameObjects[100][100], which would reserve an entire map's worth of possible gameobjects, correct? So why use a Vector instead? Memory is quite large on modern hardware.

    Read the article

  • iPhone 3d Model format: .h file, .obj, or some other?

    - by T Reddy
    I'm beginning to write an iPhone game using OpenGL-ES and I've come across a problem with deciding what format my 3D models should be in. I've read (link escapes me at the moment) that some developers prefer the models compiled in Objective-C .h files. Still, others prefer having .obj as these are more portable (i.e., for deployment on non-iPhone platforms). Various 3D game engines seem to support many(?) formats, but I'm not going to use any of these engines as I would like to actually learn OpenGL-ES. Am I putting myself at a disadvantage here by not using a packaged engine? Thanks!

    Read the article

< Previous Page | 615 616 617 618 619 620 621 622 623 624 625 626  | Next Page >