Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 618/1529 | < Previous Page | 614 615 616 617 618 619 620 621 622 623 624 625  | Next Page >

  • Why do my pyramids fade black and then back to colour again

    - by geminiCoder
    I have the following vertecies and norms GLfloat verts[36] = { -0.5, 0, 0.5, 0, 0, -0.5, 0.5, 0, 0.5, 0, 0, -0.5, 0.5, 0, 0.5, 0, 1, 0, -0.5, 0, 0.5, 0, 0, -0.5, 0, 1, 0, 0.5, 0, 0.5, -0.5, 0, 0.5, 0, 1, 0 }; GLfloat norms[36] = { 0, -1, 0, 0, -1, 0, 0, -1, 0, -1, 0.25, 0.5, -1, 0.25, 0.5, -1, 0.25, 0.5, 1, 0.25, -0.5, 1, 0.25, -0.5, 1, 0.25, -0.5, 0, -0.5, -1, 0, -0.5, -1, 0, -0.5, -1 }; I am writing my fists Open GL game, But I need to know for sure if my Normals are correct as the colours aren't rendering correctly. my Pyramids are coloured then fade to black every half rotation then back again. My app so far is based on the boiler plate code provided by apple. heres my modified setUp Method [EAGLContext setCurrentContext:self.context]; [self loadShaders]; self.effect = [[GLKBaseEffect alloc] init]; self.effect.light0.enabled = GL_TRUE; self.effect.light0.diffuseColor = GLKVector4Make(1.0f, 0.4f, 0.4f, 1.0f); glEnable(GL_DEPTH_TEST); glGenVertexArraysOES(1, &_vertexArray); //create vertex array glBindVertexArrayOES(_vertexArray); glGenBuffers(1, &_vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, _vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(verts) + sizeof(norms), NULL, GL_STATIC_DRAW); //create vertex buffer big enough for both verts and norms and pass NULL as data.. uint8_t *ptr = (uint8_t *)glMapBufferOES(GL_ARRAY_BUFFER, GL_WRITE_ONLY_OES); //map buffer to pass data to it memcpy(ptr, verts, sizeof(verts)); //copy verts memcpy(ptr+sizeof(verts), norms, sizeof(norms)); //copy norms to position after verts glUnmapBufferOES(GL_ARRAY_BUFFER); glEnableVertexAttribArray(GLKVertexAttribPosition); glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0)); //tell GL where verts are in buffer glEnableVertexAttribArray(GLKVertexAttribNormal); glVertexAttribPointer(GLKVertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(sizeof(verts))); //tell GL where norms are in buffer glBindVertexArrayOES(0); And the update method. - (void)update { float aspect = fabsf(self.view.bounds.size.width / self.view.bounds.size.height); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); self.effect.transform.projectionMatrix = projectionMatrix; GLKMatrix4 baseModelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -4.0f); baseModelViewMatrix = GLKMatrix4Rotate(baseModelViewMatrix, _rotation, 0.0f, 1.0f, 0.0f); // Compute the model view matrix for the object rendered with GLKit GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); self.effect.transform.modelviewMatrix = modelViewMatrix; // Compute the model view matrix for the object rendered with ES2 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, 1.5f); modelViewMatrix = GLKMatrix4Rotate(modelViewMatrix, _rotation, 1.0f, 1.0f, 1.0f); modelViewMatrix = GLKMatrix4Multiply(baseModelViewMatrix, modelViewMatrix); _normalMatrix = GLKMatrix3InvertAndTranspose(GLKMatrix4GetMatrix3(modelViewMatrix), NULL); _modelViewProjectionMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); _rotation += self.timeSinceLastUpdate * 0.5f; } But providing I understand this correct one pyramid is using the GLKit base effect shaders and the other the shaders which are included in the project. So for both of them to have the same error, I thought it would be the Norms?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Simple thruster like behaviour when rotating sprite

    - by ensamgud
    I'm prototyping some 2D game concepts with XNA and have added some basic keyboard inputs to control a triangle sprite. When I press key up the sprite accelerates in it's current facing direction, when I release the key it brakes down. For rotation, when I press left/right keys I rotate the sprite. Currently the sprite immedately changes direction when I rotate it. What I want is for it to keep moving in the same direction when I rotate, until I hit key up, adding thrust in whatever direction the sprite is pointing at. This would simulate thrusters on a classic space shooter like Asteroids. I'm adding an image to describe the behaviour I'm after and some code samples of how I'm doing things at the moment. This is my player struct, holding information of the sprite. public struct PlayerData { public Vector2 Position; // where to draw the sprite public Vector2 Direction; // travel direction of sprite public float Angle; // rotation of sprite public float Velocity; public float Acceleration; public float Decelleration; public float RotationAcceleration; public float RotationDecceleration; public float TopSpeed; public float Scale; } This is how I'm currently handling thrusting / braking (when pressing/releasing key up) (simplified, removed some bounds checking etc): player.Velocity += player.Acceleration * 0.1f; player.Velocity -= player.Acceleration * 0.1f; And when I rotate the sprite left and right: player.Angle -= player.RotationAcceleration * 0.1f; player.Angle += player.RotationAcceleration * 0.1f; This runs in the update loop, keeps the direction updated and updates the position: Vector2 up = new Vector2(0f, -1f); Matrix rotMatrix = Matrix.CreateRotationZ(player.Angle); player.Direction = Vector2.Transform(up, rotMatrix); player.Direction *= player.Velocity; player.Position += player.Direction; I am following along various beginner tutorials and haven't found any describing this, but I have tried some on my own without success. Do I need to change my velocity and acceleration fields to Vectors instead of floats to accomplish this type of movement? I realise my Angle and the Direction vector is currently tied together and I need to disconnect these somehow to be able to rotate freely without changing the direction of the movement, but I can't quite figure out how to do this while keeping the acceleration/decceleration functional. Would appreciate an explanation rather than pure code samples. Thanks,

    Read the article

  • Need to make animation whereby the character shatters into a bunch of pieces

    - by theprojectabot
    I would like to take a 3d character model, cut out a bunch of shapes (or a bunch of triangles in the shape of the pieces I want) and then have the pieces separate from each other at the beginning of the animation and fall apart with gravity so it looks like the model is falling apart in shattered pieces. Is there a way to run a script on a mesh, cut out these pieces, instantiate all of them as separate models and then run gravity on them during the simulation?

    Read the article

  • C++ and SDL Trouble Creating a STL Vector of a Game Object

    - by Jackson Blades
    I am trying to create a Space Invaders clone using C++ and SDL. The problem I am having is in trying to create Waves of Enemies. I am trying to model this by making my Waves a vector of 8 Enemy objects. My Enemy constructor takes two arguments, an x and y offset. My Wave constructor also takes two arguments, an x and y offset. What I am trying to do is have my Wave constructor initialize a vector of Enemies, and have each enemy given a different x offset so that they are spaced out appropriately. Enemy::Enemy(int x, int y) { box.x = x; box.y = y; box.w = ENEMY_WIDTH; box.h = ENEMY_HEIGHT; xVel = ENEMY_WIDTH / 2; } Wave::Wave(int x, int y) { box.x = x; box.y = y; box.w = WAVE_WIDTH; box.y = WAVE_HEIGHT; xVel = (-1)*ENEMY_WIDTH; yVel = 0; std::vector<Enemy> enemyWave; for (int i = 0; i < enemyWave.size(); i++) { Enemy temp(box.x + ((ENEMY_WIDTH + 16) * i), box.y); enemyWave.push_back(temp); } } I guess what I am asking is if there is a cleaner, more elegant way to do this sort of initialization with vectors, or if this is right at all. Any help is greatly appreciated.

    Read the article

  • Coordinate and positioning problem on iOS with cocos2d-x

    - by Vexille
    I'm using cocos2d-x alongside with Marmalade and running some tests and tutorials before starting an actual project with them. So far things are working reasonably well on the windows simulator, Android and even on Blackberry's Playbook, but on iOS devices (iPhone and iPad) the positioning seems to be off. To make things clearer, I put together a scene that just draws an image in the middle of the screen. It worked as expected on everything else, but this is the result I got on an iPhone: To get the coordinates for the center of the screen I'm using the VisibleRect class from the TestCpp sample. It just uses sharedOpenGLView to get the visible size and visible origin, and calculate the center from that. CCSprite* test = CCSprite::create("Ball.png", CCRectMake(0, 0, 80, 80) ); test->setPosition( ccp(VisibleRect::center().x, VisibleRect::center().y) ); this->addChild(test); Also I have a noBorder policy set on AppDelegate: CCEGLView::sharedOpenGLView()->setDesignResolutionSize(designSize.width, designSize.height, kResolutionNoBorder); One funny thing is that I tried to deploy the TestCpp sample project to some iOS devices and it worked reasonably well on the iPhone, but on the iPad the application was only being drawn on a small portion of the screen - just like what happened on the iPhone when I tried using the ShowAll policy.

    Read the article

  • Random Position between ranges.

    - by blakey87
    Does anyone have a good algorithm for generating a random y position for spawning a block, which takes into account a minimum and maximum height, allowing player to to jump on the block. Blocks will continually be spawned, so the player must always be able to jump onto the next block, bearing in mind the minimum position which would be the ground, and the maximum which would the players jump height bearing in mind the ceiling

    Read the article

  • Find Nearest Object

    - by ultifinitus
    I have a fairly sizable game engine created, and I'm adding some needed features, such as this, how do I find the nearest object from a list of points? In this case, I could simply use the Pythagorean theorem to find the distance, and check the results. I know I can't simply add x and y, because that's the distance to the object, if you only took right angle turns. However I'm wondering if there's something else I could do? I also have a collision system, where essentially I turn objects into smaller objects on a smaller grid, kind of like a minimap, and only if objects exist in the same gridspace do I check for collisions, I could do the same thing, only make the gridspace larger to check for closeness. (rather than checking every. single. object) however that would take additional setup in my base class and clutter up the already cluttered object. TL;DR Question: Is there something efficient and accurate that I can use to detect which object is closest, based on a list of points and sizes?

    Read the article

  • How can I customize an FPS game?

    - by monoceres
    I want to create a customized (modded) fps game where I can change the look and feel of the game to match my intended theme. Some of the things I would like to do: Create a custom map (terrain). Add custom sound effects Change AI (For example, running away instead of actively looking for combat). Change menus and add some storyboard. Script events in game (like a countdown until game over) Change the models of the NPC's. What options do I have? Is there any platform/game/engine/whatever that allows one to do the things above in a reasonable way? I work as a programmer so I'm not afraid of coding some part of the project, but to save time it would be nice to work in some high-level way (like scripting or configuration files).

    Read the article

  • Strategy to prevent players from seeing through walls in an online FPS?

    - by geneotech
    Why do we still moan on wallhackers in multiplayer first-person shooters ? Isn't it possible to perform occlusion culling for all players server-side ? For example, send player xyz information to client only when the player is visible in client's frustum and not occluded by any object ? Even if the collision-geometry is very simplified, most of the time cheater won't receive tactical information. Why not do this ?

    Read the article

  • Grid based collision - How many cells?

    - by Fibericon
    The game I'm creating is a bullet hell game, so there can be quite a few objects on the screen at any given time. It probably maxes out at about 40 enemies and 200 or so bullets. That being said, I'm splitting up the playing field into a grid for my collision checking. Right now, it's only 8 cells. How many would be optimal? I'm worried that if I use too many, I'll be wasting CPU power. My main concern is processing power, to make the game run smoothly. RAM is not a big concern for me.

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

  • Line Intersection from parametric equation

    - by Sidar
    I'm sure this question has been asked before. However, I'm trying to connect the dots by translating an equation on paper into an actual function. I thought It would be interesting to ask here instead on the Math sites (since it's going to be used for games anyway ). Let's say we have our vector equation : x = s + Lr; where x is the resulting vector, s our starting point/vector. L our parameter and r our direction vector. The ( not sure it's called like this, please correct me ) normal equation is : x.n = c; If we substitute our vector equation we get: (s+Lr).n = c. We now need to isolate L which results in L = (c - s.n) / (r.n); L needs to be 0 < L < 1. Meaning it needs to be between 0 and 1. My question: I want to know what L is so if I were to substitute L for both vector equation (or two lines) they should give me the same intersection coordinates. That is if they intersect. But I can't wrap my head around on how to use this for two lines and find the parameter that fits the intersection point. Could someone with a simple example show how I could translate this to a function/method?

    Read the article

  • Box2D blocky map. Body, Fixtures a huge map and performance

    - by Solom
    Right now I'm still in the planning phase of a my very first game. I'm creating a "Minecraft"-like game in 2D that features blocks that can be destroyed as well as players moving around the map. For creating the map I chose a 2D-Array of Integers that represent the Block ID. For testing purposes I created a huge map (16348 * 256) and in my prototype that didn't use Box2D everything worked like a charm. I only rendered those blocks that where within the bounds of my camera and got 60 fps straight. The problem started when I decided to use an existing physics-solution rather than implementing my own one. What I had was basically simple hitboxes around the blocks and then I had to manually check if the player collided with any of those in his neighborhood. For more advanced physics as well as the collision detection I want to switch over to Box2D. The problem I have right now is ... how to go about the bodies? I mean, the blocks are of a static bodytype. They don't move on their own, they just are there to be collided with. But as far as I can see it, every block needs his own body with a rectangular fixture attached to it, so as to be destroyable. But for a huge map such as mine, this turns out to be a real performance bottle-neck. (In fact even a rather small map [compared to the other] of 1024*256 is unplayable.) I mean I create thousands of thousands of blocks. Even if I just render those that are in my immediate neighborhood there are hundreds of them and (at least with the debugRenderer) I drop to 1 fps really quickly (on my own "monster machine"). I thought about strategies like creating just one body, attaching multiple fixtures and only if a fixture got hit, separate it from the body, create a new one and destroy it, but this didn't turn out quite as successful as hoped. (In fact the core just dumps. Ah hello C! I really missed you :X) Here is the code: public class Box2DGameScreen implements Screen { private World world; private Box2DDebugRenderer debugRenderer; private OrthographicCamera camera; private final float TIMESTEP = 1 / 60f; // 1/60 of a second -> 1 frame per second private final int VELOCITYITERATIONS = 8; private final int POSITIONITERATIONS = 3; private Map map; private BodyDef blockBodyDef; private FixtureDef blockFixtureDef; private BodyDef groundDef; private Body ground; private PolygonShape rectangleShape; @Override public void show() { world = new World(new Vector2(0, -9.81f), true); debugRenderer = new Box2DDebugRenderer(); camera = new OrthographicCamera(); // Pixel:Meter = 16:1 // Body definition BodyDef ballDef = new BodyDef(); ballDef.type = BodyDef.BodyType.DynamicBody; ballDef.position.set(0, 1); // Fixture definition FixtureDef ballFixtureDef = new FixtureDef(); ballFixtureDef.shape = new CircleShape(); ballFixtureDef.shape.setRadius(.5f); // 0,5 meter ballFixtureDef.restitution = 0.75f; // between 0 (not jumping up at all) and 1 (jumping up the same amount as it fell down) ballFixtureDef.density = 2.5f; // kg / m² ballFixtureDef.friction = 0.25f; // between 0 (sliding like ice) and 1 (not sliding) // world.createBody(ballDef).createFixture(ballFixtureDef); groundDef = new BodyDef(); groundDef.type = BodyDef.BodyType.StaticBody; groundDef.position.set(0, 0); ground = world.createBody(groundDef); this.map = new Map(20, 20); rectangleShape = new PolygonShape(); // rectangleShape.setAsBox(1, 1); blockFixtureDef = new FixtureDef(); // blockFixtureDef.shape = rectangleShape; blockFixtureDef.restitution = 0.1f; blockFixtureDef.density = 10f; blockFixtureDef.friction = 0.9f; } @Override public void render(float delta) { Gdx.gl.glClearColor(1, 1, 1, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); debugRenderer.render(world, camera.combined); drawMap(); world.step(TIMESTEP, VELOCITYITERATIONS, POSITIONITERATIONS); } private void drawMap() { for(int a = 0; a < map.getHeight(); a++) { /* if(camera.position.y - (camera.viewportHeight/2) > a) continue; if(camera.position.y - (camera.viewportHeight/2) < a) break; */ for(int b = 0; b < map.getWidth(); b++) { /* if(camera.position.x - (camera.viewportWidth/2) > b) continue; if(camera.position.x - (camera.viewportWidth/2) < b) break; */ /* blockBodyDef = new BodyDef(); blockBodyDef.type = BodyDef.BodyType.StaticBody; blockBodyDef.position.set(b, a); world.createBody(blockBodyDef).createFixture(blockFixtureDef); */ PolygonShape rectangleShape = new PolygonShape(); rectangleShape.setAsBox(1, 1, new Vector2(b, a), 0); blockFixtureDef.shape = rectangleShape; ground.createFixture(blockFixtureDef); rectangleShape.dispose(); } } } @Override public void resize(int width, int height) { camera.viewportWidth = width / 16; camera.viewportHeight = height / 16; camera.update(); } @Override public void hide() { dispose(); } @Override public void pause() { } @Override public void resume() { } @Override public void dispose() { world.dispose(); debugRenderer.dispose(); } } As you can see I'm facing multiple problems here. I'm not quite sure how to check for the bounds but also if the map is bigger than 24*24 like 1024*256 Java just crashes -.-. And with 24*24 I get like 9 fps. So I'm doing something really terrible here, it seems and I assume that there most be a (much more performant) way, even with Box2D's awesome physics. Any other ideas? Thanks in advance!

    Read the article

  • Better solution for boolean mixing?

    - by Ruben Nunez
    Sorry if this question has been asked in the past, but searching Google and here didn't yield relevant results, so here goes. I'm working on a fragment shader that implements both conditional/boolean diffuse and bump mapping (that is to say, you don't need a diffuse texture or a normals texture, and if they're not present, they're simply changed to default values). My current solution is to use a uniform float to say "mix amount". For example, computing the diffuse texel works as: // Compute diffuse amount scaled by vCol // If no texture is present (mDif = 0.0), then DiffuseTexel = vCol // kT[0] is the diffuse texture // vTex is the texture co-ordinates // mDif is the uniform float containing the mix amount (either 0.0 or 1.0) vec4 DiffuseTexel = vCol*mix(vec4(1.0), texture2D(kT[0], vTex), mDif); While that works great and all, I was wondering if there's a better way of doing this, as I will never have any use for in-between values for funky effects. I know that perhaps the best solution is to simply write separate shaders for mDif=0.0 and mDif=1.0, but I'd like a more elegant solution than splicing shaders before compiling or writing multiple shader files and keeping each one updated. Any ideas are greatly appreciated. =)

    Read the article

  • What's the recommended way of doing a HUD for an android game?

    - by joxnas
    Basically the question is in the title. I'm creating a RTS game and I will need buttons like attack move / attack ground, etc. I am not using any engine. When people do games in OpenGL for android (my case), do they ever use android components to control the game or do they create their components in the game? What are the general recommended approach, if there's any? How about more complex components like scrolling lists of items , etc? I would also appreciate you to pair your answer with a brief comment about how was your experience using the approach(es) you describe. Thanks :)

    Read the article

  • How to implement the light trails for a tron game?

    - by Link
    Well I was creating a TRON style game, but had an issue with creating the actual light trails for the game. What I'm doing currently is I have an array the same size as my window in pixel size, implemented like this: int* collision[800][600]; Then when the bike goes on a certain pixel, it is marked with a 1 for traveled on. However what is the most efficient way to create a working light trail display? I tried to do something like this: int i, j; for(i=0; i<800; i++) for(j=0; j<600; j++) if(*collision[i][j] == 1) Image::applySurface(i, j, trailSurface, gameScreen); But it isn't working properly? It just fills the whole screen with a sprite instead. Whats a better/faster/working way to do this?

    Read the article

  • C++: Checking if an object faces a point (within a certain range)

    - by bojoradarial
    I have been working on a shooter game in C++, and am trying to add a feature whereby missiles shot must be within 90 degrees (PI/2 radians) of the direction the ship is facing. The missiles will be shot towards the mouse. My idea is that the ship's angle of rotation is compared with the angle between the ship and the mouse (std::atan2(mouseY - shipY, mouseX - shipX)), and if the difference is less than PI/4 (45 degrees) then the missile can be fired. However, I can't seem to get this to work. The ship's angle of rotation is increased and decreased with the A and D keys, so it is possible that it isn't between 0 and 2*PI, hence the use of fmod() below. Code: float userRotation = std::fmod(user->Angle(), 6.28318f); if (std::abs(userRotation - missileAngle) > 0.78f) return; Any help would be appreciated. Thanks!

    Read the article

  • Combining pathfinding with global AI objectives

    - by V_Programmer
    I'm making a turn-based strategy game using Java and LibGDX. Now I want to code the AI. I haven't written the AI code yet. I've simply designed it. The AI will have two components, one focused in tactics and resource management (create troops, determine who have strategical advantage, detect important objectives, etc) and a individual component, focused in assign the work to each unit, examine its possibilites and move the unit. Now I'm facing an important problem. The map where the action take place is a grid-based map. Each terrain has different movement cost. I read about pathfinding and I think A* is a very good option to determine a good route between two points. However, imagine I have an unit with movement = 5 (i.e, it can move 5 tiles of movement cost = 1). My tactical AI has found an objective at a distance d = 20 tiles (Manhattan distance) from my unit. My problem is the following: the unit won't be able to reach the objective in one turn. So the AI will have to store a list of position and execute them in various turns. I don't know how to solve this. PS. In my unit code, I have a list called "selectionMarks" which stores all the possible places where the unit can go in this turn. This places are calculed recursively using a "getSelectionMarks" function. Any help is appreciated :D

    Read the article

  • Make OpenGL game perform better

    - by Csabi
    I have programmed an OpenGL game which just contains one F1 car and a track. It is very simple and only uses around of 10'000 - 20'000 triangles. It should run on any PC but it won't, it needs a really good graphics-card to run at a decent framerate. Can you write some methods or links to sites which would help me make my scene/game more efective? my game can be downloaded from here or directly from here

    Read the article

  • Getting a texture from a renderbuffer in OpenGL?

    - by Rushyo
    I've got a renderbuffer (DepthStencil) in an FBO and I need to get a texture from it. I can't have both a DepthComponent texture and a DepthStencil renderbuffer in the FBO, it seems, so I need some way to convert the renderbuffer to a DepthComponent texture after I'm done with it for use later down the pipeline. I've tried plenty of techniques to grab the depth component from the renderbuffer for weeks but I always come out with junk. All I want at the end is the same texture I'd get from an FBO if I wasn't using a renderbuffer. Can anyone post some comprehensive instructions or code that covers this seemingly simple operation? EDIT: Linky to an extract version of the code http://dl.dropbox.com/u/9279501/fbo.cs Screeny of the Depth of Field effect + FBO - without depth(!) http://i.stack.imgur.com/Hj9Oe.jpg Screeny without Depth of Field effect + FBO - depth working fine http://i.stack.imgur.com/boOm1.jpg

    Read the article

  • Knowing state of game in real time

    - by evthim
    I'm trying to code a tic tac toe game in java and I need help figuring out how to efficiently and without freezing the program check if someone won the game. I'm only in the design stages now, I haven't started programming anything but I'm wondering how would I know at all times the state of the game and exactly when someone wins? Response to MarkR: (note: had to place comment here, it was too long for comment section) It's not a homework problem, I'm trying to get more practice programming GUI's which I've only done once as a freshman in my second introductory programming course. I understand I'll have a 2D array. I plan to have a 2D integer array where x would equal 1 and o would equal 0. However, won't it take too much time if I check after every move if someone won the game? Is there a way or a data structure or algorithm I can use so that the program will know the state (when I say state I mean not just knowing every position on the board, the int array will take care of that, I mean knowing that user 1 will win if he places x on this block) of the game at all times and thus can know automatically when someone won?

    Read the article

  • Passing an objects rotation down through its children

    - by MintyAnt
    In my topdown 2d game you have a player with a sword, like an old Zelda game. The sword is a seperate entity, and its collision box "rotates" around the player like an orbit, but always follows the player wherever he goes. The player and sword both have a vector2 heading. The sword is a weapon object that is attached to the character. In order to allow swinging in a direction, I have the following property inside sword (RotateCopy returns a copy of the mHeading after rotation) public Vector2 Heading { get { return mHeading.RotateCopy(mOwner.Rotation); } } This seems a bit messy to me, and slower than it could be. Is there a better way to "translate" the base/owner component rotations through to whatever component I am using, like this sword? Would using a rotation MATRIX be better? (Curretnly rotates by sin/cos) If so, how can I "add" up the matrices? Thank you.

    Read the article

  • How can I clear explosions in my function?

    - by hustlerinc
    Hi I have a function to place bombs, and a for loop that places explosions on the tiles where possible. My problem is that I can't remove the explosions after a while. I've tried everything I can come up with so now I turn here as a last resort. The function looks like this: function Bomb(){ var placebomb = false; if(placeBomb && player.bombs != 0){ map[player.Y][player.X].object = 2; var bombX = player.X; var bombY = player.Y; placeBomb = false; player.bombs--; setTimeout(explode, 3000); } function explode(){ var explodeNorth = true; var explodeEast = true; var explodeSouth = true; var explodeWest = true; map[bombY][bombX].explosion = 1; delete map[bombY][bombX].object; for(i=0;i<=player.bombRadius;i++){ if(explodeNorth && map[bombY-i][bombX]){ if(!map[bombY-i][bombX].wall){ if(!map[bombY-i][bombX].object){ map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; delete map[bombY-i][bombX].object; map[bombY-i][bombX].explosion = 1; } else var explodeNorth = false; } if(explodeEast && map[bombY][bombX+i]){ if(!map[bombY][bombX+i].wall){ if(!map[bombY][bombX+i].object){ map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; delete map[bombY][bombX+i].object; map[bombY][bombX+i].explosion = 1; } else var explodeEast = false; } if(explodeSouth && map[bombY+i][bombX]){ if(!map[bombY+i][bombX].wall){ if(!map[bombY+i][bombX].object){ map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; delete map[bombY+i][bombX].object; map[bombY+i][bombX].explosion = 1; } else var explodeSouth = false; } if(explodeWest && map[bombY][bombX-i]){ if(!map[bombY][bombX-i].wall){ if(!map[bombY][bombX-i].object){ map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; delete map[bombY][bombX-i].object; map[bombY][bombX-i].explosion = 1; } else var explodeWest = false; } } player.bombs++; } } If anyone can think of a good way to remove the explosion after a delay please help.

    Read the article

  • How should I structure moving from overworld to menu system / combat?

    - by persepolis
    I'm making a text-based "Arena" game where the player is the owner of 5 creatures that battle other teams for loot, experience and glory. The game is very simple, using Python and a curses emulator. I have a static ASCII map of an "overworld" of sorts. My character, represented by a glyph, can move about this static map. There are locations all over the map that the character can visit, that break down into two types: 1) Towns, which are a series of menus that will allow the player to buy equipment for his team, hire new recruits or do other things. 2) Arenas, where the player's team will have a "battle" interface with actions he can perform, messages about the fight, etc. Maybe later, an ASCII representation of the fight but for now, just screens of information with action prompts. My main problem is what kind of design or structure I should use to implement this? Right now, the game goes through a master loop which waits for keyboard input and then moves the player about the screen. My current thinking is this: 1) Upon keyboard input, the Player coordinates are checked against a list of Location objects and if the Player coords match the Location coords then... 2) ??? I'm not sure if I should then call a seperate function to initiate a "menu" or "combat" mode. Or should I create some kind of new GameMode object that contains a method itself for drawing the screen, printing the necessary info? How do I pass my player's team data into this object? My main concern is passing around the program flow into all these objects. Should I be calling straight functions for different parts of my game, and objects to represent "things" within my game? I was reading about the MVC pattern and how this kind of problem might benefit - decouple the GUI from the game logic and user input but I have no idea how this applies to my game.

    Read the article

< Previous Page | 614 615 616 617 618 619 620 621 622 623 624 625  | Next Page >