Search Results

Search found 3390 results on 136 pages for 'dot notation'.

Page 96/136 | < Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >

  • How can I work out how many IP addresses there are in a given range?

    - by Jarede
    I'm wondering if there is a formula to work out the amount of IP addresses in a given range. I have a system that takes either a single IP address or a start and and end IP address: A single one might be: 145.16.23.241 A range might be: 145.16.23.122 - 145.16.23.144 The people inputting these aren't technical, nor are they receiving these details from technical people, so suggesting using CIDR notation isn't an answer for me. I want to be able to highlight that when entering a range such as: 122.100.10.12 - 128.10.200.140 it might not actually be a range and rather 2 singular IP addresses since such a range would comprise of x (large number of) IP addresses. Is there a basic formula to help me highlight this?

    Read the article

  • PHP 5.2 et 5.3 : un bug étrange rend les attaques par Déni de Service enfantines sous Windows et Linux

    PHP : un bug étrange rendrait enfantines les attaques par Déni de Service Il toucherait les versions 5.2 et 5.3 du langage sous Windows et Linux Un bug critique vient d'être découvert dans les branches 5.2 et 5.3 de PHP, le langage de programmation Web parmi les plus populaires. Ce bug est provoqué par certaines valeurs de nombres à virgule flottante ayant un nombre considérable de décimaux. Leurs calculs ou évaluations en PHP provoqueraient une boucle infinie occupant 100% des ressources du CPU. L'exécution de la ligne de code suivante, ou même son équivalent sans la notation scientifique (avec 324 décimales), provoquerait donc le plantage de la machine, et ce sous...

    Read the article

  • Why are UUID / GUID's in the format they are?

    - by Xeoncross
    Globally Unique Identifiers (GUID) are a grouped string with a specific format which I assume has a security reason. A GUID is most commonly written in text as a sequence of hexadecimal digits separated into five groups, such as: 3F2504E0-4F89-11D3-9A0C-0305E82C3301 Why aren't GUID/UUID strings just random bytes encoded using hexadecimal of X length? This text notation contains the following fields, separated by hyphens: | Hex digits | Description |------------------------- | 8 | Data1 | 4 | Data2 | 4 | Data3 | 4 | Initial two bytes from Data4 | 12 | Remaining six bytes from Data4 There are also several versions of the UUID standards. Version 4 UUIDs are generally internally stored as a raw array of 128 bits, and typically displayed in a format something like: uuid:xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx

    Read the article

  • Are the National Computer Science Academy certifications worth it?

    - by Horacio Nuñez
    I have a question regarding the real value of having NCSA's certifications. Today I reach their site and I easily passed the JavaScript certification within minutes, but I never reach questions related to Literal Javascript Notation (Json), closures or browser specific APIs. This facts let me to doubt a bit of the real value of the test (and the proper certification you can have if you pay them $34), but maybe Im wrong and just earned a respected certification within the States for easy questions... in which case I can spend some time doing other certifications on the same site. Did you have an NCSA certification and think is worth having it in your resume, or you know of a better certification program?

    Read the article

  • PHP 5.2 et 5.3 : un bug étrange rend les attaques par Déni de Service enfantine sous Windows et Linux

    PHP : un bug étrange rendrait enfantines les attaques par Déni de Service Il toucherait les versions 5.2 et 5.3 du langage sous Windows et Linux Un bug critique vient d'être découvert dans les branches 5.2 et 5.3 de PHP, le langage de programmation Web parmi les plus populaires. Ce bug est provoqué par certaines valeurs de chiffres à virgule flottante ayant un nombre considérable de décimaux. Leurs calculs ou évaluations en PHP provoqueraient une boucle infinie occupant 100% des ressources du CPU. L'exécution de la ligne de code suivante, ou même son équivalent sans la notation scientifique (avec 324 décimales), provoquerait donc le plantage de la machine, et ce sou...

    Read the article

  • How can I estimate the entropy of a password?

    - by Wug
    Having read various resources about password strength I'm trying to create an algorithm that will provide a rough estimation of how much entropy a password has. I'm trying to create an algorithm that's as comprehensive as possible. At this point I only have pseudocode, but the algorithm covers the following: password length repeated characters patterns (logical) different character spaces (LC, UC, Numeric, Special, Extended) dictionary attacks It does NOT cover the following, and SHOULD cover it WELL (though not perfectly): ordering (passwords can be strictly ordered by output of this algorithm) patterns (spatial) Can anyone provide some insight on what this algorithm might be weak to? Specifically, can anyone think of situations where feeding a password to the algorithm would OVERESTIMATE its strength? Underestimations are less of an issue. The algorithm: // the password to test password = ? length = length(password) // unique character counts from password (duplicates discarded) uqlca = number of unique lowercase alphabetic characters in password uquca = number of uppercase alphabetic characters uqd = number of unique digits uqsp = number of unique special characters (anything with a key on the keyboard) uqxc = number of unique special special characters (alt codes, extended-ascii stuff) // algorithm parameters, total sizes of alphabet spaces Nlca = total possible number of lowercase letters (26) Nuca = total uppercase letters (26) Nd = total digits (10) Nsp = total special characters (32 or something) Nxc = total extended ascii characters that dont fit into other categorys (idk, 50?) // algorithm parameters, pw strength growth rates as percentages (per character) flca = entropy growth factor for lowercase letters (.25 is probably a good value) fuca = EGF for uppercase letters (.4 is probably good) fd = EGF for digits (.4 is probably good) fsp = EGF for special chars (.5 is probably good) fxc = EGF for extended ascii chars (.75 is probably good) // repetition factors. few unique letters == low factor, many unique == high rflca = (1 - (1 - flca) ^ uqlca) rfuca = (1 - (1 - fuca) ^ uquca) rfd = (1 - (1 - fd ) ^ uqd ) rfsp = (1 - (1 - fsp ) ^ uqsp ) rfxc = (1 - (1 - fxc ) ^ uqxc ) // digit strengths strength = ( rflca * Nlca + rfuca * Nuca + rfd * Nd + rfsp * Nsp + rfxc * Nxc ) ^ length entropybits = log_base_2(strength) A few inputs and their desired and actual entropy_bits outputs: INPUT DESIRED ACTUAL aaa very pathetic 8.1 aaaaaaaaa pathetic 24.7 abcdefghi weak 31.2 H0ley$Mol3y_ strong 72.2 s^fU¬5ü;y34G< wtf 88.9 [a^36]* pathetic 97.2 [a^20]A[a^15]* strong 146.8 xkcd1** medium 79.3 xkcd2** wtf 160.5 * these 2 passwords use shortened notation, where [a^N] expands to N a's. ** xkcd1 = "Tr0ub4dor&3", xkcd2 = "correct horse battery staple" The algorithm does realize (correctly) that increasing the alphabet size (even by one digit) vastly strengthens long passwords, as shown by the difference in entropy_bits for the 6th and 7th passwords, which both consist of 36 a's, but the second's 21st a is capitalized. However, they do not account for the fact that having a password of 36 a's is not a good idea, it's easily broken with a weak password cracker (and anyone who watches you type it will see it) and the algorithm doesn't reflect that. It does, however, reflect the fact that xkcd1 is a weak password compared to xkcd2, despite having greater complexity density (is this even a thing?). How can I improve this algorithm? Addendum 1 Dictionary attacks and pattern based attacks seem to be the big thing, so I'll take a stab at addressing those. I could perform a comprehensive search through the password for words from a word list and replace words with tokens unique to the words they represent. Word-tokens would then be treated as characters and have their own weight system, and would add their own weights to the password. I'd need a few new algorithm parameters (I'll call them lw, Nw ~= 2^11, fw ~= .5, and rfw) and I'd factor the weight into the password as I would any of the other weights. This word search could be specially modified to match both lowercase and uppercase letters as well as common character substitutions, like that of E with 3. If I didn't add extra weight to such matched words, the algorithm would underestimate their strength by a bit or two per word, which is OK. Otherwise, a general rule would be, for each non-perfect character match, give the word a bonus bit. I could then perform simple pattern checks, such as searches for runs of repeated characters and derivative tests (take the difference between each character), which would identify patterns such as 'aaaaa' and '12345', and replace each detected pattern with a pattern token, unique to the pattern and length. The algorithmic parameters (specifically, entropy per pattern) could be generated on the fly based on the pattern. At this point, I'd take the length of the password. Each word token and pattern token would count as one character; each token would replace the characters they symbolically represented. I made up some sort of pattern notation, but it includes the pattern length l, the pattern order o, and the base element b. This information could be used to compute some arbitrary weight for each pattern. I'd do something better in actual code. Modified Example: Password: 1234kitty$$$$$herpderp Tokenized: 1 2 3 4 k i t t y $ $ $ $ $ h e r p d e r p Words Filtered: 1 2 3 4 @W5783 $ $ $ $ $ @W9001 @W9002 Patterns Filtered: @P[l=4,o=1,b='1'] @W5783 @P[l=5,o=0,b='$'] @W9001 @W9002 Breakdown: 3 small, unique words and 2 patterns Entropy: about 45 bits, as per modified algorithm Password: correcthorsebatterystaple Tokenized: c o r r e c t h o r s e b a t t e r y s t a p l e Words Filtered: @W6783 @W7923 @W1535 @W2285 Breakdown: 4 small, unique words and no patterns Entropy: 43 bits, as per modified algorithm The exact semantics of how entropy is calculated from patterns is up for discussion. I was thinking something like: entropy(b) * l * (o + 1) // o will be either zero or one The modified algorithm would find flaws with and reduce the strength of each password in the original table, with the exception of s^fU¬5ü;y34G<, which contains no words or patterns.

    Read the article

  • How do I share my jQuery plugin with the world?

    - by Billy Moon
    I made a plugin for jQuery, which I think is quite useful. It combines an animated colours plugin with an easings plugin, and adds a completely new feature of being able to refer to colours numerically (more useful in hex notation, so 0xff00cc for example) and therefore manipulate them mathematically more easily. I created a repository on github, and it sits there, nobody looks at it. Mostly, I would like people to look at it, use it, and improve it, so I can use the improvements and so on. I think this idea of numerically manipulating colors could be interesting. It makes it easy to change the hue without changing the saturation for example. Combined with animated colors, I think something interesting could be done, but I don't know what exactly. How do I let people know it (or any other project) is there..? I was going to post it on http://plugins.jquery.com which is currently down. Are there any other outlets for this kind of code?

    Read the article

  • What is meant by namespaced content and what advantages does it have?

    - by Geek
    I was reading this blog by James Bennett regarding HTML vs XHTML . He writes : I don’t have any need for namespaced content; I’m not displaying any complex mathematical notation here and don’t plan to, and I don’t use SVG for any images. So that’s one advantage of XHTML out the window. I also don’t have any need for XML tools; all the processing I need to do can be handled by HTML-parsing libraries like BeautifulSoup. That’s the other advantage gone. What does he mean by namespaced content and what advantage does it provide us ?

    Read the article

  • ASP.NET MVC, Url Routing: Maximum Path (URL) Length

    - by Martin Aatmaa
    The Scenario I have an application where we took the good old query string URL structure: ?x=1&y=2&z=3&a=4&b=5&c=6 and changed it into a path structure: /x/1/y/2/z/3/a/4/b/5/c/6 We're using ASP.NET MVC and (naturally) ASP.NET routing. The Problem The problem is that our parameters are dynamic, and there is (theoretically) no limit to the amount of parameters that we need to accommodate for. This is all fine until we got hit by the following train: HTTP Error 400.0 - Bad Request ASP.NET detected invalid characters in the URL. IIS would throw this error when our URL got past a certain length. The Nitty Gritty Here's what we found out: This is not an IIS problem IIS does have a max path length limit, but the above error is not this. Learn dot iis dot net How to Use Request Filtering Section "Filter Based on Request Limits" If the path was too long for IIS, it would throw a 404.14, not a 400.0. Besides, the IIS max path (and query) length are configurable: <requestLimits maxAllowedContentLength="30000000" maxUrl="260" maxQueryString="25" /> This is an ASP.NET Problem After some poking around: IIS Forums Thread: ASP.NET 2.0 maximum URL length? http://forums.iis.net/t/1105360.aspx it turns out that this is an ASP.NET (well, .NET really) problem. The shit of the matter is that, as far as I can tell, ASP.NET cannot handle paths longer than 260 characters. The nail in the coffin in that this is confirmed by Phil the Haack himself: Stack Overflow ASP.NET url MAX_PATH limit Question ID 265251 The Question So what's the question? The question is, how big of a limitation is this? For my app, it's a deal killer. For most apps, it's probably a non-issue. What about disclosure? No where where ASP.NET Routing is mentioned have I ever heard a peep about this limitation. The fact that ASP.NET MVC uses ASP.NET routing makes the impact of this even bigger. What do you think?

    Read the article

  • Raytraced Shadows Problem

    - by Mat
    Hey There! I've got a problem with shadowrays in my raytracer. Please have a look at the following two pictures 3D sMax: My Raytracer: The scene is lit by a very bright light, shining from the back. It's so bright that there is no gradient in the shading, just either white or dark (due to the overexposure). both images were rendered using 3DStudioMax and both use the exact same geometry, just in one case the normals are interpolated across the triangles. Now consider the red dot on the surface. In the case of the unsmoothed version, it lies in a dark area. this means that the light source is not visible from this triangle, since it's facing away from it. In the smoothed version however, it lies in the lit area, because the interpolated normal would suggest, that the light would be visible at that point (although the actual geometry of the triangle is facing away from the lightsource). My problem now is when raytraced shadows come in. if a shadowray is shot into the scene, from the red dot, to test whether the light-source is visible or not (to determine shadowing), the shadowray will return an intersection, independent of whether normals are interpolated or not (because intersections only depend on the geometry). Therefore the pixel would be shaded dark. 3dsamx is handling the case correctly - the rendered image was generated with Raytraced shadows turned on. However, my own Raytracer runs exactly into this problem when i turn on raytraced shadows (in my raytracer, the point is dark in both cases, because raytraced shadows determine the point lying in the shadow), and i don't know how to solve it. I hope someone knows this problem and how to deal with it.. thanks!

    Read the article

  • What is the most platform- and Python-version-independent way to make a fast loop for use in Python?

    - by Statto
    I'm writing a scientific application in Python with a very processor-intensive loop at its core. I would like to optimise this as far as possible, at minimum inconvenience to end users, who will probably use it as an uncompiled collection of Python scripts, and will be using Windows, Mac, and (mainly Ubuntu) Linux. It is currently written in Python with a dash of NumPy, and I've included the code below. Is there a solution which would be reasonably fast which would not require compilation? This would seem to be the easiest way to maintain platform-independence. If using something like Pyrex, which does require compilation, is there an easy way to bundle many modules and have Python choose between them depending on detected OS and Python version? Is there an easy way to build the collection of modules without needing access to every system with every version of Python? Does one method lend itself particularly to multi-processor optimisation? (If you're interested, the loop is to calculate the magnetic field at a given point inside a crystal by adding together the contributions of a large number of nearby magnetic ions, treated as tiny bar magnets. Basically, a massive sum of these.) # calculate_dipole # ------------------------- # calculate_dipole works out the dipole field at a given point within the crystal unit cell # --- # INPUT # mu = position at which to calculate the dipole field # r_i = array of atomic positions # mom_i = corresponding array of magnetic moments # --- # OUTPUT # B = the B-field at this point def calculate_dipole(mu, r_i, mom_i): relative = mu - r_i r_unit = unit_vectors(relative) #4pi / mu0 (at the front of the dipole eqn) A = 1e-7 #initalise dipole field B = zeros(3,float) for i in range(len(relative)): #work out the dipole field and add it to the estimate so far B += A*(3*dot(mom_i[i],r_unit[i])*r_unit[i] - mom_i[i]) / sqrt(dot(relative[i],relative[i]))**3 return B

    Read the article

  • jquery Tab group IDs

    - by mare
    I'm having an issue with jQuery UI Tabs script which does not pick up tabs that have a dot "." in their name (ID). For instance like this: <script type="text/javascript"> $(function () { $("#tabgroup\\.services").tabs(); }); </script> <div id="tabgroup.Services"> <ul> <li><a href="#tab.service1"> Service 1 title</a></li> <li><a href="#tab.service2"> Service 2 title</a></li> </ul> <div id="tab.service1"> <p>content</p> </div> <div id="tab.service2"> <p>content</p> </div> </div> The problem is because to select an element with a dot in its name, you need to use escapes (like when I initialize the tabs on my tabgroup). And apparently the Tabs JS implementation does not do that. Although I can do it at the tab group level, I cannot do it lower down because that's implemented in the Tabs JS file and I would not want to modify it (if possible).

    Read the article

  • DIY intellisense on XPath - design approach? (WinForms app)

    - by Cheeso
    I read the DIY Intellisense article on code project, which was referenced from the Mimic Intellisense? question here on SO. I wanna do something similar, DIY intellisense, but for XPath not C#. The design approach used there makes sense to me: maintain a tree of terms, and when the "completion character" is pressed, in the case of C#, a dot, pop up the list of possible completions in a textfield. Then allow the user to select a term from the textfield either through typing, arrow keys, or double-click. How would you apply this to XPath autocompletion? should there be an autocomplete key? In XPath there is no obvious separator key like "dot" in C#. should the popup be triggered explicitly in some other way, let's say ctrl-. ? or should the parser try to autocomplete continuously? If I do the autocomplete continuously, how to scale it properly? There are 93 xpath functions, not counting overloads. I certainly don't want to popup a list of 93 choices. How do I decide when I've narrowed it enough to offer a useful lsit of possible completions? How to populate the tree of possible completions? For C#, it's easy: walk the type space via reflection. At a first level, the "syntax tree" for C# seems like a single tree, and the list of completions at any point depends on the graph of nodes you've traversed to that point. Typing System.Console. traverses to a certain node in that tree, and the list of completions is the set of child nodes available at that node in the tree. On the other hand, the xpath syntax seems like it is a "flatter" tree - function names, axis names, literals. Does this make sense? what have I not considered?

    Read the article

  • Binary files printing and desired precision

    - by yCalleecharan
    Hi, I'm printing a variable say z1 which is a 1-D array containing floating point numbers to a text file so that I can import into Matlab or GNUPlot for plotting. I've heard that binary files (.dat) are smaller than .txt files. The definition that I currently use for printing to a .txt file is: void create_out_file(const char *file_name, const long double *z1, size_t z_size){ FILE *out; size_t i; if((out = _fsopen(file_name, "w+", _SH_DENYWR)) == NULL){ fprintf(stderr, "***> Open error on output file %s", file_name); exit(-1); } for(i = 0; i < z_size; i++) fprintf(out, "%.16Le\n", z1[i]); fclose(out); } I have three questions: Are binary files really more compact than text files?; If yes, I would like to know how to modify the above code so that I can print the values of the array z1 to a binary file. I've read that fprintf has to be replaced with fwrite. My output file say dodo.dat should contain the values of array z1 with one floating number per line. I have %.16Le up in my code but I think that %.15Le is right as I have 15 precision digits with long double. I have put a dot (.) in the width position as I believe that this allows expansion to an arbitrary field to hold the desired number. Am I right? As an example with %.16Le, I can have an output like 1.0047914240730432e-002 which gives me 16 precision digits and the width of the field has the right width to display the number correctly. Is placing a dot (.) in the width position instead of a width value a good practice? Thanks a lot...

    Read the article

  • What most efficient method to find a that triangle which contains the given point?

    - by Christo
    Given the triangle with vertices (a,b,c): c / \ / \ / \ a - - - b Which is then subdivided into four triangles by halving each of the edges: c / \ / \ ca / \ bc /\ - - - /\ / \ / \ / \ / \ a- - - - ab - - - -b Wich results in four triangles (a, ab, ca), (b, bc, ab), (c, ca, bc), (ab, bc, ca). Now given a point p. How do I determine in which triangle p lies, given that p is within the outer triangle (a, b, c)? Currently I intend to use ab as the origin. Check whether it is to the left of right of the line "ca - ab" using the perp of "ca - ab" and checking the sign against the dot product of "ab - a" and the perp vector and the vector "p - ab". If it is the same or the dot product is zero then it must be in (a, ab, ca)... Continue with this procedure with the other outer triangles (b, ba, ab) & (c, ca, ba). In the end if it didn't match with these it must be contained within the inner triangle (ab, bc, ca). Is there a better way to do it?

    Read the article

  • Problem deleting .svn directories on Windows XP

    - by John L
    I don't seem to have this problem on my home laptop with Windows XP, but then I don't do much work there. On my work laptop, with Windows XP, I have a problem deleting directories when it has directories that contain .svn directories. When it does eventually work, I have the same issue emptying the Recycle bin. The pop-up window says "Cannot remove folder text-base: The directory is not empty" or prop-base or other folder under .svn This continued to happen after I changed config of TortoiseSVN to stop the TSVN cache process from running and after a reboot of the system. Multiple tries will eventually get it done. But it is a huge annoyance because there are other issues I'm trying to fix, so I'm hoping it is related. 'Connected Backup PC' also runs on the laptop and the real problem is that cygwin commands don't always work. So I keep thinking the dot files and dot directories have something to do with both problems and/or the backup or other process scanning the directories is doing it. But I've run out of ideas of what to try or how to identify the problem further.

    Read the article

  • How can I programmatically get the connection status of OSX network services?

    - by BigBrainz
    In the OS X System Preferences, when I click on 'Network' I see a green dot by 'Ethernet', and red dots by 'AirPort' and 'FireWire'. This is because I turned off AirPort and FireWire, as I access networks and the Internet via Ethernet. I need to programmatically determine which of these network services displayed in System Preferences have green dots and which have red dots. For Ethernet and FireWire the displayed status is 'Connected' or 'Not Connected', and for AirPort the displayed status is 'On' or 'Off'. Perhaps other network services have other status labels. I have picked through all the plist files in '/Library/Preferences/SystemConfiguration', particularly 'preferences.plist' and 'NetworkInterfaces.plist'. I can get all sorts of information there, such as the Location set, network service order, proxy information (which is also important to my task), but I cannot find how to determine whether a given network service is on or off--the equivalent of having the green dot displayed. I have also tried using System Configuration framework, specifically the SCNetworkConnectionGetStatus function, but all I get are invalid connection statuses. Does anyone know how to actually retrieve this connection status information? Thanks.

    Read the article

  • Show a number with specified number of significant digits

    - by dreeves
    I use the following function to convert a number to a string for display purposes (don't use scientific notation, don't use a trailing dot, round as specified): (* Show Number. Convert to string w/ no trailing dot. Round to the nearest r. *) Unprotect[Round]; Round[x_,0] := x; Protect[Round]; shn[x_, r_:0] := StringReplace[ ToString@NumberForm[Round[N@x,r], ExponentFunction->(Null&)], re@"\\.$"->""] (Note that re is an alias for RegularExpression.) That's been serving me well for years. But sometimes I don't want to specify the number of digits to round to, rather I want to specify a number of significant figures. For example, 123.456 should display as 123.5 but 0.00123456 should display as 0.001235. To get really fancy, I might want to specify significant digits both before and after the decimal point. For example, I might want .789 to display as 0.8 but 789.0 to display as 789 rather than 800. Do you have a handy utility function for this sort of thing, or suggestions for generalizing my function above? Related: Suppressing a trailing "." in numerical output from Mathematica

    Read the article

  • Emacs - nxhtml-mode - memory full

    - by mbutz
    working with nxhtml-mode in emacs, I get problems since a few weeks. While working emacs pauses unexpectingly until showing a message in the mode line "!MEM FULL!"; obviously nxhtml-mode is filling up the memory until emacs stopps to work. I am working with html, php and css files. I have no idea how I could debug this problem in a meaningfull way. Also I seem to be the only one to have this problem, because googling did not deliver any answers to this question. I am using emacs 2.32 on an Linux Mint 11 system. I can not find out the verson of nxhtml, it says revision 829 downloaded from http://bazaar.launchpad.net/~nxhtml/nxhtml/main/revision/829. I set up a test scenario with a minimal dot-emacs just to test the nxhtml-mode. It seemed to be alright, but it does not reflect my productive set up. It would probably take a week or so to gradually include everything I used to use within emacs (e.g. org-mode) while testing whether nxhtml-mode does not like anything, which is called in my dot-emacs file. Is there another way? Can I find out, what causes the memory overload? Does anyone has similar problems using nxhtml-mode? Greetings Martin

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Need AutoHotkey scripts

    - by Carlos
    I'm looking for someone that knows AutoHotkey that will help me create the following scripts on Windows 7; 1) Minimize window (using control/dot) 2) Closing active window (using control/left arrow) 3) Closing all windows (using control/right arrow) I've looked at their web site but know nothing about programing so I don't understand the symbols or how to use them. Any help would be appreciated. Thanks Carlos

    Read the article

  • Modify Sublime Text 2 whitespace representation?

    - by Mike Grace
    Is there a way to modify the whitespace representation characters so I can change it from dots and dashes to something else? Because I currently have whitespace characters being drawn always, it looks like this. I don't need it turned off, just interested in changing how it's represented. I like how TextMate shows invisible characters but I would be ok with just being able to change the spaces to show a blank space instead of a dot.

    Read the article

< Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >