Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 619/1529 | < Previous Page | 615 616 617 618 619 620 621 622 623 624 625 626  | Next Page >

  • How to implement the light trails for a tron game?

    - by Link
    Well I was creating a TRON style game, but had an issue with creating the actual light trails for the game. What I'm doing currently is I have an array the same size as my window in pixel size, implemented like this: int* collision[800][600]; Then when the bike goes on a certain pixel, it is marked with a 1 for traveled on. However what is the most efficient way to create a working light trail display? I tried to do something like this: int i, j; for(i=0; i<800; i++) for(j=0; j<600; j++) if(*collision[i][j] == 1) Image::applySurface(i, j, trailSurface, gameScreen); But it isn't working properly? It just fills the whole screen with a sprite instead. Whats a better/faster/working way to do this?

    Read the article

  • Lag compensation of projectile shooting game

    - by Denis Ermolin
    I'm thinking about an algorithm for firing projectiles with lag compensation. Now I did find only one descent solution: Player hits fire button. Client sends input "fire". Client waits for server response. Server generates bullet then sends response to client. Client recieves response and finally fires projectile. Is this solution only "trueway"? I find it the only one that can be fair to all of the clients. Valve in this case, doesn't compensate lag from rocket shots. I am feeling that I will not compensate it, too. I think that with today's bandwidth I can close my eyes on this problem, because I don't see any solutions with fair logic. What do you think?

    Read the article

  • I love video games and know I want to work in the sector but hate programming

    - by normyp
    I just hate how I'll put in 8-10 hours in and get little to nothing back. The return results for your efforts seem to be pathetically small the majority of the time and I don't find that rewarding enough for me to put in the time and effort to learn programming and make myself better. I've heard game design is fun and I think I'd love that but apparently you can only get into that really if you can program, is that true? I feel a bit lost because I'm doing a degree in Games Technology and am worried that I'm sending myself into a job I'll hate.

    Read the article

  • how does the rectangle bounds (x,y,width,height) in libgdx work

    - by JG22
    I cant work out how to use the rectangle bounds in libgdx I am currently using the superJumper example and have 2or 3 examples with that are pause Bounds = new Rectangle(320 - 64, 480 - 64, 64, 64); this is the pause button in the top right corner resume Bounds = new Rectangle(160 - 96, 240, 192, 36); this is a rectangle resume button in the middle of the page in the menu that comes up when the pause button is pressed. basically my question is aimed at the 360 -64 and 160 -96 because I don't know why this is used I need to create a rectangle that covers the left side of the screen and the same on the right because I want to create a on screen buttons, I have already created the does for these buttons and I have managed to get them to work but I can move the rectangles to where I want. Thank you If you can help

    Read the article

  • Moving from Windows to Ubuntu.

    - by djzmo
    Hello there, I used to program in Windows with Microsoft Visual C++ and I need to make some of my portable programs (written in portable C++) to be cross-platform, or at least I can release a working version of my program for both Linux and Windows. I am total newcomer in Linux application development (and rarely use the OS itself). So, today, I installed Ubuntu 10.04 LTS (through Wubi) and equipped Code::Blocks with the g++ compiler as my main weapon. Then I compiled my very first Hello World linux program, and I confused about the output program. I can run my program through the "Build and Run" menu option in Code::Blocks, but when I tried to launch the compiled application externally through a File Browser (in /media/MyNTFSPartition/MyProject/bin/Release; yes, I saved it in my NTFS partition), the program didn't show up. Why? I ran out of idea. I need to change my Windows and Microsoft Visual Studio mindset to Linux and Code::Blocks mindset. So I came up with these questions: How can I execute my compiled linux programs externally (outside IDE)? In Windows, I simply run the generated executable (.exe) file How can I distribute my linux application? In Windows, I simply distribute the executable files with the corresponding DLL files (if any) What is the equivalent of LIBs (static library) and DLLs (dynamic library) in linux and how to use them? In Windows/Visual Studio, I simply add the required libraries to the Additional Dependencies in the Project Settings, and my program will automatically link with the required static library(-ies)/DLLs. Is it possible to use the "binary form" of a C++ library (if provided) so that I wouldn't need to recompile the entire library source code? In Windows, yes. Sometimes precompiled *.lib files are provided. If I want to create a wxWidgets application in Linux, which package should I pick for Ubuntu? wxGTK or wxX11? Can I run wxGTK program under X11? In Windows, I use wxMSW, Of course. If question no. 4 is answered possible, are precompiled wxX11/wxGTK library exists out there? Haven't tried deep google search. In Windows, there is a project called "wxPack" (http://wxpack.sourceforge.net/) that saves a lot of my time. Sorry for asking many questions, but I am really confused on these linux development fundamentals. Any kind of help would be appreciated =) Thanks.

    Read the article

  • this.BoundingBox.Intersects(Wall[0].BoundingBox) not working properly

    - by Pieter
    I seem to be having this problem a lot, I'm still learning XNA / C# and well, trying to make a classic paddle and ball game. The problem I run into (and after debugging have no answer) is that everytime I run my game and press either of the movement keys, the Paddle won't move. Debugging shows that it never gets to the movement part, but I can't understand why not? Here's my code: // This is the If statement for checking Left movement. if (keyboardState.IsKeyDown(Keys.Left) || keyboardState.IsKeyDown(Keys.A)) { if (!CheckCollision(walls[0])) { Location.X -= Velocity; } } //This is the CheckCollision(Wall wall) boolean public bool CheckCollision(Wall wall) { if (this.BoundingBox.Intersects(wall.BoundingBox)) { return true; } return false; } As far as I can tell there should be absolutely no problem with this, I initialize the bounding box in the constructor whenever a new instance of Walls and Paddle is created. this.BoundingBox = new Rectangle(0, 0, Sprite.Width, Sprite.Height); Any idea as to why this isn't working? I have previously succeeded with using the whole Location.X < Wall.Location.X + Wall.Texture.Width code... But to me that seems like too much coding if a simple boolean check could be done.

    Read the article

  • two-part dice pool mechanic

    - by bythenumbers
    I'm working on a dice mechanic/resolution system based off of the Ghost/Echo (hereafter shortened to G/E) tabletop RPG. Specifically, since G/E can be a little harsh with dealing out consequences and failure, I was hoping to soften the system and add a little more player control, as well as offer the chance for players to evolve their characters into something unique, right from creation. So, here's the mechanic: Players roll 2d12 against the two statistics for their character (each is a number from 2-11, and may be rolled above or below depending on the nature of the action attempted, rolling your stat exactly always fails). Depending on the success for that roll, they add dice to the pool rolled for a modified G/E style action. The acting player gets two dice anyhow, and I am debating offering a bonus die for each success, or a single bonus die for succeeding on both of the statistic-compared rolls. One the size of the dice pool is set, the entire pool is rolled, and the players are allowed to assign rolled dice to a goal and a danger. Assigned results are judged as follows: 1-4 means the attempted goal fails, or the danger comes true. 5-8 is a partial success at the goal, or partially avoiding the danger. 9-12 means the goal is achieved, or the danger avoided. My concerns are twofold: Firstly, that the two-stage action is too complicated, with two rolls to judge separately before anything can happen. Secondly, that the statistics involved go too far in softening the game. I've run some basic simulations, and the approximate statistics follow: 2 dice (up to) 3 dice (up to) 4 dice failure ~33% ~25% ~20% partial ~33% ~35% ~35% success ~33% ~40% ~45% I'd appreciate any advice that addresses my concerns or offers to refine my simulation (right now the first roll is statistically modeled as sign(1d12-1d12), where 0 is a success).

    Read the article

  • NVidia control panel SSAO not working

    - by János Turánszki
    I am just before implementing screen space ambient occlusion in my game, but first I wanted to try enabling it from NVidia control panel only to find out that it is greyed out so that I can not enable it. With this I could enable SSAO for some other games, but not every one. I know this technique requires the depth buffer and (optionally) a normal map texture to sample information from which I already have access to given I have a deferred renderer working. After that I actually thought to roll back to a previous version of my game which still uses forward rendering so the depth buffer is actually bound to the backbuffer which I render to from the get-go so that maybe the NVidia control panel would somehow make use of it. It was not working with forward rendering either. (I also tried FXAA in the control panel and that works - but it doesn't need any depth or normal texture) So my question is that how can I enable this function so that it would work by enabling it in the NVidia control panel?

    Read the article

  • Must all AI states be able to react to any event?

    - by Prog
    FSMs implemented with the State design pattern are a common way to design AI agents. I am familiar with the State design pattern and know how to implement it. How is this used in games to design AI agents? Consider a simplified class Monster, representing an AI agent: class Monster { State state; // other fields omitted public void update(){ // called every game-loop cycle state.execute(this); } public void setState(State state){ this.state = state; } // irrelevant stuff omitted } There are several State subclasses implementing execute() differently. So far, classic State pattern. AI agents are subject to environmental effects and other objects communicating with them. For example, an AI agent might tell another AI agent to attack (i.e. agent.attack()). Or a fireball might tell an AI agent to fall down. This means that the agent must have methods such as attack() and fallDown(), or commonly some message receiving mechanism to understand such messages. With an FSM, the current State of the agent should be the one taking care of such method calls - i.e. the agent delegates to the current state upon every event. Is this correct? If correct, how is this done? Are all states obligated by their superclass to implement methods such as attack(), fallDown() etc., so the agent can always delegate to them on almost every event? Or is it done in some other way?

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • How to solve problems with movement in simple tile based multiplayer game?

    - by Murlo
    I'm making a simple tile based 2D multiplayer game in JavaScript using socket.io where you can move one tile every 200 ms. The two solutions I've tried are as follows: The client sends "walk one tile north" every 200 ms. Problem: People can easily hack the client to send the action more often. The client sends "walking north" and "stopped walking". Problem: Sometimes the player moves extra steps when "stopped walking" doesn't arrive in time. Do you know a way around these problems or is there a better way to do it? EDIT: Regarding the first solution I've tried adding validation on the server to check if it has been 200 ms since last movement. The problem is that latency still encourages people just to spam the action as much as possible, giving them an unfair advantage.

    Read the article

  • How can I solve this SAT direct corner intersection edge case?

    - by ssb
    I have a working SAT implementation, but I am running into a problem where direct collisions at a corner do not work for tiled surfaces. That is, it clips on the surface when going in a certain direction because it gets hung up on one of the tiles, and so, for example, if I walk across a floor while holding both down and left, the player will stop when meeting the next shape because the player will be colliding with the right side rather than with the top of the floor tile. This illustration shows what I mean: The top block will translate right first and then up. I have checked here and here which are helpful, but this does not address what I should do in a situation where I don't have a tile-based world. My usage of the term "tile" before isn't really accurate since what I'm doing here is manually placing square obstacles next to each other, not assigning them spots on a grid. What can I do to fix this?

    Read the article

  • Big level objects collision system for 2d game

    - by Aristarhys
    I read many variants today and get some knowledge in general, so here is a steps of mine thoughts in pictures (horrible paint.net ones). We need to develop grid system, so we check only thing near, perform simple check to cut out deep check, and at - last deep check like per-pixel collision check. Step 1 - Let p1, p2 are some sprites lets first just check with circle collision - because large distance between p1, p2 this fails and of course so we don't need test more deeply. But if we have not 2, but 20 objects, why we need to even circle test something so far outside of our view. Step 2 - Add basic column system, now we don't bother with p2 if it's in a column far from p1 column, so we even don't do circle test. But p3 is in the same col, so let do circle test, which of course will fail. Step 3 - Lets improve column system to the grid system with grid cell size just like p1, p2, p3 collision boxes, so we cut out things much top or below p1. And this is all great until comes BIG OBJs which is some kind of platforms. They are much bigger then grid cell. Circle test for will be successful, but deep check for whole big obj will fail And that the part I can't get. How do I store the grid position of big object? Like 4 grid coords for big object vertexes? And if one of them close to p1 do circle check for centre of big object then a deep one if succeed? Am I do it wrong? My possible solution:

    Read the article

  • Path Modifier in Tower Of Defense Game

    - by Siddharth
    I implemented PathModifier for path of each enemy in my tower of defense game. So I applied fixed time to path modifier in that enemy complete their path. Like following code describe. new PathModifier(speed, path); Here speed define the time to complete the path. But in tower of defense game my problem is, there is a tower which slow down the movement of the enemy. In that particular situation I was stuck. please someone provide me some guidance what to do in this situation. EDIT : Path path = new Path(wayPointList.size()); for (int j = 0; j < wayPointList.size(); j++) { Point point = grid.getCellPoint(wayPointList.get(j).getRow(), wayPointList.get(j).getCol()); path.to(point.x, point.y); }

    Read the article

  • Button click event in the Ogre3d for ios

    - by user1184398
    Is it possible to access the button click event by using the cursor? These are the steps I followed for the button click event using the SDK trays m_pTrayMgr = new OgreBites::SdkTrayManager("TrayMgr", m_pRenderWnd, m_pMouse, this); I create the buttons m_LeftBtn = tray->createButton(OgreBites:: TL_LEFT, "sdk_button_down", "Left"); m_RightBtn = tray->createButton(OgreBites::TL_RIGHT, "sdk_button_up", "Right"); And I am calling this function void OgreFramework::buttonHit(OgreBites::Button* button) { if(button->getName().compare("sdk_button_down") == 0 ) { printf("XXX"); } } But the button hit function is not getting called... Could somebody provide some sample code? I'm not using any cursor for the click.

    Read the article

  • How was 20Q made?

    - by Dan the Man
    Ever since I was a kid, I've wondered how they made the 20Q electronic game. In this game, which is it's on device, you think of an object, thing, or animal (e.g. a potato or a donkey), once you mentally choose your thing, the device goes through a series of questions such as: Is it larger than a loaf of bread? Is it found outdoors? Is it used for recreation? For each of the questions you can answer yes, no, maybe, or unknown. The way I've always thought of it to work was with immense, nested conditionals (if statements). But, I don't think that would be very likely as it would be terribly difficult to understand while coding it. I'm not looking for a discussion as SE doesn't allow it; I'm looking for concrete knowledge or solutions.

    Read the article

  • Drag camera/view in a 3D world

    - by Dono
    I'm trying to make a Draggable view in a 3D world. Currently, I've made it using mouse position on the screen, but, when I move the distance traveled by my mouse is not equal to the distance traveled in the 3D world. So, I've tried to do that : Compute a ray from mouse position to 3D world. Calculate intersection with the ground. Check intersection difference old position <- new position. Translate camera with the difference. I've got a problem with this method: The ray is computed with the current camera's position I move the camera I compute the new ray with new camera position. The difference between old ray and new ray is now invalid. So, graphically my camera don't stop to move to previous/new position everytime. How can I do a draggable camera with another solution ? Thanks!

    Read the article

  • Partial Shader Signatures HLSL D3D11 C++

    - by ThePhD
    I had been debugging a problem I was having in a single shader file with 2 functions in it. I'm using DirectX 11, vs_5_0 and ps_5_0. I have stripped it down to its basic components to understand what was going wrong with the shaders, because the different named components of the Pixel and Vertex shaders were swapping the data being input: void QuadVertex ( inout float4 position : SV_Position, inout float4 color : COLOR0, inout float2 tex : TEXCOORD0 ) { // ViewProject is a 4x4 matrix, // just included here to show the simple passthrough of the data position = mul(position, ViewProjection); } And a Pixel Shader: float4 QuadPixel ( float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { // Color is filled with position data and tex is // filled with color values from the Vertex Shader return color; } The ID3D11InputLayout and associated C++ code correctly compiles the shaders and sets them up with some simple primitive data: data[0].Position.x = 0.0f * 210; data[0].Position.y = 1.0f * 160; data[0].Position.z = 0.0f; data[1].Position.x = 0.0f * 210; data[1].Position.y = 0.0f * 160; data[1].Position.z = 0.0f; data[2].Position.x = 1.0f * 210; data[2].Position.y = 1.0f * 160; data[2].Position.z = 0.0f; data[0].Colour = Colors::Red; data[1].Colour = Colors::Red; data[2].Colour = Colors::Red; data[0].Texture = Vector2::Zero; data[1].Texture = Vector2::Zero; data[2].Texture = Vector2::Zero; When used with the shader, the float4 color always ended up with the position data, and the float2 tex always ended up with the color data. After a moment, I figured out that the shader's input and output signatures needed to be in the correct order and the correct format and be laid out in the exact order of the output from the Vertex Shader, regardless of the semantics: float4 QuadPixel ( float4 pos : SV_Position, float4 color : COLOR0, float2 tex : TEXCOORD0 ) : SV_Target0 { return color; } After finding this out, My question is: Why don't the semantics map the appropriate components when going from Vertex Shader to Pixel Shader? Is there any way that I can make it so certain semantics are always mapped to other semantics, or do I always have to follow the rigid Shader Signature (in this case, Position, Color, and Texture) ? As a side note for why I'm asking: I know that when using XNA, my shader signatures for functions could differ in position and even drop items from Vertex Shader to Pixel Shader function parameters, having only the COLOR0 and TEXCOORD0 components being used (and it would still match up correctly). However, I also know that XNA relied on DX9 (and maybe a little DX10) implementation, and that maybe this kind of flexibility no longer exists in DX11?

    Read the article

  • Creating a 2D Line Branch (Part 2)

    - by Danran
    Yesterday i asked this question on how to create a 2D line branch; Creating a 2D Line Branch And thanks to the answered provided, i now have this nice looking main branch; *coloured to show the different segments in the final item. Now is the time now to branch things off as discussed in the article; http://drilian.com/2009/02/25/lightning-bolts/ Again however i am confused as to the meaning of the following pseudo code; splitEnd = Rotate(direction, randomSmallAngle)*lengthScale + midPoint; I'm unsure how to actually rotate this correctly. In all honesty i'm abit unsure what to-do completely at this part, "splitEnd" will be a Vector3, so whatever happens in the rotate function must then return some form of directional rotation which is then * by a scale to create length and then added to the midPoint. I'm not sure. If someone could explain what i'm meant to be doing in this part that would be really grateful.

    Read the article

  • Help understand GLSL directional light on iOS (left handed coord system)

    - by Robse
    I now have changed from GLKBaseEffect to a own shader implementation. I have a shader management, which compiles and applies a shader to the right time and does some shader setup like lights. Please have a look at my vertex shader code. Now, light direction should be provided in eye space, but I think there is something I don't get right. After I setup my view with camera I save a lightMatrix to transform the light from global space to eye space. My modelview and projection setup: - (void)setupViewWithWidth:(int)width height:(int)height camera:(N3DCamera *)aCamera { aCamera.aspect = (float)width / (float)height; float aspect = aCamera.aspect; float far = aCamera.far; float near = aCamera.near; float vFOV = aCamera.fieldOfView; float top = near * tanf(M_PI * vFOV / 360.0f); float bottom = -top; float right = aspect * top; float left = -right; // projection GLKMatrixStackLoadMatrix4(projectionStack, GLKMatrix4MakeFrustum(left, right, bottom, top, near, far)); // identity modelview GLKMatrixStackLoadMatrix4(modelviewStack, GLKMatrix4Identity); // switch to left handed coord system (forward = z+) GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeScale(1, 1, -1)); // transform camera GLKMatrixStackMultiplyMatrix4(modelviewStack, GLKMatrix4MakeWithMatrix3(GLKMatrix3Transpose(aCamera.orientation))); GLKMatrixStackTranslate(modelviewStack, -aCamera.position.x, -aCamera.position.y, -aCamera.position.z); } - (GLKMatrix4)modelviewMatrix { return GLKMatrixStackGetMatrix4(modelviewStack); } - (GLKMatrix4)projectionMatrix { return GLKMatrixStackGetMatrix4(projectionStack); } - (GLKMatrix4)modelviewProjectionMatrix { return GLKMatrix4Multiply([self projectionMatrix], [self modelviewMatrix]); } - (GLKMatrix3)normalMatrix { return GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3([self modelviewProjectionMatrix]), NULL); } After that, I save the lightMatrix like this: [self.renderer setupViewWithWidth:view.drawableWidth height:view.drawableHeight camera:self.camera]; self.lightMatrix = [self.renderer modelviewProjectionMatrix]; And just before I render a 3d entity of the scene graph, I setup the light config for its shader with the lightMatrix like this: - (N3DLight)transformedLight:(N3DLight)light transformation:(GLKMatrix4)matrix { N3DLight transformedLight = N3DLightMakeDisabled(); if (N3DLightIsDirectional(light)) { GLKVector3 direction = GLKVector3MakeWithArray(GLKMatrix4MultiplyVector4(matrix, light.position).v); direction = GLKVector3Negate(direction); // HACK -> TODO: get lightMatrix right! transformedLight = N3DLightMakeDirectional(direction, light.diffuse, light.specular); } else { ... } return transformedLight; } You see the line, where I negate the direction!? I can't explain why I need to do that, but if I do, the lights are correct as far as I can tell. Please help me, to get rid of the hack. I'am scared that this has something to do, with my switch to left handed coord system. My vertex shader looks like this: attribute highp vec4 inPosition; attribute lowp vec4 inNormal; ... uniform highp mat4 MVP; uniform highp mat4 MV; uniform lowp mat3 N; uniform lowp vec4 constantColor; uniform lowp vec4 ambient; uniform lowp vec4 light0Position; uniform lowp vec4 light0Diffuse; uniform lowp vec4 light0Specular; varying lowp vec4 vColor; varying lowp vec3 vTexCoord0; vec4 calcDirectional(vec3 dir, vec4 diffuse, vec4 specular, vec3 normal) { float NdotL = max(dot(normal, dir), 0.0); return NdotL * diffuse; } ... vec4 calcLight(vec4 pos, vec4 diffuse, vec4 specular, vec3 normal) { if (pos.w == 0.0) { // Directional Light return calcDirectional(normalize(pos.xyz), diffuse, specular, normal); } else { ... } } void main(void) { // position highp vec4 position = MVP * inPosition; gl_Position = position; // normal lowp vec3 normal = inNormal.xyz / inNormal.w; normal = N * normal; normal = normalize(normal); // colors vColor = constantColor * ambient; // add lights vColor += calcLight(light0Position, light0Diffuse, light0Specular, normal); ... }

    Read the article

  • How to shade a texture two different colors?

    - by Venesectrix
    To give an example of what I'm asking about, I'll use Saints Row 3 since I've been playing that lately. In that game you can customize your looks and your car's appearance a lot. Your coat can have a primary color and a trim color. Your car can have a primary color and a stripe color, etc. Is there just a single coat texture that is being shaded two different colors somehow or are they overlaying a transparent second texture for the trim/stripes that gets shaded differently? If it's just one texture I'd like to know how it's done. If it's two different textures it seems like it's a waste of space. The second texture would be the same size as the first one but mostly transparent if you just wanted to lay it on top of the first one. Or are they just carefully positioning a second, smaller texture so that it aligns properly with the first one?

    Read the article

  • Problem with alleg42.dll / program crashes / Allegro & Codeblocks

    - by user24152
    I'm having a serious problem with allegro. The program should display random pixels on the screen and when I build and run it I get the following error message: Below is the full code of my program: #include <stdio.h> #include <stdlib.h> #include <time.h> #include "allegro.h" #define Text_Color_Red makecol(255,0,0) int main() { int ret; int color_depth = 32; int x; int y; int red; int green; int blue; int color; //init allegro allegro_init(); //install keyboard install_keyboard(); //set color depth to 32 bits set_color_depth(color_depth); //init random seed srand(time(NULL)); //init video mode to 640 x 480 ret = set_gfx_mode(GFX_AUTODETECT_WINDOWED,640,480,0,0); if(ret !=0) { allegro_message(allegro_error); return 1; } //Display string textprintf(screen,font,0,0,10,0,Text_Color_Red,"Screen Resolution is: %dx%d -- Press ESC to quit !",SCREEN_W,SCREEN_H); //display pixels until ESC key is pressed //wait for keypress while(!key[KEY_ESC]) { //set a random location x = 10 + rand() % (SCREEN_W-20); y = 10 + rand() % (SCREEN_H-20); //set a random color red = rand() % 255; green = rand() % 255; blue = rand() % 255; color = makecol(red,green,blue); //draw the pixel putpixel(screen, x, y, color); } //quit allegro allegro_exit(); } END_OF_MAIN() Error message: AllegroPixels1.exe has encountered a problem and needs to close. We are sorry for the inconvenience. Error signature: AppName: allegropixels1.exe AppVer: 0.0.0.0 ModName: alleg42.dll ModVer: 4.2.3.0 Offset: 0006c05c I am using Windows XP inside a virtual machine under Parallels 7.0

    Read the article

  • CCSpriteHole in cocos2d 2.0?

    - by rakkarage
    i was using this cocos2d class CCSpriteHole in cocos2d 1.0 fine... http://jpsarda.tumblr.com/post/15779708304/new-cocos2d-iphone-extensions-a-progress-bar-and-a i am trying to convert it to cocos2d 2.0... i got it to compile by changing glVertexPointer to glVertexAttribPointer like in the 2.0 version of CCSpriteScale9 here http://jpsarda.tumblr.com/post/9162433577/scale9grid-for-cocos2d and changing contentSizeInPixels_ to contentSize_... -(id) init { if( (self=[super init]) ) { opacityModifyRGB_ = YES; opacity_ = 255; color_ = colorUnmodified_ = ccWHITE; capSize=capSizeInPixels=CGSizeZero; //Not used blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; // update texture (calls updateBlendFunc) [self setTexture:nil]; // default transform anchor anchorPoint_ = ccp(0.5f, 0.5f); vertexDataCount=24; vertexData = (ccV2F_C4F_T2F*) malloc(vertexDataCount * sizeof(ccV2F_C4F_T2F)); [self setTextureRectInPixels:CGRectZero untrimmedSize:CGSizeZero]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture rect:(CGRect)rect { NSAssert(texture!=nil, @"Invalid texture for sprite"); // IMPORTANT: [self init] and not [super init]; if( (self = [self init]) ) { [self setTexture:texture]; [self setTextureRect:rect]; } return self; } -(id) initWithTexture:(CCTexture2D*)texture { NSAssert(texture!=nil, @"Invalid texture for sprite"); CGRect rect = CGRectZero; rect.size = texture.contentSize; return [self initWithTexture:texture rect:rect]; } -(id) initWithFile:(NSString*)filename { NSAssert(filename!=nil, @"Invalid filename for sprite"); CCTexture2D *texture = [[CCTextureCache sharedTextureCache] addImage: filename]; if( texture ) return [self initWithTexture:texture]; return nil; } +(id)spriteWithFile:(NSString*)f { return [[self alloc] initWithFile:f]; } - (void) dealloc { if (vertexData) free(vertexData); } -(void) updateColor { ccColor4F color4; color4.r=(float)color_.r/255.0f; color4.g=(float)color_.g/255.0f; color4.b=(float)color_.b/255.0f; color4.a=(float)opacity_/255.0f; for (int i=0; i<vertexDataCount; i++) { vertexData[i].colors=color4; } } -(void)updateTextureCoords:(CGRect)rect { CCTexture2D *tex = texture_; if(!tex) return; float atlasWidth = (float)tex.pixelsWide; float atlasHeight = (float)tex.pixelsHigh; float left,right,top,bottom; left = rect.origin.x/atlasWidth; right = left + rect.size.width/atlasWidth; top = rect.origin.y/atlasHeight; bottom = top + rect.size.height/atlasHeight; // // |/|/|/| // CGSize capTexCoordsSize=CGSizeMake(capSizeInPixels.width/atlasWidth, capSizeInPixels.height/atlasHeight); // From left to right //Top band // Left vertexData[0].texCoords=(ccTex2F){left,top}; vertexData[1].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[2].texCoords=(ccTex2F){left+capTexCoordsSize.width,top}; vertexData[3].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[4].texCoords=(ccTex2F){right-capTexCoordsSize.width,top}; vertexData[5].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[6].texCoords=(ccTex2F){right,top}; vertexData[7].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Center band // Left vertexData[8].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[9].texCoords=(ccTex2F){left,top+capTexCoordsSize.height}; vertexData[10].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[11].texCoords=(ccTex2F){left+capTexCoordsSize.width,top+capTexCoordsSize.height}; // Center vertexData[12].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; vertexData[13].texCoords=(ccTex2F){right-capTexCoordsSize.width,top+capTexCoordsSize.height}; // Right vertexData[14].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; vertexData[15].texCoords=(ccTex2F){right,top+capTexCoordsSize.height}; //Bottom band //Left vertexData[16].texCoords=(ccTex2F){left,bottom}; vertexData[17].texCoords=(ccTex2F){left,bottom-capTexCoordsSize.height}; vertexData[18].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom}; vertexData[19].texCoords=(ccTex2F){left+capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Center vertexData[20].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom}; vertexData[21].texCoords=(ccTex2F){right-capTexCoordsSize.width,bottom-capTexCoordsSize.height}; // Right vertexData[22].texCoords=(ccTex2F){right,bottom}; vertexData[23].texCoords=(ccTex2F){right,bottom-capTexCoordsSize.height}; } -(void) updateVertices { float left=0; //-spriteSizeInPixels.width*0.5f; float right=left+contentSize_.width; float bottom=0; //-spriteSizeInPixels.height*0.5f; float top=bottom+contentSize_.height; float holeLeft=holeRect.origin.x*CC_CONTENT_SCALE_FACTOR(); float holeRight=holeLeft+holeRect.size.width*CC_CONTENT_SCALE_FACTOR(); float holeBottom=holeRect.origin.y*CC_CONTENT_SCALE_FACTOR(); float holeTop=holeBottom+holeRect.size.height*CC_CONTENT_SCALE_FACTOR(); // // |/|/|/| // // From left to right //Top band // Left vertexData[0].vertices=(ccVertex2F){left,top}; vertexData[1].vertices=(ccVertex2F){left,holeTop}; vertexData[2].vertices=(ccVertex2F){holeLeft,top}; vertexData[3].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[4].vertices=(ccVertex2F){holeRight,top}; vertexData[5].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[6].vertices=(ccVertex2F){right,top}; vertexData[7].vertices=(ccVertex2F){right,holeTop}; //Center band // Left vertexData[8].vertices=(ccVertex2F){left,holeBottom}; vertexData[9].vertices=(ccVertex2F){left,holeTop}; vertexData[10].vertices=(ccVertex2F){holeLeft,holeBottom}; vertexData[11].vertices=(ccVertex2F){holeLeft,holeTop}; // Center vertexData[12].vertices=(ccVertex2F){holeRight,holeBottom}; vertexData[13].vertices=(ccVertex2F){holeRight,holeTop}; // Right vertexData[14].vertices=(ccVertex2F){right,holeBottom}; vertexData[15].vertices=(ccVertex2F){right,holeTop}; //Bottom band //Left vertexData[16].vertices=(ccVertex2F){left,bottom}; vertexData[17].vertices=(ccVertex2F){left,holeBottom}; vertexData[18].vertices=(ccVertex2F){holeLeft,bottom}; vertexData[19].vertices=(ccVertex2F){holeLeft,holeBottom}; // Center vertexData[20].vertices=(ccVertex2F){holeRight,bottom}; vertexData[21].vertices=(ccVertex2F){holeRight,holeBottom}; // Right vertexData[22].vertices=(ccVertex2F){right,bottom}; vertexData[23].vertices=(ccVertex2F){right,holeBottom}; } -(void) setHole:(CGRect)r inRect:(CGRect)totalSurface { holeRect=r; self.contentSize=totalSurface.size; holeRect.origin=ccpSub(holeRect.origin,totalSurface.origin); CGPoint holeCenter=ccp(holeRect.origin.x+holeRect.size.width*0.5f,holeRect.origin.y+holeRect.size.height*0.5f); self.anchorPoint=ccp(holeCenter.x/contentSize_.width,holeCenter.y/contentSize_.height); //[self updateTextureCoords:rectInPixels_]; [self updateVertices]; [self updateColor]; } -(void) draw { BOOL newBlend = NO; if( blendFunc_.src != CC_BLEND_SRC || blendFunc_.dst != CC_BLEND_DST ) { newBlend = YES; glBlendFunc( blendFunc_.src, blendFunc_.dst ); } glBindTexture(GL_TEXTURE_2D, [texture_ name]); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[0].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[8].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); glVertexAttribPointer(kCCVertexAttrib_Position, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].vertices); glVertexAttribPointer(kCCVertexAttrib_TexCoords, 2, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].texCoords); glVertexAttribPointer(kCCVertexAttrib_Color, 4, GL_FLOAT, GL_FALSE, sizeof(ccV2F_C4F_T2F), &vertexData[16].colors); glDrawArrays(GL_TRIANGLE_STRIP, 0, 8); if( newBlend ) glBlendFunc(CC_BLEND_SRC, CC_BLEND_DST); } -(void)setTextureRectInPixels:(CGRect)rect untrimmedSize:(CGSize)untrimmedSize { rectInPixels_ = rect; rect_ = CC_RECT_PIXELS_TO_POINTS( rect ); //[self setContentSizeInPixels:untrimmedSize]; [self updateTextureCoords:rectInPixels_]; } -(void)setTextureRect:(CGRect)rect { CGRect rectInPixels = CC_RECT_POINTS_TO_PIXELS( rect ); [self setTextureRectInPixels:rectInPixels untrimmedSize:rectInPixels.size]; } // // RGBA protocol // #pragma mark CCSpriteHole - RGBA protocol -(GLubyte) opacity { return opacity_; } -(void) setOpacity:(GLubyte) anOpacity { opacity_ = anOpacity; // special opacity for premultiplied textures if( opacityModifyRGB_ ) [self setColor: (opacityModifyRGB_ ? colorUnmodified_ : color_ )]; [self updateColor]; } - (ccColor3B) color { if(opacityModifyRGB_){ return colorUnmodified_; } return color_; } -(void) setColor:(ccColor3B)color3 { color_ = colorUnmodified_ = color3; if( opacityModifyRGB_ ){ color_.r = color3.r * opacity_/255; color_.g = color3.g * opacity_/255; color_.b = color3.b * opacity_/255; } [self updateColor]; } -(void) setOpacityModifyRGB:(BOOL)modify { ccColor3B oldColor = self.color; opacityModifyRGB_ = modify; self.color = oldColor; } -(BOOL) doesOpacityModifyRGB { return opacityModifyRGB_; } #pragma mark CCSpriteHole - CocosNodeTexture protocol -(void) updateBlendFunc { if( !texture_ || ! [texture_ hasPremultipliedAlpha] ) { blendFunc_.src = GL_SRC_ALPHA; blendFunc_.dst = GL_ONE_MINUS_SRC_ALPHA; [self setOpacityModifyRGB:NO]; } else { blendFunc_.src = CC_BLEND_SRC; blendFunc_.dst = CC_BLEND_DST; [self setOpacityModifyRGB:YES]; } } -(void) setTexture:(CCTexture2D*)texture { // accept texture==nil as argument NSAssert( !texture || [texture isKindOfClass:[CCTexture2D class]], @"setTexture expects a CCTexture2D. Invalid argument"); texture_ = texture; [self updateBlendFunc]; } -(CCTexture2D*) texture { return texture_; } @end but now positioning and scaling seem to not work? and it starts in the wrong position... but changing the opacity still works. so i was wondering if anyone can see why my 2.0 version is not working? or if maybe there is a better way to do a sprite hole with cocos2d/opengl 2.0? shaders? thanks

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

  • How do I implement a selectable world map?

    - by Clay
    I want to have a selectable map of the world, preferably zoomable, in a cocos2d project. When I tap on a country, I want that country to be selected so that I can perform some other operations with it. It seems that the best approach would be to use a vector world map, but I'm unsure how to implement this with cocos2d. Other options include using map tiles, but it seems that still would require the implementation of country polygons for tap/click detection. Depending on user input, I want to add icons to various countries on the map. What is a good way to approach the implementation of this type of map?

    Read the article

< Previous Page | 615 616 617 618 619 620 621 622 623 624 625 626  | Next Page >