Search Results

Search found 1449 results on 58 pages for 'coordinate geometry'.

Page 7/58 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • 2D isometric: screen to tile coordinates

    - by Dr_Asik
    I'm writing an isometric 2D game and I'm having difficulty figuring precisely on which tile the cursor is. Here's a drawing: where xs and ys are screen coordinates (pixels), xt and yt are tile coordinates, W and H are tile width and tile height in pixels, respectively. My notation for coordinates is (y, x) which may be confusing, sorry about that. The best I could figure out so far is this: int xtemp = xs / (W / 2); int ytemp = ys / (H / 2); int xt = (xs - ys) / 2; int yt = ytemp + xt; This seems almost correct but is giving me a very imprecise result, making it hard to select certain tiles, or sometimes it selects a tile next to the one I'm trying to click on. I don't understand why and I'd like if someone could help me understand the logic behind this. Thanks!

    Read the article

  • Find vertices of a convex hull

    - by Jeff Bullard
    I am attempting to do this within CGAL. From a 3D point cloud, find the convex hull, then loop over the finite facets of the convex hull and print each facet's vertices. It seems like there should be a straightforward way to do this; I would have expected that 3D polyhedra would own a vector of facet objects, each of which in turn would own a vector of its edges, each of which in turn would own a vector of its vertices, and that their would be some access through this hierarchy using iterators. But so far I have been unable to find a simple way to navigate through this hierarchy (if it exists).

    Read the article

  • Partial recalculation of visibility on a 2D uniform grid

    - by Martin Källman
    Problem Imagine that we have a 2D uniform grid of dimensions N x N. For this grid we have also pre-computed a visibility look-up table, e.g. with DDA, which answers the boolean query is cell X visible from cell Y? The look-up table is a complete graph KN of the cells V in the grid, with each edge E being a binary value denoting the visibility between its vertices. Question If any given cell has its visibility modified, is it possible to extract the subset Edelta of edges which must have their visibility recomputed due to the change, so as to avoid a full-on recomputation for the entire grid? (Which is N(N-1) / 2 or N2 depending on the implementation) Update If is not possible to solve thi in closed form, then maintaining a separate mapping of each cell and every cell pair who's line intersects said cell might also be an option. This obviously consumes more memory, but the data is static. The increased memory requirement could be reduced by introducing a hierarchy, subdividing the grid into smaller parts, and by doing so the above mapping can be reused for each sub-grid. This would come at a cost in terms of increased computation relative to the number of subdivisions; also requiring a resumable ray-casting algorithm.

    Read the article

  • How to limit click'n'drag movement to an area?

    - by Vexille
    I apologize for the somewhat generic title. I'm really don't have much clue about how to accomplish what I'm trying to do, which is making it harder even to research a possible solution. I'm trying to implement a path marker of sorts (maybe there's a most suitable name for it, but this is the best I could come up with). In front of the player there will be a path marker, which will determine how the player will move once he finishes planning his turn. The player may click and drag the marker to the position they choose, but the marker can only be moved within a defined working area (the gray bit). So I'm now stuck with two problems: First of all, how exactly should I define that workable area? I can imagine maybe two vectors that have the player as a starting point to form the workable angle, and maybe those two arcs could come from circles that have their center where the player is, but I definetly don't know how to put this all together. And secondly, after I've defined the area where the marker can be placed, how can I enforce that the marker should only stay within that area? For example, if the player clicks and drags the marker around, it may move freely within the working area, but must not leave the boundaries of the area. So for example, if the player starts dragging the marker upwards, it will move upwards until it hits he end of the working area (first diagram below), but if after that the player starts dragging sideways, the marker must follow the drag while still within the area (second diagram below). I hope this wasn't all too confusing. Thanks, guys.

    Read the article

  • Splitting Graph into distinct polygons in O(E) complexity

    - by Arthur Wulf White
    If you have seen my last question: trapped inside a Graph : Find paths along edges that do not cross any edges How do you split an entire graph into distinct shapes 'trapped' inside the graph(like the ones described in my last question) with good complexity? What I am doing now is iterating over all edges and then starting to traverse while always taking the rightmost turn. This does split the graph into distinct shapes. Then I eliminate all the excess shapes (that are repeats of previous shapes) and return the result. The complexity of this algorithm is O(E^2). I am wondering if I could do it in O(E) by removing edges I already traversed previously. My current implementation of that returns unexpected results.

    Read the article

  • Robust line of sight test on the inside of a polygon with tolerance

    - by David Gouveia
    Foreword This is a followup to this question and the main problem I'm trying to solve. My current solution is an hack which involves inflating the polygon, and doing most calculations on the inflated polygon instead. My goal is to remove this step completely, and correctly solve the problem with calculations only. Problem Given a concave polygon and treating all of its edges as if they were walls in a level, determine whether two points A and B are in line of sight of each other, while accounting for some degree of floating point errors. I'm currently basing my solution on a series of line-segment interection tests. In other words: If any of the end points are outside the polygon, they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B crosses any of the edges from the polygon, then they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B does not cross any of the edges from the polygon, then they are in line of sight. But the problem is dealing correctly with all the edge cases. In particular, it must be able to deal with all the situations depicted below, where red lines are examples that should be rejected, and green lines are examples that should be accepted. I probably missed a few other situations, such as when the line segment from A to B is colinear with an edge, but one of the end points is outside the polygon. One point of particular interest is the difference between 1 and 9. In both cases, both end points are vertices of the polygon, and there are no edges being intersected, but 1 should be rejected while 9 should be accepted. How to distinguish these two? I could check some middle point within the segment to see if it falls inside or not, but it's easy to come up with situations in which it would fail. Point 7 was also pretty tricky and I had to to treat it as a special case, which checks if two points are adjacent vertices of the polygon directly. But there are also other chances of line segments being col linear with the edges of the polygon, and I'm still not entirely sure how I should handle those cases. Is there any well known solution to this problem?

    Read the article

  • Convex Hull for Concave Objects

    - by Lighthink
    I want to implement GJK and I want it to handle concave shapes too (almost all my shapes are concave). I've thought of decomposing the concave shape into convex shapes and then building a hierarchical tree out of convex shapes, but I do not know how to do it. Nothing I could find on the Internet about it wasn't satisfying my needs, so maybe someone can point me in the right direction or give a full explanation.

    Read the article

  • Transforming a primitive tetrahedron into a primitive icosahedron?

    - by Djentleman
    I've created a tetrahedron by creating a BoundingBox and building the faces of the tetrahedron within the bounding box as follows (see image as well): VertexPositionNormalTexture[] vertices = new VertexPositionNormalTexture[12]; BoundingBox box = new BoundingBox(new Vector3(-1f, 1f, 1f), new Vector3(1f, -1f, -1f)); vertices[0].Position = box.GetCorners()[0]; vertices[1].Position = box.GetCorners()[2]; vertices[2].Position = box.GetCorners()[7]; vertices[3].Position = box.GetCorners()[0]; vertices[4].Position = box.GetCorners()[5]; vertices[5].Position = box.GetCorners()[2]; vertices[6].Position = box.GetCorners()[5]; vertices[7].Position = box.GetCorners()[7]; vertices[8].Position = box.GetCorners()[2]; vertices[9].Position = box.GetCorners()[5]; vertices[10].Position = box.GetCorners()[0]; vertices[11].Position = box.GetCorners()[7]; What would I then have to do to transform this tetrahedron into an icosahedron? Similar to this image: I understand the concept but applying it is another thing entirely for me.

    Read the article

  • Scanline filling of polygons that share edges and vertices

    - by Belgin
    In this picture (a perspective projection of an icosahedron), the scanline (red) intersects that vertex at the top. In an icosahedron each edge belongs to two triangles. From edge a, only one triangle is visible, the other one is in the back. Same for edge d. Also, in order to determine what color the current pixel should be, each polygon has a flag which can either be 'in' or 'out', depending upon where on the scanline we currently are. Flags are flipped according to the intersection of the scanline with the edges. Now, as we go from a to d (because all edges are intersected with the scanline at that vertex), this happens: the triangle behind triangle 1 and triangle 1 itself are set 'in', then 2 is set in and 1 is 'out', then 3 is set 'in', 2 is 'out' and finally 3 is 'out' and the one behind it is set 'in', which is not the desired behavior because we only need the triangles which are facing us to be set 'in', the rest should be 'out'. How do process the edges in the Active Edge List (a list of edges that are currently intersected by the scanline) so the right polys are set 'in'? Also, I should mention that the edges are unique, which means there exists an array of edges in the data structure of the icosahedron which are pointed to by edge pointers in each of the triangles.

    Read the article

  • simple collision detection

    - by Rob
    Imagine 2 squares sitting side by side, both level with the ground: http://img19.imageshack.us/img19/8085/sqaures2.jpg A simple way to detect if one is hitting the other is to compare the location of each side. They are touching if ALL of the following are NOT true: The right square's left side is to the right of the left square's right side. The right square's right side is to the left of the left square's left side. The right square's bottom side is above the left square's top side. The right square's top side is below the left square's bottom side. If any of those are true, the squares are not touching. If all of those are false, the squares are touching. But consider a case like this, where one square is at a 45 degree angle: http://img189.imageshack.us/img189/4236/squaresb.jpg Is there an equally simple way to determine if those squares are touching?

    Read the article

  • Intersection points of plane set forming convex hull

    - by Toji
    Mostly looking for a nudge in the right direction here. Given a set of planes (defined as a normal and distance from origin) that form a convex hull, I would like to find the intersection points that form the corners of that hull. More directly, I'm looking for a way to generate a point cloud appropriate to provide to Bullet. Bonus points if someone knows of a way I could give bullet the plane list directly, since I somewhat suspect that's what it's building on the backend anyway.

    Read the article

  • Circle-Line Collision Detection Problem

    - by jazzdawg
    I am currently developing a breakout clone and I have hit a roadblock in getting collision detection between a ball (circle) and a brick (convex polygon) working correctly. I am using a Circle-Line collision detection test where each line represents and edge on the convex polygon brick. For the majority of the time the Circle-Line test works properly and the points of collision are resolved correctly. Collision detection working correctly. However, occasionally my collision detection code returns false due to a negative discriminant when the ball is actually intersecting the brick. Collision detection failing. I am aware of the inefficiency with this method and I am using axis aligned bounding boxes to cut down on the number of bricks tested. My main concern is if there are any mathematical bugs in my code below. /* * from and to are points at the start and end of the convex polygons edge. * This function is called for every edge in the convex polygon until a * collision is detected. */ bool circleLineCollision(Vec2f from, Vec2f to) { Vec2f lFrom, lTo, lLine; Vec2f line, normal; Vec2f intersectPt1, intersectPt2; float a, b, c, disc, sqrt_disc, u, v, nn, vn; bool one = false, two = false; // set line vectors lFrom = from - ball.circle.centre; // localised lTo = to - ball.circle.centre; // localised lLine = lFrom - lTo; // localised line = from - to; // calculate a, b & c values a = lLine.dot(lLine); b = 2 * (lLine.dot(lFrom)); c = (lFrom.dot(lFrom)) - (ball.circle.radius * ball.circle.radius); // discriminant disc = (b * b) - (4 * a * c); if (disc < 0.0f) { // no intersections return false; } else if (disc == 0.0f) { // one intersection u = -b / (2 * a); intersectPt1 = from + (lLine.scale(u)); one = pointOnLine(intersectPt1, from, to); if (!one) return false; return true; } else { // two intersections sqrt_disc = sqrt(disc); u = (-b + sqrt_disc) / (2 * a); v = (-b - sqrt_disc) / (2 * a); intersectPt1 = from + (lLine.scale(u)); intersectPt2 = from + (lLine.scale(v)); one = pointOnLine(intersectPt1, from, to); two = pointOnLine(intersectPt2, from, to); if (!one && !two) return false; return true; } } bool pointOnLine(Vec2f p, Vec2f from, Vec2f to) { if (p.x >= min(from.x, to.x) && p.x <= max(from.x, to.x) && p.y >= min(from.y, to.y) && p.y <= max(from.y, to.y)) return true; return false; }

    Read the article

  • Wrong faces culled in OpenGL when drawing a rectangular prism

    - by BadSniper
    I'm trying to learn opengl. I did some code for building a rectangular prism. I don't want to draw back faces so I used glCullFace(GL_BACK), glEnable(GL_CULL_FACE);. But I keep getting back faces also when viewing from front and also sometimes when rotating sides are vanishing. Can someone point me in right direction? glPolygonMode(GL_FRONT,GL_LINE); // draw wireframe polygons glColor3f(0,1,0); // set color green glCullFace(GL_BACK); // don't draw back faces glEnable(GL_CULL_FACE); // don't draw back faces glTranslatef(-10, 1, 0); // position glBegin(GL_QUADS); // face 1 glVertex3f(0,-1,0); glVertex3f(0,-1,2); glVertex3f(2,-1,2); glVertex3f(2,-1,0); // face 2 glVertex3f(2,-1,2); glVertex3f(2,-1,0); glVertex3f(2,5,0); glVertex3f(2,5,2); // face 3 glVertex3f(0,5,0); glVertex3f(0,5,2); glVertex3f(2,5,2); glVertex3f(2,5,0); // face 4 glVertex3f(0,-1,2); glVertex3f(2,-1,2); glVertex3f(2,5,2); glVertex3f(0,5,2); // face 5 glVertex3f(0,-1,2); glVertex3f(0,-1,0); glVertex3f(0,5,0); glVertex3f(0,5,2); // face 6 glVertex3f(0,-1,0); glVertex3f(2,-1,0); glVertex3f(2,5,0); glVertex3f(0,5,0); glEnd();

    Read the article

  • Adding tolerance to a point in polygon test

    - by David Gouveia
    I've been using this method which was taken from Game Coding Complete to detect whether a point is inside of a polygon. It works in almost every case, but is failing on a few edge cases, and I can't figure out the reason. For example, given a polygon with vertices at (0,0) (0,100) and (100,100), the algorithm is returning: True for any point strictly inside the polygon False for any of the vertices False for (0, 50) which lies on one of the edges of the polygon True (?) for (50,50) which is also on one of the edges of the polygon I'd actually like to relax the algorithm so that it returns true in all of these cases. In other words, it should return true for points that are strictly inside, for the vertices themselves, and for points on the edges of the polygon. If possible I'd also like to give it enough tolerance so that it always tend towards "true" in face of floating point fluctuations. For example, I have another method, that given a line segment and a point, returns the closest location on the line segment to the given point. Currently, given any point outside the polygon and one of its edges, there are cases where the result is categorized as being inside by the method above, while other points are considered outside. I'd like to give it enough tolerance so that it always returns true in this situation. The way I've currently solved the problem is an hack, which consists of using an external library to inflate the polygon by a few pixels, and performing the tests on the inflated polygon, but I'd really like to replace this with a proper solution.

    Read the article

  • Algorithm to calculate trajectories from vector field

    - by cheeesus
    I have a two-dimensional vector field, i.e., for each point (x, y) I have a vector (u, v), whereas u and v are functions of x and y. This vector field canonically defines a set of trajectories, i.e. a set of paths a particle would take if it follows along the vector field. In the following image, the vector field is depicted in red, and there are four trajectories which are partly visible, depicted in dark red: I need an algorithm which efficiently calculates some trajectories for a given vector field. The trajectories must satisfy some kind of minimum denseness in the plane (for every point in the plane we must have a 'nearby' trajectory), or some other condition to get a reasonable set of trajectories. I could not find anything useful on Google on this, and Stackexchange doesn't seem to handle the topic either. Before I start devising such an algorithm by myself: Are there any known algorithms for this problem? What is their name, for which keywords do I have to search?

    Read the article

  • Fast software color interpolating triangle rasterization technique

    - by Belgin
    I'm implementing a software renderer with this rasterization method, however, I was wondering if there is a possibility to improve it, or if there exists an alternative technique that is much faster. I'm specifically interested in rendering small triangles, like the ones from this 100k poly dragon: As you can see, the method I'm using is not perfect either, as it leaves small gaps from time to time (at least I think that's what's happening). I don't mind using assembly optimizations. Pseudocode or actual code (C/C++ or similar) is appreciated. Thanks in advance.

    Read the article

  • How to perform simple collision detection?

    - by Rob
    Imagine two squares sitting side by side, both level with the ground like so: A simple way to detect if one is hitting the other is to compare the location of each side. They are touching if all of the following are false: The right square's left side is to the right of the left square's right side. The right square's right side is to the left of the left square's left side. The right square's bottom side is above the left square's top side. The right square's top side is below the left square's bottom side. If any of those are true, the squares are not touching. But consider a case like this, where one square is at a 45 degree angle: Is there an equally simple way to determine if those squares are touching?

    Read the article

  • Repairing back-facing triangles without user input

    - by LTR
    My 3D application works with user-imported 3D models. Frequently, those models have a few vertices facing into the wrong direction. (For example, there is a 3D roof and a few triangles of that roof are facing inside the building). I want to repair those automatically. We can make several assumptions about these 3D models: they are completely closed without holes, and the camera is always on the outside. My idea: Shoot 500 rays from every triangle outwards into all directions. From the back side of the triangle, all rays will hit another part of the model. From the front side, at least one ray will hit nothing. Is there a better algorithm? Are there any papers about something like this?

    Read the article

  • Approach for packing 2D shapes while minimizing total enclosing area

    - by Dennis
    Not sure on my tags for this question, but in short .... I need to solve a problem of packing industrial parts into crates while minimizing total containing area. These parts are motors, or pumps, or custom-made components, and they have quite unusual shapes. For some, it may be possible to assume that a part === rectangular cuboid, but some are not so simple, i.e. they assume a shape more of that of a hammer or letter T. With those, (assuming 2D shape), by alternating direction of top & bottom, one can pack more objects into the same space, than if all tops were in the same direction. Crude example below with letter "T"-shaped parts: ***** xxxxx ***** x ***** *** ooo * x vs * x vs * x vs * x o * x * xxxxx * x * x o xxxxx xxx Right now we are solving the problem by something like this: using CAD software, make actual models of how things fit in crate boxes make estimates of actual crate dimensions & write them into Excel file (1) is crazy amount of work and as the result we have just a limited amount of possible entries in (2), the Excel file. The good things is that programming this is relatively easy. Given a combination of products to go into crates, we do a lookup, and if entry exists in the Excel (or Database), we bring it out. If it doesn't, we say "sorry, no data!". I don't necessarily want to go full force on making up some crazy algorithm that given geometrical part description can align, rotate, and figure out best part packing into a crate, given its shape, but maybe I do.. Question Well, here is my question: assuming that I can represent my parts as 2D (to be determined how), and that some parts look like letter T, and some parts look like rectangles, which algorithm can I use to give me a good estimate on the dimensions of the encompassing area, while ensuring that the parts are packed in a minimal possible area, to minimize crating/shipping costs? Are there approximation algorithms? Seeing how this can get complex, is there an existing library I could use? My thought / Approach My naive approach would be to define a way to describe position of parts, and place the first part, compute total enclosing area & dimensions. Then place 2nd part in 0 degree orientation, repeat, place it at 180 degree orientation, repeat (for my case I don't think 90 degree rotations will be meaningful due to long lengths of parts). Proceed using brute force "tacking on" other parts to the enclosing area until all parts are processed. I may have to shift some parts a tad (see 3rd pictorial example above with letters T). This adds a layer of 2D complexity rather than 1D. I am not sure how to approach this. One idea I have is genetic algorithms, but I think those will take up too much processing power and time. I will need to look out for shape collisions, as well as adding extra padding space, since we are talking about real parts with irregularities rather than perfect imaginary blocks. I'm afraid this can get geometrically messy fairly fast, and I'd rather keep things simple, if I can. But what if the best (practical) solution is to pack things into different crate boxes rather than just one? This can get a bit more tricky. There is human element involved as well, i.e. like parts can go into same box and are thus a constraint to be considered. Some parts that are not the same are sometimes grouped together for shipping and can be considered as a common grouped item. Sometimes customers want things shipped their way, which adds human element to constraints. so there will have to be some customization.

    Read the article

  • Equation / formula to determine an objects position on an ellipitcal path

    - by David Murphy
    I'm making a space game, as such I need objects to follow an elliptical path (orbit). I've worked out how to calculate all the important aspects of my orbits, the only remaining thing is how to have an object follow it. My Orbit class contains the major, minor (and by extension semi-major,semi-minor) lengths. The focii radius, area and circumference even. What is the equation to determine an objects x/y position (only need 2D) on an ellipse with a certain speed after a period of time. Basically, every frame I want to update the position based on the amount of elapsed time. I would like to have the speed along the path speed up and slow down according to the distance from the object it's orbiting, but not sure how to factor this in to the above given that at any point in time the speed has changed from it's previous speed. EDIT I can't answer my own question. But I found the question and answer is already on stackexchange: Kepler orbit : get position on the orbit over time

    Read the article

  • point to rectangle distance

    - by john smith
    I have a 2D rectangle with x, y position and it's height and width and a randomly positioned point nearby it. Is there a way to check if this point might collide with the rectangle if closer than a certain distance? like imagine an invisible radius outside of that point colliding with said rectangle. I have problems with this simply because it is not a square, it would be so much easier this way! Any help? Thanks in advance.

    Read the article

  • "LNK2001: unresolved external symbol" when trying to build my program

    - by random
    I get the following error(s) on my program that captures the mouse and then draws a line. Errors: 1>------ Build started: Project: Capture_Mouse_Line, Configuration: Debug Win32 ------ 1> main.cpp 1>main.obj : error LNK2001: unresolved external symbol "public: static long * Line::yc2" (?yc2@Line@@2PAJA) 1>main.obj : error LNK2001: unresolved external symbol "public: static long * Line::xc2" (?xc2@Line@@2PAJA) 1>main.obj : error LNK2001: unresolved external symbol "public: static long * Line::yc1" (?yc1@Line@@2PAJA) 1>main.obj : error LNK2001: unresolved external symbol "public: static long * Line::xc1" (?xc1@Line@@2PAJA) 1>MSVCRTD.lib(crtexe.obj) : error LNK2019: unresolved external symbol _main referenced in function ___tmainCRTStartup 1>D:\Visual C++ Projects\Capture_Mouse_Line\Debug\Capture_Mouse_Line.exe : fatal error LNK1120: 5 unresolved externals ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ========== Here is my code: #include<allegro5\allegro.h> #include<allegro5\allegro_native_dialog.h> #include<allegro5\allegro_primitives.h> #include<Windows.h> #include<allegro5\allegro_windows.h> #ifndef WIDTH #define WIDTH 1440 #endif #ifndef HEIGHT #define HEIGHT 900 #endif class Line { public: static void ErasePreviousLine(); static void DrawLine(long* x, long* y,long* x2,long* y2); static bool Erasable(); static long* xc1; static long* yc1; static long* xc2; static long* yc2; }; void Line::ErasePreviousLine() { delete xc1; xc1 = NULL; delete yc1; yc1 = NULL; delete xc2; xc2 = NULL; delete yc2; yc2 = NULL; } bool Line::Erasable() { if(xc1 && yc1 && xc2 && yc2 == NULL) { return false; } else { return true; } } void Line::DrawLine(long* x,long* y,long* x2,long* y2) { if(!al_init_primitives_addon()) { al_show_native_message_box(NULL,NULL,NULL,"failed to initialize allegro", NULL,NULL); } xc1 = x; yc1 = y; xc2 = x2; yc2 = y2; al_draw_line((float)*xc1, (float)*yc1, (float)*xc2, (float)*yc2,al_map_rgb(255,0,255), 1); delete x; delete y; delete x2; delete y2; } LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam); int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { MSG msg; ALLEGRO_DISPLAY* display = NULL; if(!al_init()) { al_show_native_message_box(NULL,NULL,NULL,"failed to initialize allegro", NULL,NULL); return -1; } display = al_create_display(WIDTH,HEIGHT); if(!display) { al_show_native_message_box(NULL,NULL,NULL,"failed to initialize display", NULL,NULL); return -1; } HWND hwnd = al_get_win_window_handle(display); if(hwnd == NULL) { MessageBox(NULL, "Window Creation Failed!", "Error!", MB_ICONEXCLAMATION | MB_OK); return 0; } ShowWindow(hwnd, nCmdShow); UpdateWindow(hwnd); while(GetMessage(&msg, NULL, 0, 0) > 0) { TranslateMessage(&msg); DispatchMessage(&msg); } return msg.wParam; } LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { static bool bIsCaptured; static POINTS ptsBegin; static POINTS ptsEnd; switch(msg) { case WM_LBUTTONDOWN: SetCapture(hwnd); bIsCaptured = true; ptsBegin = MAKEPOINTS(lParam); return 0; case WM_MOUSEMOVE: if(wParam & MK_LBUTTON) { if(!Line::Erasable()) { return 0; } Line::ErasePreviousLine(); ptsEnd = MAKEPOINTS(lParam); Line::DrawLine(new long(ptsBegin.x),new long(ptsBegin.y),new long(ptsEnd.x),new long(ptsEnd.y)); } break; case WM_LBUTTONUP: bIsCaptured = false; ReleaseCapture(); break; case WM_ACTIVATEAPP: { if(wParam == TRUE) { if(bIsCaptured){ SetCapture(hwnd);} } } break; } return 0; }

    Read the article

  • How to get distance from point to line with distinction between side of line?

    - by tesselode
    I'm making a 2d racing game. I'm taking the nice standard approach of having a set of points defining the center of the track and detecting whether the car is off the track by detecting its distance from the nearest point. The nicest way I've found of doing this is using the formula: d = |Am + Bn + C| / sqrt(A^2 + B^2) Unfortunately, to have proper collision resolution, I need to know which side of the line the car is hitting, but I can't do that with this formula because it only returns positive numbers. So my question is: is there a formula that will give me positive or negative numbers based on which side of the line the point is on? Can I just get rid of the absolute value in the formula or do I need to do something else?

    Read the article

  • How do you make a bullet ricochet off a vertical wall?

    - by Bagofsheep
    First things first. I am using C# with XNA. My game is top-down and the player can shoot bullets. I've managed to get the bullets to ricochet correctly off horizontal walls. Yet, despite using similar methods (e.g. http://stackoverflow.com/questions/3203952/mirroring-an-angle) and reading other answered questions about this subject I have not been able to get the bullets to ricochet off a vertical wall correctly. Any method I've tried has failed and sometimes made ricocheting off a horizontal wall buggy. Here is the collision code that calls the ricochet method: //Loop through returned tile rectangles from quad tree to test for wall collision. If a collision occurs perform collision logic. for (int r = 0; r < returnObjects.Count; r++) if (Bullets[i].BoundingRectangle.Intersects(returnObjects[r])) Bullets[i].doCollision(returnObjects[r]); Now here is the code for the doCollision method. public void doCollision(Rectangle surface) { if (Ricochet) doRicochet(surface); else Trash = true; } Finally, here is the code for the doRicochet method. public void doRicochet(Rectangle surface) { if (Position.X > surface.Left && Position.X < surface.Right) { //Mirror the bullet's angle. Rotation = -1 * Rotation; //Moves the bullet in the direction of its rotation by given amount. moveFaceDirection(Sprite.Width * BulletScale.X); } else if (Position.Y > surface.Top && Position.Y < surface.Bottom) { } } Since I am only dealing with vertical and horizontal walls at the moment, the if statements simply determine if the object is colliding from the right or left, or from the top or bottom. If the object's X position is within the boundaries of the tile's X boundaries (left and right sides), it must be colliding from the top, and vice verse. As you can see, the else if statement is empty and is where the correct code needs to go.

    Read the article

  • Point in Polygon, Ray Method: ending infinite line

    - by user2878528
    Having a bit of trouble with point in polygon collision detection using the ray method i.e. http://en.wikipedia.org/wiki/Point_in_polygon My problem is I need to give an end to the infinite line created. As with this infinite line I always get an even number of intersections and hence an invalid result. i.e. ignore or intersection to the right of the point being checked what I have what I want My current code based of Mecki awesome response for (int side = 0; side < vertices.Length; side++) { // Test if current side intersects with ray. // create infinite line // See: http://en.wikipedia.org/wiki/Linear_equation a = end_point.Y - start_point.Y; b = start_point.X - end_point.X; c = end_point.X * start_point.Y - start_point.X * end_point.Y; //insert points of vector d2 = a * vertices[side].Position.X + b * vertices[side].Position.Y + c; if (side - 1 < 0) d1 = a * vertices[vertices.Length - 1].Position.X + b * vertices[vertices.Length - 1].Position.Y + c; else d1 = a * vertices[side-1].Position.X + b * vertices[side-1].Position.Y + c; // If points have opposite sides, intersections++; if (d1 > 0 && d2 < 0 ) intersections++; if (d1 < 0 && d2 > 0 ) intersections++; } //if intersections odd inside = true if ((intersections % 2) == 1) inside = true; else inside = false;

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >