Search Results

Search found 42 results on 2 pages for 'occlusion'.

Page 1/2 | 1 2  | Next Page >

  • Unity Occlusion Portals: What and How?

    - by Nick Wiggill
    (Here I eat my words on Meta about posting Unity questions on Unity Answers... since that site is less responsive than this one.) Unity provides cell-based Occlusion Culling (via Umbra, I believe). However, a newer feature that it supports is Occlusion Portals. The question is, if BSP-based occlusion culling is already a feature of Unity, what do portals add, and how? PS. This question is not "What are portals?" -- I'm aware of the original Quake BSP-style portals -- which is partly why I find the explicit portal concept in Unity odd, since it uses BSP anyway.

    Read the article

  • Ambient occlusion shader just shows models as all white

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? If so then how? I'm using C++. Here is my shader: float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • Why occlusion is failing sometimes?

    - by cad
    I am rendering two cubes in the space using XNA 4.0 and occlusion only works from certain angles. Here is what I see from the front angle (everything ok) Here is what I see from behind This is my draw method. Cubes are drawn by serverManager and serverManager1 protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); switch (_gameStateFSM.State) { case GameFSMState.GameStateFSM.INTROSCREEN: spriteBatch.Begin(); introscreen.Draw(spriteBatch); spriteBatch.End(); break; case GameFSMState.GameStateFSM.GAME: spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.AlphaBlend); // Text screenMessagesManager.Draw(spriteBatch, firstPersonCamera.cameraPosition, fpsHelper.framesPerSecond); // Camera firstPersonCamera.Draw(); // Servers serverManager.Draw(GraphicsDevice, firstPersonCamera.viewMatrix, firstPersonCamera.projMatrix); serverManager1.Draw(GraphicsDevice, firstPersonCamera.viewMatrix, firstPersonCamera.projMatrix); // Room //roomManager.Draw(GraphicsDevice, firstPersonCamera.viewMatrix); spriteBatch.End(); break; case GameFSMState.GameStateFSM.EXITGAME: break; default: break; } base.Draw(gameTime); fpsHelper.IncrementFrameCounter(); } serverManager and serverManager1 are instances of the same class ServerManager that draws a cube. The draw method for ServerManager is: public void Draw(GraphicsDevice graphicsDevice, Matrix viewMatrix, Matrix projectionMatrix) { cubeEffect.World = Matrix.CreateTranslation(modelPosition); // Set the World matrix which defines the position of the cube cubeEffect.View = viewMatrix; // Set the View matrix which defines the camera and what it's looking at cubeEffect.Projection = projectionMatrix; // Enable textures on the Cube Effect. this is necessary to texture the model cubeEffect.TextureEnabled = true; cubeEffect.Texture = cubeTexture; // Enable some pretty lights cubeEffect.EnableDefaultLighting(); // apply the effect and render the cube foreach (EffectPass pass in cubeEffect.CurrentTechnique.Passes) { pass.Apply(); cubeToDraw.RenderToDevice(graphicsDevice); } } Obviously there is something I am doing wrong. Any hint of where to look? (Maybe z-buffer or occlusion tests?)

    Read the article

  • Alternative to NV Occlusion Query - getting the number of fragments which passed the depth test

    - by Etan
    In "modern" environments, the "NV Occlusion Query" extension provide a method to get the number of fragments which passed the depth test. However, on the iPad / iPhone using OpenGL ES, the extension is not available. What is the most performant approach to implement a similar behaviour in the fragment shader? Some of my ideas: Render the object completely in white, then count all the colors together using a two-pass shader where first a vertical line is rendered and for each fragment the shader computes the sum over the whole row. Then, a single vertex is rendered whose fragment sums all the partial sums of the first pass. Doesn't seem to be very efficient. Render the object completely in white over a black background. Downsample recursively, abusing the hardware linear interpolation between textures until being at a reasonably small resolution. This leads to fragments which have a greyscale level depending on the number of white pixels where in their corresponding region. Is this even accurate enough? ... ?

    Read the article

  • HLSL Shader not working right?

    - by dvds414
    Okay so I have this shader for ambient occlusion. It loads to world correctly, but it just shows all the models as being white. I do not know why. I am just running the shader while the model is rendering, is that correct? or do I need to make a render target or something? if so then how? I'm using C++. Here is my shader. float sampleRadius; float distanceScale; float4x4 xProjection; float4x4 xView; float4x4 xWorld; float3 cornerFustrum; struct VS_OUTPUT { float4 pos : POSITION; float2 TexCoord : TEXCOORD0; float3 viewDirection : TEXCOORD1; }; VS_OUTPUT VertexShaderFunction( float4 Position : POSITION, float2 TexCoord : TEXCOORD0) { VS_OUTPUT Out = (VS_OUTPUT)0; float4 WorldPosition = mul(Position, xWorld); float4 ViewPosition = mul(WorldPosition, xView); Out.pos = mul(ViewPosition, xProjection); Position.xy = sign(Position.xy); Out.TexCoord = (float2(Position.x, -Position.y) + float2( 1.0f, 1.0f ) ) * 0.5f; float3 corner = float3(-cornerFustrum.x * Position.x, cornerFustrum.y * Position.y, cornerFustrum.z); Out.viewDirection = corner; return Out; } texture depthTexture; texture randomTexture; sampler2D depthSampler = sampler_state { Texture = <depthTexture>; ADDRESSU = CLAMP; ADDRESSV = CLAMP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; sampler2D RandNormal = sampler_state { Texture = <randomTexture>; ADDRESSU = WRAP; ADDRESSV = WRAP; MAGFILTER = LINEAR; MINFILTER = LINEAR; }; float4 PixelShaderFunction(VS_OUTPUT IN) : COLOR0 { float4 samples[16] = { float4(0.355512, -0.709318, -0.102371, 0.0 ), float4(0.534186, 0.71511, -0.115167, 0.0 ), float4(-0.87866, 0.157139, -0.115167, 0.0 ), float4(0.140679, -0.475516, -0.0639818, 0.0 ), float4(-0.0796121, 0.158842, -0.677075, 0.0 ), float4(-0.0759516, -0.101676, -0.483625, 0.0 ), float4(0.12493, -0.0223423, -0.483625, 0.0 ), float4(-0.0720074, 0.243395, -0.967251, 0.0 ), float4(-0.207641, 0.414286, 0.187755, 0.0 ), float4(-0.277332, -0.371262, 0.187755, 0.0 ), float4(0.63864, -0.114214, 0.262857, 0.0 ), float4(-0.184051, 0.622119, 0.262857, 0.0 ), float4(0.110007, -0.219486, 0.435574, 0.0 ), float4(0.235085, 0.314707, 0.696918, 0.0 ), float4(-0.290012, 0.0518654, 0.522688, 0.0 ), float4(0.0975089, -0.329594, 0.609803, 0.0 ) }; IN.TexCoord.x += 1.0/1600.0; IN.TexCoord.y += 1.0/1200.0; normalize (IN.viewDirection); float depth = tex2D(depthSampler, IN.TexCoord).a; float3 se = depth * IN.viewDirection; float3 randNormal = tex2D( RandNormal, IN.TexCoord * 200.0 ).rgb; float3 normal = tex2D(depthSampler, IN.TexCoord).rgb; float finalColor = 0.0f; for (int i = 0; i < 16; i++) { float3 ray = reflect(samples[i].xyz,randNormal) * sampleRadius; //if (dot(ray, normal) < 0) // ray += normal * sampleRadius; float4 sample = float4(se + ray, 1.0f); float4 ss = mul(sample, xProjection); float2 sampleTexCoord = 0.5f * ss.xy/ss.w + float2(0.5f, 0.5f); sampleTexCoord.x += 1.0/1600.0; sampleTexCoord.y += 1.0/1200.0; float sampleDepth = tex2D(depthSampler, sampleTexCoord).a; if (sampleDepth == 1.0) { finalColor ++; } else { float occlusion = distanceScale* max(sampleDepth - depth, 0.0f); finalColor += 1.0f / (1.0f + occlusion * occlusion * 0.1); } } return float4(finalColor/16, finalColor/16, finalColor/16, 1.0f); } technique SSAO { pass P0 { VertexShader = compile vs_3_0 VertexShaderFunction(); PixelShader = compile ps_3_0 PixelShaderFunction(); } }

    Read the article

  • Not getting desired results with SSAO implementation

    - by user1294203
    After having implemented deferred rendering, I tried my luck with a SSAO implementation using this Tutorial. Unfortunately, I'm not getting anything that looks like SSAO, you can see my result below. You can see there is some weird pattern forming and there is no occlusion shading where there needs to be (i.e. in between the objects and on the ground). The shaders I implemented follow: #VS #version 330 core uniform mat4 invProjMatrix; layout(location = 0) in vec3 in_Position; layout(location = 2) in vec2 in_TexCoord; noperspective out vec2 pass_TexCoord; smooth out vec3 viewRay; void main(void){ pass_TexCoord = in_TexCoord; viewRay = (invProjMatrix * vec4(in_Position, 1.0)).xyz; gl_Position = vec4(in_Position, 1.0); } #FS #version 330 core uniform sampler2D DepthMap; uniform sampler2D NormalMap; uniform sampler2D noise; uniform vec2 projAB; uniform ivec3 noiseScale_kernelSize; uniform vec3 kernel[16]; uniform float RADIUS; uniform mat4 projectionMatrix; noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } mat3 CalcRMatrix(vec3 normal, vec2 texcoord){ ivec2 noiseScale = noiseScale_kernelSize.xy; vec3 rvec = texture(noise, texcoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); return mat3(tangent, bitangent, normal); } void main(void){ vec2 TexCoord = pass_TexCoord; vec3 Position = CalcPosition(); vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); mat3 RotationMatrix = CalcRMatrix(Normal, TexCoord); int kernelSize = noiseScale_kernelSize.z; float occlusion = 0.0; for(int i = 0; i < kernelSize; i++){ // Get sample position vec3 sample = RotationMatrix * kernel[i]; sample = sample * RADIUS + Position; // Project and bias sample position to get its texture coordinates vec4 offset = projectionMatrix * vec4(sample, 1.0); offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; // Get sample depth float sample_depth = texture(DepthMap, offset.xy).r; float linearDepth = projAB.y / (sample_depth - projAB.x); if(abs(Position.z - linearDepth ) < RADIUS){ occlusion += (linearDepth <= sample.z) ? 1.0 : 0.0; } } out_AO = 1.0 - (occlusion / kernelSize); } I draw a full screen quad and pass Depth and Normal textures. Normals are in RGBA16F with the alpha channel reserved for the AO factor in the blur pass. I store depth in a non linear Depth buffer (32F) and recover the linear depth using: float linearDepth = projAB.y / (depth - projAB.x); where projAB.y is calculated as: and projAB.x as: These are derived from the glm::perspective(gluperspective) matrix. z_n and z_f are the near and far clip distance. As described in the link I posted on the top, the method creates samples in a hemisphere with higher distribution close to the center. It then uses random vectors from a texture to rotate the hemisphere randomly around the Z direction and finally orients it along the normal at the given pixel. Since the result is noisy, a blur pass follows the SSAO pass. Anyway, my position reconstruction doesn't seem to be wrong since I also tried doing the same but with the position passed from a texture instead of being reconstructed. I also tried playing with the Radius, noise texture size and number of samples and with different kinds of texture formats, with no luck. For some reason when changing the Radius, nothing changes. Does anyone have any suggestions? What could be going wrong?

    Read the article

  • OcclusionQuery: how to ignore some objects?

    - by ApocKalipsS
    I'm trying to make a LensFlare effect when the player watch the sun in my XNA 4.0 Game. To do this, I use OcclusionQuery, here's my code: http://pastebin.com/meAkdwmD I also have some models, a terrain and a skybox. Here's my main Draw code: terrain.Draw(); model1.Draw(); model2.Draw(); skybox.Draw(); lensFlare.UpdateOcclusion(); lensFlare.Draw(); The problem is that the occlusion considers the sun to be behind the skybox, and the lensFlare wasn't showing up. So I moved lensFlare.UpdateOcclusion() before the drawing of the Skybox, and now the lensFlare appears, but my skybox is blinking (it's like it disappear and reappear at each frames...) How do I ignore the skybox in the occlusion?

    Read the article

  • What is a correct step by step logic of exporting scene with baked occlusion for loading it at runtime?

    - by myWallJSON
    I wonder what is a correct step by step logic of exporting scene with baked occlusion (Culling data) for loading that scene at runtime (on fly from the internet for example))? So currently my plan looks like this: I create prefabs Place them onto my scene (into Hierarchy) (say create 20 buffolows and some hourses and some buildings) Create empty prefab and drag all my scene objects from hierarchy onto it Export prefab So generally I put all my scene objects into one large prefab and export it but it seems that all objects that were marked as static get this property turned off when loading them at runtime and so no Frustrum Culling, and no Occlusion culling happens. So I wonder what is a correct way of exporting Sceen + Objecrts + Occlusion (and onther culing) data for future load of such scene at runtime? I wonder about current 3.5.2 Pro and future 4 Pro versions of U3D.

    Read the article

  • Partial recalculation of visibility on a 2D uniform grid

    - by Martin Källman
    Problem Imagine that we have a 2D uniform grid of dimensions N x N. For this grid we have also pre-computed a visibility look-up table, e.g. with DDA, which answers the boolean query is cell X visible from cell Y? The look-up table is a complete graph KN of the cells V in the grid, with each edge E being a binary value denoting the visibility between its vertices. Question If any given cell has its visibility modified, is it possible to extract the subset Edelta of edges which must have their visibility recomputed due to the change, so as to avoid a full-on recomputation for the entire grid? (Which is N(N-1) / 2 or N2 depending on the implementation) Update If is not possible to solve thi in closed form, then maintaining a separate mapping of each cell and every cell pair who's line intersects said cell might also be an option. This obviously consumes more memory, but the data is static. The increased memory requirement could be reduced by introducing a hierarchy, subdividing the grid into smaller parts, and by doing so the above mapping can be reused for each sub-grid. This would come at a cost in terms of increased computation relative to the number of subdivisions; also requiring a resumable ray-casting algorithm.

    Read the article

  • Extracting Frustum Planes (Hartmann & Gribbs method)

    - by DAVco
    I have been grappling with the Hartmann/Gribbs method of extracting the Frustum planes for some time now, with little success. There doesn't appear to be a "definitive" topic or tutorial which combines all the necessary information, so perhaps this can be it First of all, I am attempting to do this in C# (For Playstation Mobile), using OpenGL style Column-Major matrices in a Right-Handed coordinate system but obviously the math will work in any language. My projection matrix has a Near plane at 1.0, Far plane at 1000, FOV of 45.0 and Aspect of 1.7647. I want to get my planes in World-Space, so I build my frustum from the View-Projection Matrix (that's projectionMatrix * viewMatrix). The view Matrix is the inverse of the camera's World-Transform. The problem is; regardless of what I tweak, I can't seem to get a correct frustum. I think that I may be missing something obvious. Focusing on the Near and Far planes for the moment (since they have the most obvious normals when correct), when my camera is positioned looking down the negative z-axis, I get two planes facing in the same direction, rather than opposite directions. If i strafe my camera left and right (while still looking along the z axis) the x value of the normal vector changes. Obviously, something is fundamentally wrong here; I just can't figure out what - maybe someone here can?

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

  • ssao implementation

    - by Irbis
    I try to implement a ssao based on this tutorial: link I use a deferred rendering and world coordinates for shading calculations. When saving gbuffer a vertex shader output looks like this: worldPosition = vec3(ModelMatrix * vec4(inPosition, 1.0)); normal = normalize(normalModelMatrix * inNormal); gl_Position = ProjectionMatrix * ViewMatrix * ModelMatrix * vec4(inPosition, 1.0); Next for a ssao calculations I render a scene as a full screen quad and I save an occlusion parameter in a texture. (Vertex positions in the world space: link Normals in the world space: link) SSAO implementation: subroutine (RenderPassType) void ssao() { vec2 texCoord = CalcTexCoord(); vec3 worldPos = texture(texture0, texCoord).xyz; vec3 normal = normalize(texture(texture1, texCoord).xyz); vec2 noiseScale = vec2(screenSize.x / 4, screenSize.y / 4); vec3 rvec = texture(texture2, texCoord * noiseScale).xyz; vec3 tangent = normalize(rvec - normal * dot(rvec, normal)); vec3 bitangent = cross(normal, tangent); mat3 tbn = mat3(tangent, bitangent, normal); float occlusion = 0.0; float radius = 4.0; for (int i = 0; i < kernelSize; ++i) { vec3 pix = tbn * kernel[i]; pix = pix * radius + worldPos; vec4 offset = vec4(pix, 1.0); offset = ProjectionMatrix * ViewMatrix * offset; offset.xy /= offset.w; offset.xy = offset.xy * 0.5 + 0.5; float sample_depth = texture(texture0, offset.xy).z; float range_check = abs(worldPos.z - sample_depth) < radius ? 1.0 : 0.0; occlusion += (sample_depth <= pix.z ? 1.0 : 0.0); } outputColor = vec4(occlusion, occlusion, occlusion, 1); } That code gives following results: camera looking towards -z world space: link camera looking towards +z world space: link I wonder if it is possible to use world coordinates in the above code ? When I move camera I get different results because world space positions don't change. Can I treat worldPos.z as a linear depth ? What should I change to get a correct results ? I except the white areas in place of occlusion, so the ground should has the white areas only near to the object.

    Read the article

  • Most efficient algorithm for mesh-level, optimal occlusion culling?

    - by Fredriku73
    I am new to culling. On a first glance, it seems that most occlusion culling algorithms are object-level, not examining single meshes, which would be practical for game rendering. What I am looking for is an algorithm that culls all meshes within a single object that are occluded for a given viewpoint, with high accuracy. It needs to be at least O(n log n), a naive mesh-by-mesh comparison (O(n^2)) is too slow. I notice that the Blender GUI identifies the occluded meshes for you in real-time, even if you work with large objects of 10,000+ meshes. What algorithm is used there, pray tell?

    Read the article

  • Getting the number of fragments which passed the depth test

    - by Etan
    In "modern" environments, the "NV Occlusion Query" extension provides a method to get the number of fragments which passed the depth test. However, on the iPad / iPhone using OpenGL ES, the extension is not available. What is the most performant approach to implement a similar behaviour in the fragment shader? Some of my ideas: Render the object completely in white, then count all the colors together using a two-pass shader where first a vertical line is rendered and for each fragment the shader computes the sum over the whole row. Then, a single vertex is rendered whose fragment sums all the partial sums of the first pass. Doesn't seem to be very efficient. Render the object completely in white over a black background. Downsample recursively, abusing the hardware linear interpolation between textures until being at a reasonably small resolution. This leads to fragments which have a greyscale level depending on the number of white pixels where in their corresponding region. Is this even accurate enough? Use mipmaps and simply read the pixel on the 1x1 level. Again the question of accuracy and if it is even possible using non-power-of-two textures. The problem wit these approaches is, that the pipeline gets stalled which results in major performance issues. Therefore, I'm looking for a more performant way to accomplish my goal. Using the EXT_OCCLUSION_QUERY_BOOLEAN extension Apple introduced EXT_OCCLUSION_QUERY_BOOLEAN in iOS 5.0 for iPad 2. "4.1.6 Occlusion Queries Occlusion queries use query objects to track the number of fragments or samples that pass the depth test. An occlusion query can be started and finished by calling BeginQueryEXT and EndQueryEXT, respectively, with a target of ANY_SAMPLES_PASSED_EXT or ANY_SAMPLES_PASSED_CONSERVATIVE_EXT. When an occlusion query is started with the target ANY_SAMPLES_PASSED_EXT, the samples-boolean state maintained by the GL is set to FALSE. While that occlusion query is active, the samples-boolean state is set to TRUE if any fragment or sample passes the depth test. When the occlusion query finishes, the samples-boolean state of FALSE or TRUE is written to the corresponding query object as the query result value, and the query result for that object is marked as available. If the target of the query is ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, an implementation may choose to use a less precise version of the test which can additionally set the samples-boolean state to TRUE in some other implementation dependent cases." The first sentence hints on a behavior which is exactly what I'm looking for: getting the number of pixels which passed the depth test in an asynchronous manner without much performance loss. However, the rest of the document describes only how to get boolean results. Is it possible to exploit this extension to get the pixel count? Does the hardware support it so that there may be hidden API to get access to the pixel count? Other extensions which could be exploitable would be debugging features like the number of times the fragment shader was invoked (PSInvocations in DirectX - not sure if something simila is available in OpenGL ES). However, this would also result in a pipeline stall.

    Read the article

  • Why are trees shining in background?

    - by Kinected
    Currently I am creating a forest scene in the dark, and the trees are shining far away, but when I get close they are fine. I have the shaders set to "Nature/Tree Soft Occlusion [bark/leaves]", but they are still rendering strange far away, but close they are fine. I tried placing the trees in a folder named "Ambient-Occlusion" like said here, but no luck. Also fog is turned off. Thanks in advance.

    Read the article

  • Ray Tracing Shadows in deferred rendering

    - by Grieverheart
    Recently I have programmed a raytracer for fun and found it beutifully simple how shadows are created compared to a rasterizer. Now, I couldn't help but I think if it would be possible to implement somthing similar for ray tracing of shadows in a deferred renderer. The way I though this could work is after drawing to the gbuffer, in a separate pass and for each pixel to calculate rays to the lights and draw them as lines of unique color together with the geometry (with color 0). The lines will be cut-off if there is occlusion and this fact could be used in a fragment shader to calculate which rays are occluded. I guess there must be something I'm missing, for example I'm not sure how the fragment shader could save the occlusion results for each ray so that they are available for pixel at the ray's origin. Has this method been tried before, is it possible to implement it as I described and if yes what would be the drawbacks in performance of calculating shadows this way?

    Read the article

  • What's a good data structure solution for a scene manager in XNA?

    - by tunnuz
    Hello, I'm playing with XNA for a game project of myself, I had previous exposure to OpenGL and worked a bit with Ogre, so I'm trying to get the same concepts working on XNA. Specifically I'm trying to add to XNA a scene manager to handle hierarchical transforms, frustum (maybe even occlusion) culling and transparency object sorting. My plan was to build a tree scene manager to handle hierarchical transforms and lighting, and then use an Octree for frustum culling and object sorting. The problem is how to do geometry sorting to support transparencies correctly. I know that sorting is very expensive if done on a per-polygon basis, so expensive that it is not even managed by Ogre. But still images from Ogre look right. Any ideas on how to do it and which data structures to use and their capabilities? I know people around is using: Octrees Kd-trees (someone on GameDev forum said that these are far better than Octrees) BSP (which should handle per-polygon ordering but are very expensive) BVH (but just for frustum and occlusion culling) Thank you Tunnuz

    Read the article

  • Octrees as data structure

    - by Christian Frantz
    In my cube world, I want to use octrees to represent my chunks of 20x20x20 cubes for frustum and occlusion culling. I understand how octrees work, I just dont know if I'm going about this the right way. My base octree class is taken from here: http://www.xnawiki.com/index.php/Octree What I'm wondering is how to apply occlusion culling using this class. Does it make sense to have one octree for each cube chunk? Or should I make the octree bigger? Since I'm using cubes, each cube should fit into a node without overlap so that won't be an issue

    Read the article

  • NeoAxis 3D disponible en version 1.3, le moteur de jeu ajoute le SSAO et une meilleure gestion du terrain

    NeoAxis 3D et maintenant disponible en version 1.3 La nouvelle version du moteur de jeu apporte le SSAO, des améliorations sur le terrain et plein d'autres surprises C'est en cette période de Noël que NeoAxis 3D, le moteur de jeu multi-plateforme revient avec une hotte fournit en cadeau pour nous, les développeurs. Tout d'abord, cette version estampillée 1.3 apporte le Screen Space Ambient Occlusion (SSAO). Une technique de rendu temps réel qui est grandement utilisée dans l'industrie pour permettre une approximation efficace de l'ambient occlusion (des ombres sont rajoutés selon le buffer de profondeur).. Celui-ci est implémenté tel un effet après rendu (post processing) afin de garder une bonne synergi...

    Read the article

  • OpenGL lighting with dynamic geometry

    - by Tank
    I'm currently thinking hard about how to implement lighting in my game. The geometry is quite dynamic (fixed 3D grid with custom geometry in each cell) and needs some light to get more depth and in general look nicer. A scene in my game always contains sunlight and local light sources like lamps (point lights). One can move underground, so sunlight must be able to illuminate as far as it can get. Here's a render of a typical situation: The lamp is positioned behind the wall to the top, and in the hollow cube there's a hole in the back, so that light can shine through. (I don't want soft shadows, this is just for illustration) While spending the whole day searching through Google, I stumbled on some keywords like deferred rendering, forward rendering, ambient occlusion, screen space ambient occlusion etc. Some articles/tutorials even refer to "normal shading", but to be honest I don't really have an idea to even do simple shading. OpenGL of course has a fixed lighting pipeline with 8 possible light sources. However they just illuminate all vertices without checking for occluding geometry. I'd be very thankful if someone could give me some pointers into the right direction. I don't need complete solutions or similar, just good sources with information understandable for someone with nearly no lighting experience (preferably with OpenGL).

    Read the article

  • SSAO Distortion

    - by Robert Xu
    I'm currently (attempting) to add SSAO to my engine, except it's...not really work, to say the least. I use a deferred renderer to render my scene. I have four render targets: Albedo, Light, Normal, and Depth. Here are the parameters for all of them (Surface Format, Depth Format): Albedo: 32-bit ARGB, Depth24Stencil8 Light: 32-bit ARGB, None Normal: 32-bit ARGB, None Depth: 8-bit R (Single), Depth24Stencil8 To generate my random noise map for the SSAO, I do the following for each pixel in the noise map: Vector3 v3 = Vector3.Zero; double z = rand.NextDouble() * 2.0 - 1.0; double r = Math.Sqrt(1.0 - z * z); double angle = rand.NextDouble() * MathHelper.TwoPi; v3.X = (float)(r * Math.Cos(angle)); v3.Y = (float)(r * Math.Sin(angle)); v3.Z = (float)z; v3 += offset; v3 *= 0.5f; result[i] = new Color(v3); This is my GBuffer rendering effect: PixelInput RenderGBufferColorVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = mul(input.Position, WorldViewProjection); pi.Normal = mul(input.Normal, WorldInverseTranspose); pi.Color = input.Color; pi.TPosition = pi.Position; pi.WPosition = input.Position; return pi; } GBufferTarget RenderGBufferColorPixelShader(PixelInput input) { GBufferTarget output = ( GBufferTarget ) 0; float3 position = input.TPosition.xyz / input.TPosition.w; output.Albedo = lerp(float4(1.0f, 1.0f, 1.0f, 1.0f), input.Color, ColorFactor); output.Normal = EncodeNormal(input.Normal); output.Depth = position.z; return output; } And here is the SSAO effect: float4 EncodeNormal(float3 normal) { return float4((normal.xyz * 0.5f) + 0.5f, 0.0f); } float3 DecodeNormal(float4 encoded) { return encoded * 2.0 - 1.0f; } float Intensity; float Size; float2 NoiseOffset; float4x4 ViewProjection; float4x4 ViewProjectionInverse; texture DepthMap; texture NormalMap; texture RandomMap; const float3 samples[16] = { float3(0.01537562, 0.01389096, 0.02276565), float3(-0.0332658, -0.2151698, -0.0660736), float3(-0.06420016, -0.1919067, 0.5329634), float3(-0.05896204, -0.04509097, -0.03611697), float3(-0.1302175, 0.01034653, 0.01543675), float3(0.3168565, -0.182557, -0.01421785), float3(-0.02134448, -0.1056605, 0.00576055), float3(-0.3502164, 0.281433, -0.2245609), float3(-0.00123525, 0.00151868, 0.02614773), float3(0.1814744, 0.05798516, -0.02362876), float3(0.07945167, -0.08302628, 0.4423518), float3(0.321987, -0.05670302, -0.05418307), float3(-0.00165138, -0.00410309, 0.00537362), float3(0.01687791, 0.03189049, -0.04060405), float3(-0.04335613, -0.00530749, 0.06443053), float3(0.8474263, -0.3590308, -0.02318038), }; sampler DepthSampler = sampler_state { Texture = DepthMap; MipFilter = Point; MinFilter = Point; MagFilter = Point; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler NormalSampler = sampler_state { Texture = NormalMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler RandomSampler = sampler_state { Texture = RandomMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; struct VertexInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; struct PixelInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; PixelInput SSAOVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = input.Position; pi.TextureCoordinates = input.TextureCoordinates; return pi; } float3 GetXYZ(float2 uv) { float depth = tex2D(DepthSampler, uv); float2 xy = uv * 2.0f - 1.0f; xy.y *= -1; float4 p = float4(xy, depth, 1); float4 q = mul(p, ViewProjectionInverse); return q.xyz / q.w; } float3 GetNormal(float2 uv) { return DecodeNormal(tex2D(NormalSampler, uv)); } float4 SSAOPixelShader(PixelInput input) : COLOR0 { float depth = tex2D(DepthSampler, input.TextureCoordinates); float3 position = GetXYZ(input.TextureCoordinates); float3 normal = GetNormal(input.TextureCoordinates); float occlusion = 1.0f; float3 reflectionRay = DecodeNormal(tex2D(RandomSampler, input.TextureCoordinates + NoiseOffset)); for (int i = 0; i < 16; i++) { float3 sampleXYZ = position + reflect(samples[i], reflectionRay) * Size; float4 screenXYZW = mul(float4(sampleXYZ, 1.0f), ViewProjection); float3 screenXYZ = screenXYZW.xyz / screenXYZW.w; float2 sampleUV = float2(screenXYZ.x * 0.5f + 0.5f, 1.0f - (screenXYZ.y * 0.5f + 0.5f)); float frontMostDepthAtSample = tex2D(DepthSampler, sampleUV); if (frontMostDepthAtSample < screenXYZ.z) { occlusion -= 1.0f / 16.0f; } } return float4(occlusion * Intensity * float3(1.0, 1.0, 1.0), 1.0); } technique SSAO { pass Pass0 { VertexShader = compile vs_3_0 SSAOVertexShader(); PixelShader = compile ps_3_0 SSAOPixelShader(); } } However, when I use the effect, I get some pretty bad distortion: Here's the light map that goes with it -- is the static-like effect supposed to be like that? I've noticed that even if I'm looking at nothing, I still get the static-like effect. (you can see it in the screenshot; the top half doesn't have any geometry yet it still has the static-like effect) Also, does anyone have any advice on how to effectively debug shaders?

    Read the article

  • Keeping the camera from going through walls in a first person game in Unity?

    - by Timothy Williams
    I'm using a modified version of the standard Unity First Person Controller. At the moment when I stand near walls, the camera clips through and lets me see through the wall. I know about camera occlusion and have implemented it in 3rd person games, but I have no clue how I'd accomplish this in a first person game, since the camera doesn't move from the player at all. How do other people accomplish this?

    Read the article

  • PCF shadow shader math causing artifacts

    - by user2971069
    For a while now I used PCSS for my shadow technique of choice until I discovered a type of percentage closer filtering. This method creates really smooth shadows and with hopes of improving performance, with only a fraction of texture samples, I tried to implement PCF into my shader. This is the relevant code: float c0, c1, c2, c3; float f = blurFactor; float2 coord = ProjectedTexCoords; if (receiverDistance - tex2D(lightSampler, coord + float2(0, 0)).x > 0.0007) c0 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, 0)).x > 0.0007) c1 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(0, f)).x > 0.0007) c2 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, f)).x > 0.0007) c3 = 1; coord = (coord % f) / f; return 1 - (c0 * (1 - coord.x) * (1 - coord.y) + c1 * coord.x * (1 - coord.y) + c2 * (1 - coord.x) * coord.y + c3 * coord.x * coord.y); This is a very basic implementation. blurFactor is initialized with 1 / LightTextureSize. So the if statements fetch the occlusion values for the four adjacent texels. I now want to weight each value based on the actual position of the texture coordinate. If it's near the bottom-right pixel, that occlusion value should be preferred. The weighting itself is done with a simple bilinear interpolation function, however this function takes a 2d vector in the range [0..1] so I have to convert my texture coordinate to get the distance from my first pixel to the second one in range [0..1]. For that I used the mod operator to get it into [0..f] range and then divided by f. This code makes sense to me, and for specific blurFactors it works, producing really smooth one pixel wide shadows, but not for all blurFactors. Initially blurFactor is (1 / LightTextureSize) to sample the 4 adjacent texels. I now want to increase the blurFactor by factor x to get a smooth interpolation across maybe 4 or so pixels. But that is when weird artifacts show up. Here is an image: Using a 1x on blurFactor produces a good result, 0.5 is as expected not so smooth. 2x however doesn't work at all. I found that only a factor of 1/2^n produces an good result, every other factor produces artifacts. I'm pretty sure the error lies here: coord = (coord % f) / f; Maybe the modulo is not calculated correctly? I have no idea how to fix that. Is it even possible for pixel that are further than 1 pixel away?

    Read the article

  • Strategy to prevent players from seeing through walls in an online FPS?

    - by geneotech
    Why do we still moan on wallhackers in multiplayer first-person shooters ? Isn't it possible to perform occlusion culling for all players server-side ? For example, send player xyz information to client only when the player is visible in client's frustum and not occluded by any object ? Even if the collision-geometry is very simplified, most of the time cheater won't receive tactical information. Why not do this ?

    Read the article

  • CodePlex Daily Summary for Monday, October 22, 2012

    CodePlex Daily Summary for Monday, October 22, 2012Popular ReleasesSQLLib: Alpha release 17: Added CLR UDFs: * clr.fn_regex_instr - similar to Oracle REGEX_INSTR * clr.fn_regex_substr - similar to Oracle REGEX_SUBSTR To deploy CLR objects copy ClrAgg.dll and ClrRegEx.dll to a folder of you choice (currently deployment script points to C:\Program Files\Microsoft SQL Server\100\CLR\ClrAgg.dll) and execute deployment scripts InstallCLRAggregates.sql and InstallCLRRegEx.sql Thank you for rating the download and/or your feedback.EPiServer CMS ElencySolutions.MultipleProperty: ElencySolutions.MultipleProperty v1.6.3: The ElencySolutions.MulitpleProperty property controls have been developed by Lee Crowe a technical developer at Fortune Cookie (London). Installation notes The property copy page can be locked down by adding the following location element, the path of this will be different depending on whether you use the embedded or non embedded resource version. When installing the nuget package these will be added automatically, examples below: Embedded: <location path="util/ElencySolutionsMultipleP...Fiskalizacija za developere: FiskalizacijaDev 1.1: Ovo je prva nadogradnja ovog projekta nakon inicijalnog predstavljanja - dodali smo nekoliko feature-a, bilo zato što smo sami primijetili da bi ih bilo dobro dodati, bilo na osnovu vaših sugestija - hvala svima koji su se ukljucili :) Ovo su stvari riješene u v1.1.: 1. Bilo bi dobro da se XML dokument koji se šalje u CIS može snimiti u datoteku (http://fiskalizacija.codeplex.com/workitem/612) 2. Podrška za COM DLL (VB6) (http://fiskalizacija.codeplex.com/workitem/613) 3. Podrška za DOS (unu...MCEBuddy 2.x: MCEBuddy 2.3.4: Changelog for 2.3.4 (32bit and 64bit) 1. Fixed a bug introduced in 2.3.3 that would cause HD recordings and recordings with multiple audio channels to fail. 2. Updated <encoder-unsupported> option to compare with all Audio tracks for videos with multiple audio tracks. 3. Fixed a bug with SRT and EDL files, when input and output directory are the same the files are not preserved.BlogEngine.NET: BlogEngine.NET 2.7 RC: Cheap ASP.NET Hosting - $4.95/Month - Click Here!! Click Here for More Info Cheap ASP.NET Hosting - $4.95/Month - Click Here! dot This is a Release Candidate version for BlogEngine.NET 2.7. The most current, stable version of BlogEngine.NET is version 2.6. Find out more about the BlogEngine.NET 2.7 RC here. To get started, be sure to check out our installation documentation. If you are upgrading from a previous version, please take a look at the Upgrading to BlogEngine.NET 2.7 instructions...Pulse: Pulse 0.6.3.0: Fixed a number of bugs that showed up since my update yesterday. Fixes included are for: - Weird issue where the initial "Nature" wallbase.cc search would duplicate itself - After changing a providers settings it wouldn't take affect until you restarted Pulse (removing or adding a provider entirely did take effect though) - Another small issue with the regex for the wallbase.cc wallpapers that I tweaked yesterday, seems good now though.Liberty: v3.4.0.0 Release 20th October 2012: Change Log -Added -Halo 4 support (invincibility, ammo editing) -Reach A warning dialog now shows up when you first attempt to swap a weapon -Fixed -A few minor bugsDoctor Reg: Doctor Reg V1.0: Doctor Reg V1.0 PT-PTkv: kv 1.0: if it were any more stable it would be a barn.LINQ for C++: cpplinq-20121020: LINQ for C++ is an attempt to bring LINQ-like list manipulation to C++11. This release includes just the source code. What's new in this release: join range operators: Inner Joins two ranges using a key selector reverse range operator distinct range operator union_with range operator intersect_with range operator except range operator concat range operator sequence_equal range aggregator to_lookup range aggregator This is a sample on how to use cpplinq: #include "cpplinq.h...helferlein_Form: 02.03.05: Requirements.Net 4.0 DotNetNuke 05.06.07 or higher, maybe it works with lower versions, but I developed it on this one and tested it on DotNetNuke 06.02.00 as well helferlein_BabelFish version 01.01.03 - please upgrade this first! Issues fixed Fixed issue with all users from all portals are listed as Host users in the sender options (E-Mail Options - Sender - ALL Users Listed) Registered postback-button for Excel-Export on Form submission edit control Changed behaviour Due to some mis...ClosedXML - The easy way to OpenXML: ClosedXML 0.68.1: ClosedXML now resolves formulas! Yes it finally happened. If you call cell.Value and it has a formula the library will try to evaluate the formula and give you the result. For example: var wb = new XLWorkbook(); var ws = wb.AddWorksheet("Sheet1"); ws.Cell("A1").SetValue(1).CellBelow().SetValue(1); ws.Cell("B1").SetValue(1).CellBelow().SetValue(1); ws.Cell("C1").FormulaA1 = "\"The total value is: \" & SUM(A1:B2)"; var...Orchard Project: Orchard 1.6 RC: RELEASE NOTES This is the Release Candidate version of Orchard 1.6. You should use this version to prepare your current developments to the upcoming final release, and report problems. Please read our release notes for Orchard 1.6 RC: http://docs.orchardproject.net/Documentation/Orchard-1-6-Release-Notes Please do not post questions as reviews. Questions should be posted in the Discussions tab, where they will usually get promptly responded to. If you post a question as a review, you wil...Rawr: Rawr 5.0.1: This is the Downloadable WPF version of Rawr!For web-based version see http://elitistjerks.com/rawr.php You can find the version notes at: http://rawr.codeplex.com/wikipage?title=VersionNotes Rawr Addon (NOT UPDATED YET FOR MOP)We now have a Rawr Official Addon for in-game exporting and importing of character data hosted on Curse. The Addon does not perform calculations like Rawr, it simply shows your exported Rawr data in wow tooltips and lets you export your character to Rawr (including ba...Yahoo! UI Library: YUI Compressor for .Net: Version 2.1.1.0 - Sartha (BugFix): - Revered back the embedding of the 2x assemblies.Visual Studio Team Foundation Server Branching and Merging Guide: v2.1 - Visual Studio 2012: Welcome to the Branching and Merging Guide What is new? The Version Control specific discussions have been moved from the Branching and Merging Guide to the new Advanced Version Control Guide. The Branching and Merging Guide and the Advanced Version Control Guide have been ported to the new document style. See http://blogs.msdn.com/b/willy-peter_schaub/archive/2012/10/17/alm-rangers-raising-the-quality-bar-for-documentation-part-2.aspx for more information. Quality-Bar Details Documentatio...D3 Loot Tracker: 1.5.5: Compatible with 1.05.Write Once, Play Everywhere: MonoGame 3.0 (BETA): This is a beta release of the up coming MonoGame 3.0. It contains an Installer which will install a binary release of MonoGame on windows boxes with the following platforms. Windows, Linux, Android and Windows 8. If you need to build for iOS or Mac you will need to get the source code at this time as the installers for those platforms are not available yet. The installer will also install a bunch of Project templates for Visual Studio 2010 , 2012 and MonoDevleop. For those of you wish...CODE Framework: 4.0.21017.0: See change log in the Documentation section for details.Magelia WebStore Open-source Ecommerce software: Magelia WebStore 2.1: Add support for .net 4.0 to Magelia.Webstore.Client and StarterSite version 2.1.254.3 Scheduler Import & Export feature (for Professional and Entreprise Editions) UTC datetime and timezone support .net 4.5 and Visual Studio 2012 migration client magelia global refactoring release of a nugget package to help developers speed up development http://nuget.org/packages/Magelia.Webstore.Client optimization of the data update mechanism (a.k.a. "burst") Performance improvment of the d...New ProjectsAdvanced Systems Generator: A very advanced systems generator in the first phase...planning. Android Phones: Creating Web 2.0 site featuring different types of Android phone where Users and fun of the phones can rate, evaluate and comment on different android phonesAppFabpraisal: AppFabPraisal is a project containing Concept Work around Health Monitoring in AppFabric.ASP.NET Web 2.0 Proje: this is a testAssignment1: This is a simple project allow users to sum two numbersBarryKileyiRobotics: The irobotics websiteBI Loteria: BI de jogos de loteria e lotofacil, para maximizar o numero de acerto em logos desse tipo.BKileyiRoboticsA1: iRobotics BlipiNET: Dostepowa biblioteka .NET do funkcjonalnosci API serwisu Blipi.plCAPRSFinal: Subversion, pruebas unitarias, etc.CityON: l' applicazione fornirà servizi informativi e supporterà l' utente nella pianificazione delle attivitàCryptographer: Cryptographer is a simple encryption/decryption application written in C# WinForms. It allows encryption and decryption using MD5, Rijndael, XOR and Hex.Design Patterns at TUM: Implement and provide the set of design patters in the area of software engineering. DigitalCV: DigitalCV is an API and editor for creating digital curriculum vitaes.Energy Informatics: The idea of this project is to follow a research in the area of energy informatics where we can provide value from the computer science.Ficharts.Net: ??Ficharts?Asp.Net????FlakerNET: Dostepowa biblioteka .NET do funkcjonalnosci API serwisu Flaker.plgillsassignment2: This is my second assignment which has 2 aspx pages.Image Space Occlusion Culling Engine: ISOCE is an Image Space Occlusion Culling Engine optimized to perform occlusion culling in CPU. Developed in C++ using SIMD optimizations.Liubaobao File Manager: A web based file managernetception: netception is an error tracking system aimed at enterprise environments. it aims to build on existing logging projects with business related informationPhoneGap MVC: Demo MVC application using PhoneGapProjetoIntegrador: Projeto Integrador para PUCPR Londrina.Quicklight: The Quicklight project that allows a developer to write anything from Rich Internet Applications to Apps for mobile phones using C# and HTML based Razor viewsRarawel: Crawl website with custom URIs and grab contentSharePoint Online Helper Library: Use .NET code or PowerShell to automate SharePoint Online deployment tasks, such as authenticating without browser, and activate sandbox solutions.SharkCrawler: SharkCrawler is a simple web page crawler written in C# for demonstration of how regular crawler is working.Shin Warrior Players Union: This is a ASP.NET Web 2.0 Project for WSCC coursework.Simple Servers Monitor: Monitor Servers via simple and yet comprehensive interface. Test Hgsubversion: For Testing hgsubversion.Visualizador de escandallos: Visualizador recursivo de estructuras tipo arbol para escandallos de producción.WebscriptingAssignment: sum of two numbersWrapCode - Template: WrapCode.com Custom WordPress template.XMLCatalogueTemplate(C#): MSP????????????????????????????。 ?????????????????。

    Read the article

1 2  | Next Page >