Search Results

Search found 1725 results on 69 pages for 'compute shader'.

Page 20/69 | < Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >

  • Getting the number of fragments which passed the depth test

    - by Etan
    In "modern" environments, the "NV Occlusion Query" extension provides a method to get the number of fragments which passed the depth test. However, on the iPad / iPhone using OpenGL ES, the extension is not available. What is the most performant approach to implement a similar behaviour in the fragment shader? Some of my ideas: Render the object completely in white, then count all the colors together using a two-pass shader where first a vertical line is rendered and for each fragment the shader computes the sum over the whole row. Then, a single vertex is rendered whose fragment sums all the partial sums of the first pass. Doesn't seem to be very efficient. Render the object completely in white over a black background. Downsample recursively, abusing the hardware linear interpolation between textures until being at a reasonably small resolution. This leads to fragments which have a greyscale level depending on the number of white pixels where in their corresponding region. Is this even accurate enough? Use mipmaps and simply read the pixel on the 1x1 level. Again the question of accuracy and if it is even possible using non-power-of-two textures. The problem wit these approaches is, that the pipeline gets stalled which results in major performance issues. Therefore, I'm looking for a more performant way to accomplish my goal. Using the EXT_OCCLUSION_QUERY_BOOLEAN extension Apple introduced EXT_OCCLUSION_QUERY_BOOLEAN in iOS 5.0 for iPad 2. "4.1.6 Occlusion Queries Occlusion queries use query objects to track the number of fragments or samples that pass the depth test. An occlusion query can be started and finished by calling BeginQueryEXT and EndQueryEXT, respectively, with a target of ANY_SAMPLES_PASSED_EXT or ANY_SAMPLES_PASSED_CONSERVATIVE_EXT. When an occlusion query is started with the target ANY_SAMPLES_PASSED_EXT, the samples-boolean state maintained by the GL is set to FALSE. While that occlusion query is active, the samples-boolean state is set to TRUE if any fragment or sample passes the depth test. When the occlusion query finishes, the samples-boolean state of FALSE or TRUE is written to the corresponding query object as the query result value, and the query result for that object is marked as available. If the target of the query is ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, an implementation may choose to use a less precise version of the test which can additionally set the samples-boolean state to TRUE in some other implementation dependent cases." The first sentence hints on a behavior which is exactly what I'm looking for: getting the number of pixels which passed the depth test in an asynchronous manner without much performance loss. However, the rest of the document describes only how to get boolean results. Is it possible to exploit this extension to get the pixel count? Does the hardware support it so that there may be hidden API to get access to the pixel count? Other extensions which could be exploitable would be debugging features like the number of times the fragment shader was invoked (PSInvocations in DirectX - not sure if something simila is available in OpenGL ES). However, this would also result in a pipeline stall.

    Read the article

  • Ogre material scripts; how do I give a technique multiple lod_indexes?

    - by BlueNovember
    I have an Ogre material script that defines 4 rendering techniques. 1 using GLSL shaders, then 3 others that just use textures of different resolutions. I want to use the GLSL shader unconditionally if the graphics card supports it, and the other 3 textures depending on camera distance. At the moment my script is; material foo { lod_distances 1600 2000 technique shaders { lod_index 0 lod_index 1 lod_index 2 //various passes here } technique high_res { lod_index 0 //various passes here } technique medium_res { lod_index 1 //various passes here } technique low_res { lod_index 2 //various passes here } Extra information The Ogre manual says; Increasing indexes denote lower levels of detail You can (and often will) assign more than one technique to the same LOD index, what this means is that OGRE will pick the best technique of the ones listed at the same LOD index. OGRE determines which one is 'best' by which one is listed first. Currently, on a machine supporting the GLSL version I am using, the script behaves as follows; Camera 2000 : Shader technique Camera 1600 <= 2000 : Medium Camera <= 1600 : High If I change the lod order in shader technique to { lod_index 2 lod_index 1 lod_index 0 } The behaviour becomes; Camera 2000 : Low Camera 1600 <= 2000 : Medium Camera <= 1600 : Shader implying only the latest lod_index is used. If I change it to lod_index 0 1 2 It shouts at me Compiler error: fewer parameters expected in foo.material(#): lod_index only supports 1 argument So how do I specify a technique to have 3 lod_indexes? Duplication works; technique shaders { lod_index 0 //various passes here } technique shaders1 { lod_index 1 //passes repeated here } technique shaders2 { lod_index 2 //passes repeated here } ...but it's ugly.

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • rsync to EC2: Identity file not accessible

    - by Richard
    I'm trying to rsync a file over to my EC2 instance: rsync -Paz --rsh "ssh -i ~/.ssh/myfile.pem" --rsync-path "sudo rsync" file.pdf [email protected]:/home/ubuntu/ This gives the following error message: Warning: Identity file ~/.ssh/myfile.pem not accessible: No such file or directory. [email protected]'s password: The pem file is definitely located at the path ~/.ssh/myfile.pem, though: vi ~/.ssh/myfile.pem shows me the file. If I remove the remote path from the very end of the rsync command: rsync -Paz --rsh "ssh -i ~/.ssh/myfile.pem" --rsync-path "sudo rsync" file.pdf [email protected] Then the command appears to work... building file list ... 1 file to consider file.pdf 41985 100% 8.79MB/s 0:00:00 (xfer#1, to-check=0/1) sent 41795 bytes received 42 bytes 83674.00 bytes/sec total size is 41985 speedup is 1.00 ...but when I go to the remote server, nothing has actually been transferred. What am I doing wrong?

    Read the article

  • BUILD apps that use C++ AMP

    - by Daniel Moth
    If you are a developer on the Microsoft platform, you are hopefully attending (live or virtually) the sessions of the BUILD conference, aka //build/ in Anaheim, CA. The conference sold out not long after it opened registration, and it achieved that without sharing *any* session details nor a meaningful agenda up until after the keynote today – impressive! I am speaking at BUILD and hope you'll catch my talk at 9am on Friday (the last day of the conference) at Marriott Elite 2 Ballroom. Session details follow. 802 - Taming GPU compute with C++ AMP Developers today inject parallelism into their compute-intensive applications in order to take advantage of multi-core CPU hardware. Beyond CPUs, however, compute accelerators such as general-purpose GPUs can provide orders of magnitude speed-ups for data parallel algorithms. How can you as a C++ developer fully utilize this heterogeneous hardware from your Visual Studio environment?  How can you benefit from this tremendous performance boost in your Visual C++ solutions without sacrificing developer productivity?  The answers will be presented in this session about C++ Accelerated Massive Parallelism. I'll be covering a lot of the material I've been recently blogging about on my blog that you are reading, which I have also indexed over on our team blog under the title: "C++ AMP in a nutshell". Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • How to solve CUDA crash when run CUDA example fluidsGL?

    - by sam
    I use ubuntu 12.04 64 bits with GTX560Ti. I install CUDA by following instruction: wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_lin ux_64_ubuntu11.04.run wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux _64_295.41.run wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/sdk/gpucomputingsdk_4.2.9 _linux.run chmod +x cudatoolkit_4.2.9_linux_64_ubuntu11.04.run sudo ./cudatoolkit_4.2.9_linux_64_ubuntu11.04.run echo "/usr/local/cuda/lib64" > ~/cuda.conf echo "/usr/local/cuda/lib" >> ~/cuda.conf sudo mv ~/cuda.conf /etc/ld.so.conf.d/cuda.conf sudo ldconfig echo 'export PATH=$PATH:/usr/local/cuda/bin' >> ~/.bashrc chmod +x gpucomputingsdk_4.2.9_linux.run ./gpucomputingsdk_4.2.9_linux.run sudo apt-get install build-essential libx11-dev libglu1-mesa-dev freeg lut3-dev libxi-dev libxmu-dev gcc-4.4 g++-4.4 sed 's/g++ -fPIC/g++-4.4 -fPIC/g' ~/NV IDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/gcc -fPIC/gcc-4.4 -fPIC/g' ~/NV IDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/-L$(SHAREDDIR)\/lib/-L$(SHAREDDIR)\/lib -L\/u sr\/lib\/nvidia-current/g' ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/-L$(SHAREDDIR)\/lib -L\/usr\/lib\/nvidia-current $(NV CUVIDLIB)/-L$(SHAREDDIR)\/lib $(NVCUVIDLIB)/g' ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk After I run ~/NVIDIA_GPU_Computing_SDK/C/bin/linux/release/./fluidsGL It got stuck even mouse or keyboard couldn't move. How to solve it? Thank you~

    Read the article

  • Keystone Correction using 3D-Points of Kinect

    - by philllies
    With XNA, I am displaying a simple rectangle which is projected onto the floor. The projector can be placed at an arbitrary position. Obviously, the projected rectangle gets distorted according to the projectors position and angle. A Kinect scans the floor looking for the four corners. Now my goal is to transform the original rectangle such that the projection is no longer distorted by basically pre-warping the rectangle. My first approach was to do everything in 2D: First compute a perspective transformation (using OpenCV's warpPerspective()) from the scanned points to the internal rectangle's points und apply the inverse to the rectangle. This seemed to work but was too slow as it couldn't be rendered on the GPU. The second approach was to do everything in 3D in order to use XNA's rendering features. First, I would display a plane, scan its corners with Kinect and map the received 3D-Points to the original plane. Theoretically, I could apply the inverse of the perspective transformation to the plane, as I did in the 2D-approach. However, in since XNA works with a view and projection matrix, I can't just call a function such as warpPerspective() and get the desired result. I would need to compute the new parameters for the camera's view and projection matrix. Question: Is it possible to compute these parameters and split them into two matrices (view and projection)? If not, is there another approach I could use?

    Read the article

  • MSDN Subscriber Benefits

    - by kaleidoscope
    Windows Azure Platform offer Introductory MSDN Premium offer Ongoing MSDN Subscription Benefits Windows Azure Compute hours per month 750 hours 250 100 50 Storage 10 GB 7.5 GB 5 GB 3 GB Transactions per month 1,000,000 750,000 500,000 300,000 AppFabric Service bus messages per month 1,000,000 1,000,000 500,000 300,000 SQL Azure Web Edition (1GB databases) 3 3 2 1 Data Transfers per month Europe and North America 7 GB in / 14 GB out 5 GB in / 10 GB out 3 GB in / 6 GB out 2 GB in / 4 GB out Asia Pacific 2.5 GB in / 5 GB out 2 GB in / 4 GB out 1 GB in / 2 GB out .5 GB in / 1 GB out Available for sign-up January 4, 2010* After completion of your 8 month introductory Windows Azure benefit Duration of benefit 8 months While MSDN Subscription remains active Subscription levels receiving benefit** MSDN Premium & BizSpark Visual Studio Ultimate with MSDN & BizSpark Visual Studio Premium with MSDN Visual Studio Professional with MSDN Estimated Retail Value: $1038 (8 months) $812/year $436/year $223/year This introductory offer will last for 8 months from the time you sign up. After that, you'll cancel your introductory account and sign up for the ongoing MSDN benefit based on your subscription level. The easiest way to cancel your introductory account is to set it to not "auto-renew". Think of "compute" as an instance of your application running in the cloud. So with 750 hours per month, you can keep a single instance running non-stop all month long. Or run 2 compute instances for two weeks a month. Or 4 for a week a piece. Lokesh, M

    Read the article

  • How to add precedence to LALR parser like in YACC?

    - by greenoldman
    Please note, I am asking about writing LALR parser, not writing rules for LALR parser. What I need is... ...to mimic YACC precedence definitions. I don't know how it is implemented, and below I describe what I've done and read so far. For now I have basic LALR parser written. Next step -- adding precedence, so 2+3*4 could be parsed as 2+(3*4). I've read about precedence parsers, however I don't see how to fit such model into LALR. I don't understand two points: how to compute when insert parenthesis generator how to compute how many parenthesis the generator should create I insert generators when the symbols is taken from input and put at the stack, right? So let's say I have something like this (| denotes boundary between stack and input): ID = 5 | + ..., at this point I add open, so it gives ID = < 5 | + ..., then I read more input ID = < 5 + | 5 ... and more ID = < 5 + 5 | ; ... and more ID = < 5 + 5 ; | ... At this point I should have several reduce moves in normal LALR, but the open parenthesis does not match so I continue reading more input. Which does not make sense. So this was when problem. And about count, let's say I have such data < 2 + < 3 * 4 >. As human I can see that the last generator should create 2 parenthesis, but how to compute this? After all there could be two scenarios: ( 2 + ( 3 *4 )) -- parenthesis is used to show the outcome of generator or (2 + (( 3 * 4 ) ^ 5) because there was more input Please note that in both cases before 3 was open generator, and after 4 there was close generator. However in both cases, after reading 4 I have to reduce, so I have to know what generator "creates".

    Read the article

  • Creating movement path displays in a top-down 2d RTS

    - by nihohit
    My game is a top-down 2d RTS coded in C# using SFML's libraries. I want that during unit selection, a unit will display it's movement path on the map. Currently, after the path is computed as a list of directions ({left, up,down, down, down, left}, as an example), it's sent to the graphical component to create it's UI equivalent, and here I'm having some problems. current, these I've checked three ways to do it: compute the size of the image (in the example above it'll be a 3*2 rectangle) and create an invisible rectangle, and then go over the directions list and mark each spot with a visible point, so as to get a continous line. This system is slightly problematic because of the amount of large images that I need to save, but mostly because I have a lot of fine detail onscreen, and a continous line obstructs the view. again, compute the size of the image, but now create several (let's say 4) invisible images of that size, and then instead of a single continous line I'll switch between the four images, in each will appear only a fourth of the spots, in a way which creates a path animation. This is nicer on the eye, but here the memory demands, and the amount of time needed to compute each such image-loop is significant. Just create a list of single markers, each on a different spot on the path. This is very quick & easy on memory, but too sparse. Is there a simple or resource-light system to create path-animations?

    Read the article

  • A Myriad of Options

    - by Mark Hesse
    I am currently working with a customer that is close to outgrowing their Exadata X2-2 half rack in both compute and storage capacity.  The platform is used for one of their larger data warehouse applications and the move to Exadata almost two years ago has been a resounding success, forcing them to grow the platform sooner than anticipated. At a recent planning meeting, we started looking at the options for expansion and have developed five alternatives, all of which meet or exceed their growth requirements, yet have different pros and cons in terms of the impact to their production and test environments. The options include an in-rack upgrade to a full rack of Exadata using the recently released X3-2 platform (an option that even applies to an older V2 rack), multi-rack cabling the existing X2-2 to another full rack or half rack X2-2 (and utilizing both compute and storage capacity in the other rack), or simply adding a new X3-2 half rack (and taking advantage of the added compute and flash performance in the X3-2). While the decision is yet to be made, it had me thinking that one of the benefits of Exadata over a traditional database deployment is that when the time comes to expand the platform, there are a myriad of options.

    Read the article

  • Low framerate on background apps

    - by user1698923
    My problem is that when a game is running in the foreground, in Full Screen mode, any applications on my second monitor (such as youtube videos, videos, not app specific) drop their frame-rate to about 2-3 FPS. It seems like some sort of power management option that I can't track down. As far as I can tell, it's not due to the GPU not being able to keep up. For instance, my PC can play League of Legends at about 280FPS when the framerate is uncapped. If i cap it at 60FPS using the in-game option, it has no affect on the performance of the background app. Summary Operating System Windows 8 Pro 64-bit CPU Intel Core i7 3820 @ 3.60GHz 42 °C Sandy Bridge-E 32nm Technology RAM 12.0GB Triple-Channel DDR3 @ 533MHz (7-7-7-20) Motherboard Gigabyte Technology Co., Ltd. X79-UD3 (SOCKET 0) 37 °C Graphics DELL U2713HM (2560x1440@59Hz) DELL U2713HM (2560x1440@59Hz) 1280MB NVIDIA GeForce GTX 570 (Gigabyte) 58 °C Hard Drives 212GB Volume0 (RAID) 1863GB Western Digital WDC WD20EARS-00MVWB0 (SATA) 36 °C 1863GB Western Digital WDC WD20EARS-00MVWB0 (SATA) 34 °C Optical Drives No optical disk drives detected Audio ASUS Xonar Essence STX Audio Device Operating System Windows 8 Pro 64-bit Computer type: Desktop Graphics Monitor 1 Name DELL U2713HM on NVIDIA GeForce GTX 570 Current Resolution 2560x1440 pixels Work Resolution 2560x1400 pixels State Enabled, Output devices support Multiple displays Extended, Secondary, Enabled Monitor Width 2560 Monitor Height 1440 Monitor BPP 32 bits per pixel Monitor Frequency 59 Hz Device \\.\DISPLAY4\Monitor0 Monitor 2 Name DELL U2713HM on NVIDIA GeForce GTX 570 Current Resolution 2560x1440 pixels Work Resolution 2560x1400 pixels State Enabled, Output devices support Multiple displays Extended, Primary, Enabled Monitor Width 2560 Monitor Height 1440 Monitor BPP 32 bits per pixel Monitor Frequency 59 Hz Device \\.\DISPLAY5\Monitor0 NVIDIA GeForce GTX 570 Manufacturer NVIDIA Model GeForce GTX 570 GPU GF110 Device ID 10DE-1086 Revision A2 Subvendor Gigabyte (1458) Series GeForce GTX 500 Current Performance Level Level 3 Current GPU Clock 845 MHz Current Memory Clock 1900 MHz Current Shader Clock 1690 MHz Voltage 0.988 V Technology 40 nm Die Size 520 mm² Release Date Dec 07, 2010 DirectX Support 11.0 OpenGL Support 5.0 Bus Interface PCI Express x16 Temperature 57 °C Driver version 9.18.13.2018 BIOS Version 70.10.55.00.01 ROPs 40 Shaders 512 unified Memory Type GDDR5 Memory 1280 MB Bus Width 64x5 (320 bit) Filtering Modes 16x Anisotropic Noise Level Moderate Max Power Draw 219 Watts Count of performance levels : 3 Level 1 - "Default" GPU Clock 50 MHz Memory Clock 135 MHz Shader Clock 101 MHz Level 2 - "2D Desktop" GPU Clock 405 MHz Memory Clock 324 MHz Shader Clock 810 MHz Level 3 - "3D Applications" GPU Clock 845 MHz Memory Clock 1900 MHz Shader Clock 1690 MHz Things I've tried: 1) Updating the graphics driver 2) Setting windows power mode to High Performance 3) Reset Nvidia Global Performance settings to default

    Read the article

  • glTexParameter and filtering in OpenGL and GLSL?

    - by sharoz
    I have a couple questions about glTexParameter and filtering 1) What is the scope when applying a glTexParameter (specifically the filtering)? Here's a scenario: Bind a texture. Set the filters to LINEAR Set the texture to "Sampler1" of a shader Bind another texture. Set its filters to NEAREST Set that texture to "Sampler2" of a shader Draw When I use the textures in a shader, will one be linear and the other be nearest? Or will they both be nearest because it was called last? 2) Is it possible to set the filtering method in GLSL? Thanks in advance!

    Read the article

  • Unity3D draw call optimization : static batching VS manually draw mesh with MaterialPropertyBlock

    - by Heisenbug
    I've read Unity3D draw call batching documentation. I understood it, and I want to use it (or something similar) in order to optimize my application. My situation is the following: I'm drawing hundreds of 3d buildings. Each building can be represented using a Mesh (or a SubMesh for each building, but I don't thing this will affect performances) Each building can be textured with several combinations of texture patterns(walls, windows,..). Textures are stored into an Atlas for optimizaztion (see Texture2d.PackTextures) Texture mapping and facade pattern generation is done in fragment shader. The shader can be the same (except for few values) for all buildings, so I'd like to use a sharedMaterial in order to optimize parameters passed to the GPU. The main problem is that, even if I use an Atlas, share the material, and declare the objects as static to use static batching, there are few parameters(very fews, it could be just even a float I guess) that should be different for every draw call. I don't know exactly how to manage this situation using Unity3D. I'm trying 2 different solutions, none of them completely implemented. Solution 1 Build a GameObject for each building building (I don't like very much the overhead of a GameObject, anyway..) Prepare each GameObject to be static batched with StaticBatchingUtility.Combine. Pack all texture into an atlas Assign the parent game object of combined batched objects the Material (basically the shader and the atlas) Change some properties in the material before drawing an Object The problem is the point 5. Let's say I have to assign a different id to an object before drawing it, how can I do this? If I use a different material for each object I can't benefit of static batching. If I use a sharedMaterial and I modify a material property, all GameObjects will reference the same modified variable Solution 2 Build a Mesh for every building (sounds better, no GameObject overhead) Pack all textures into an Atlas Draw each mesh manually using Graphics.DrawMesh Customize each DrawMesh call using a MaterialPropertyBlock This would solve the issue related to slightly modify material properties for each draw call, but the documentation isn't clear on the following point: Does several consecutive calls to Graphic.DrawMesh with a different MaterialPropertyBlock would cause a new material to be instanced? Or Unity can understand that I'm modifying just few parameters while using the same material and is able to optimize that (in such a way that the big atlas is passed just once to the GPU)?

    Read the article

  • How can I get penetration depth from Minkowski Portal Refinement / Xenocollide?

    - by Raven Dreamer
    I recently got an implementation of Minkowski Portal Refinement (MPR) successfully detecting collision. Even better, my implementation returns a good estimate (local minimum) direction for the minimum penetration depth. So I took a stab at adjusting the algorithm to return the penetration depth in an arbitrary direction, and was modestly successful - my altered method works splendidly for face-edge collision resolution! What it doesn't currently do, is correctly provide the minimum penetration depth for edge-edge scenarios, such as the case on the right: What I perceive to be happening, is that my current method returns the minimum penetration depth to the nearest vertex - which works fine when the collision is actually occurring on the plane of that vertex, but not when the collision happens along an edge. Is there a way I can alter my method to return the penetration depth to the point of collision, rather than the nearest vertex? Here's the method that's supposed to return the minimum penetration distance along a specific direction: public static Vector3 CalcMinDistance(List<Vector3> shape1, List<Vector3> shape2, Vector3 dir) { //holding variables Vector3 n = Vector3.zero; Vector3 swap = Vector3.zero; // v0 = center of Minkowski sum v0 = Vector3.zero; // Avoid case where centers overlap -- any direction is fine in this case //if (v0 == Vector3.zero) return Vector3.zero; //always pass in a valid direction. // v1 = support in direction of origin n = -dir; //get the differnce of the minkowski sum Vector3 v11 = GetSupport(shape1, -n); Vector3 v12 = GetSupport(shape2, n); v1 = v12 - v11; //if the support point is not in the direction of the origin if (v1.Dot(n) <= 0) { //Debug.Log("Could find no points this direction"); return Vector3.zero; } // v2 - support perpendicular to v1,v0 n = v1.Cross(v0); if (n == Vector3.zero) { //v1 and v0 are parallel, which means //the direction leads directly to an endpoint n = v1 - v0; //shortest distance is just n //Debug.Log("2 point return"); return n; } //get the new support point Vector3 v21 = GetSupport(shape1, -n); Vector3 v22 = GetSupport(shape2, n); v2 = v22 - v21; if (v2.Dot(n) <= 0) { //can't reach the origin in this direction, ergo, no collision //Debug.Log("Could not reach edge?"); return Vector2.zero; } // Determine whether origin is on + or - side of plane (v1,v0,v2) //tests linesegments v0v1 and v0v2 n = (v1 - v0).Cross(v2 - v0); float dist = n.Dot(v0); // If the origin is on the - side of the plane, reverse the direction of the plane if (dist > 0) { //swap the winding order of v1 and v2 swap = v1; v1 = v2; v2 = swap; //swap the winding order of v11 and v12 swap = v12; v12 = v11; v11 = swap; //swap the winding order of v11 and v12 swap = v22; v22 = v21; v21 = swap; //and swap the plane normal n = -n; } /// // Phase One: Identify a portal while (true) { // Obtain the support point in a direction perpendicular to the existing plane // Note: This point is guaranteed to lie off the plane Vector3 v31 = GetSupport(shape1, -n); Vector3 v32 = GetSupport(shape2, n); v3 = v32 - v31; if (v3.Dot(n) <= 0) { //can't enclose the origin within our tetrahedron //Debug.Log("Could not reach edge after portal?"); return Vector3.zero; } // If origin is outside (v1,v0,v3), then eliminate v2 and loop if (v1.Cross(v3).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v2 = v3; v21 = v31; v22 = v32; n = (v1 - v0).Cross(v3 - v0); continue; } // If origin is outside (v3,v0,v2), then eliminate v1 and loop if (v3.Cross(v2).Dot(v0) < 0) { //failed to enclose the origin, adjust points; v1 = v3; v11 = v31; v12 = v32; n = (v3 - v0).Cross(v2 - v0); continue; } bool hit = false; /// // Phase Two: Refine the portal int phase2 = 0; // We are now inside of a wedge... while (phase2 < 20) { phase2++; // Compute normal of the wedge face n = (v2 - v1).Cross(v3 - v1); n.Normalize(); // Compute distance from origin to wedge face float d = n.Dot(v1); // If the origin is inside the wedge, we have a hit if (d > 0 ) { //Debug.Log("Do plane test here"); float T = n.Dot(v2) / n.Dot(dir); Vector3 pointInPlane = (dir * T); return pointInPlane; } // Find the support point in the direction of the wedge face Vector3 v41 = GetSupport(shape1, -n); Vector3 v42 = GetSupport(shape2, n); v4 = v42 - v41; float delta = (v4 - v3).Dot(n); float separation = -(v4.Dot(n)); if (delta <= kCollideEpsilon || separation >= 0) { //Debug.Log("Non-convergance detected"); //Debug.Log("Do plane test here"); return Vector3.zero; } // Compute the tetrahedron dividing face (v4,v0,v1) float d1 = v4.Cross(v1).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v2) float d2 = v4.Cross(v2).Dot(v0); // Compute the tetrahedron dividing face (v4,v0,v3) float d3 = v4.Cross(v3).Dot(v0); if (d1 < 0) { if (d2 < 0) { // Inside d1 & inside d2 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } else { // Inside d1 & outside d2 ==> eliminate v3 v3 = v4; v31 = v41; v32 = v42; } } else { if (d3 < 0) { // Outside d1 & inside d3 ==> eliminate v2 v2 = v4; v21 = v41; v22 = v42; } else { // Outside d1 & outside d3 ==> eliminate v1 v1 = v4; v11 = v41; v12 = v42; } } } return Vector3.zero; } }

    Read the article

  • Rain effect using DirectX 9 capabilities

    - by teodron
    Is it possible to achieve something similar to nVidia's rain demo using only shader model 3.0 capabilities? If yes, could you point out a few documents/web resources that are suitable candidates and do not require a heavy programming load (e.g. not more than two hard weeks of programming for one single person)? It would be nice if the answer could also contain a pro/con phrase for the proposed idea (e.g. postprocessing rain shader vs. a particle based effect).

    Read the article

  • XNA `tex2Dlod` always returns transparent black

    - by feralin
    I want to sample a texture in a vertex shader, so at first I just tried using float2 texcoords = ...; color = tex2D(texture, texcoords); But apparently I cannot use tex2D in a vertex shader, and must use tex2Dlod. So then I changed the above code to color = tex2Dlod(texture, float4(texcoords, 0, 0)); But now color is always float4(0, 0, 0, 0) (i.e. transparent black). Why is this, and how can I fix it? EDIT: I know for a fact that the texture does not contain just transparent black pixels.

    Read the article

  • gpgpu vs. physX for physics simulation

    - by notabene
    Hello First theoretical question. What is better (faster)? Develop your own gpgpu techniques for physics simulation (cloth, fluids, colisions...) or to use PhysX? (If i say develop i mean implement existing algorithms like navier-strokes...) I don't care about what will take more time to develop. What will be faster for end user? As i understand that physx are accelerated through PPU units in gpu, does it mean that physical simulation can run in paralel with rastarization? Are PPUs different units than unified shader units used as vertex/geometry/pixel/gpgpu shader units? And little non-theoretical question: Is physx able to do sofisticated simulation equal to lets say Autodesk's Maya fluid solver? Are there any c++ gpu accelerated physics frameworks to try? (I am interested in both physx and gpgpu, commercial engines are ok too).

    Read the article

  • Using SurfaceFormat.Single and HLSL for GPGPU with XNA

    - by giancarlo todone
    I'm trying to implement a so-called ping-pong technique in XNA; you basically have two RenderTarget2D A and B and at each iteration you use one as texture and the other as target - and vice versa - for a quad rendered through an HLSL pixel shader. step1: A--PS--B step2: B--PS--A step3: A--PS--B ... In my setup, both RenderTargets are SurfaceFormat.Single. In my .fx file, I have a tachnique to do the update, and another to render the "current buffer" to the screen. Before starting the "ping-pong", buffer A is filled with test data with SetData<float>(float[]) function: this seems to work properly, because if I render a quad on the screen through the "Draw" pixel shader, i do see the test data being correctly rendered. However, if i do update buffer B, something does not function proerly and the next rendering to screen will be all black. For debug purposes, i replaced the "Update" HLSL pixel shader with one that should simply copy buffer A into B (or B into A depending on which among "ping" and "pong" phases we are...). From some examples i found on the net, i see that in order to correctly fetch a float value from a texture sampler from HLSL code, i should only need to care for the red channel. So, basically the debug "Update" HLSL function is: float4 ComputePS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,0,0,1); } which still doesn't work and results in a all-zeroes ouput. Here's the "Draw" function that seems to properly display initial data: float4 DrawPS(float2 inPos : TEXCOORD0) : COLOR0 { float v1 = tex2D(bufSampler, inPos.xy).r; return float4(v1,v1,v1,1); } Now: playing around with HLSL doesn't change anything, so maybe I'm missing something on the c# side of this, so here's the infamous Update() function: _effect.Parameters["bufTexture"].SetValue(buf[_currentBuf]); _graphicsDevice.SetRenderTarget(buf[1 - _currentBuf]); _graphicsDevice.Clear(Color.Black); // probably not needed since RenderTargetUsage is DiscardContents _effect.CurrentTechnique = _computeTechnique; _computeTechnique.Passes[0].Apply(); _quadRender.Render(); _graphicsDevice.SetRenderTarget(null); _currentBuf = 1 - _currentBuf; Any clue?

    Read the article

  • OpenGL and atlas

    - by user30088
    I'm trying to draw element from a texture atlas with OpenGL ES 2. Currently, I'm drawing my elements using something like that in the shader: uniform mat4 uCamera; uniform mat4 uModel; attribute vec4 aPosition; attribute vec4 aColor; attribute vec2 aTextCoord; uniform vec2 offset; uniform vec2 scale; varying lowp vec4 vColor; varying lowp vec2 vUV; void main() { vUV = offset + aTextCoord * scale; gl_Position = (uCamera * uModel) * aPosition; vColor = aColor; } For each elements to draw I send his offset and scale to the shader. The problem with this method: I can't rotate the element but it's not a problem for now. I would like to know, what is better for performance: Send uniforms like that for each element on every frames Update quad geometry (uvs) for each element Thanks!

    Read the article

  • Shadow mapping with deffered shading for directional lights - shadow map projection problem

    - by Harry
    I'm trying to implement shadow mapping to my engine. I started with directional lights because they seemed to be the easiest one, but I was wrong :) I have implemented deferred shading and I retrieve position from depth. I think that there is the biggest problem but code looks ok for me. Now more about problem: Shadow map projected onto meshes looks bad scaled and translated and also some informations from shadow map texture aren't visible. You can see it on this screen: http://img5.imageshack.us/img5/2254/93dn.png Yelow frustum is light frustum and I have mixed shadow map preview and actual scene. As you can see shadows are in wrong place and shadow of cone and sphere aren't visible. Could you look at my codes and tell me where I have a mistake? // create shadow map if(!_shd)glGenTextures(1, &_shd); glBindTexture(GL_TEXTURE_2D, _shd); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, GL_FLOAT,NULL); // shadow map size glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, _shd, 0); glDrawBuffer(GL_NONE); // setting camera Vector dire=Vector(0,0,1); ACamera.setLookAt(dire,Vector(0)); ACamera.setPerspectiveView(60.0f,1,0.1f,10.0f); // currently needed for proper frustum corners calculation Vector min(ACamera._point[0]),max(ACamera._point[0]); for(int i=0;i<8;i++){ max=Max(max,ACamera._point[i]); min=Min(min,ACamera._point[i]); } ACamera.setOrthogonalView(min.x,max.x,min.y,max.y,-max.z,-min.z); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _s_buffer); // framebuffer for shadow map // rendering to depth buffer glBindFramebuffer(GL_DRAW_FRAMEBUFFER, _g_buffer); Shaders["DirLight"].set(true); Matrix4 bias; bias.x.set(0.5,0.0,0.0,0.0); bias.y.set(0.0,0.5,0.0,0.0); bias.z.set(0.0,0.0,0.5,0.0); bias.w.set(0.5,0.5,0.5,1.0); Shaders["DirLight"].set("textureMatrix",ACamera.matrix*Projection3D*bias); // order of multiplications are 100% correct, everything gives mi the same result as using glm glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D,_shd); lightDir(dir); // light calculations Vertex Shader makes nothing related to shadow calculatons Pixel shader function which calculates if pixel is in shadow or not: float readShadowMap(vec3 eyeDir) { // retrieve depth of pixel float z = texture2D(depth, gl_FragCoord.xy/screen).z; vec3 pos = vec3(gl_FragCoord.xy/screen, z); // transform by the projection and view inverse vec4 worldSpace = inverse(View)*inverse(ProjectionMatrix)*vec4(pos*2-1,1); worldSpace /= worldSpace.w; vec4 coord=textureMatrix*worldSpace; float vis=1.0f; if(texture2D(shadow, coord.xy).z < coord.z-0.001)vis=0.2f; return vis; } I also have question about shadows specifically for directional light. Currently I always look at 0,0,0 position and in further implementation I have to move light frustum along to camera frustum. I've found how to do this here: http://www.gamedev.net/topic/505893-orthographic-projection-for-shadow-mapping/ but it doesn't give me what I want. Maybe because of problems mentioned above, but I want know your opinion. EDIT: vec4 worldSpace is position read from depht of the scene (not shadow map). Maybe I wasn't precise so I'll try quick explain what is what: View is camera view matrix, ProjectionMatrix is camera projection,. First I try to get world space position from depth map and then multiply it by textureMatrix which is light view *light projection*bias. Rest of code is the same as in many tutorials. I can't use vertex shader to make something like gl_Position=textureMatrix*gl_Vertex and get it interpolated in fragment shader because of deffered rendering use so I want get it from depht buffer. EDIT2: I also tried make it as in Coding Labs tutorial about Shadow Mapping with Deferred Rendering but unfortunately this either works wrong.

    Read the article

  • XNA Deferred Shading, Replace BasicEffect

    - by Alex
    I have implemented deferred shading in my XNA 4.0 project, meaning that I need all objects to start out with the same shader "RenderGBuffer.fx". How can I use a custom Content Processor to: Not load any textures by default (I want to manually do this) Use "RenderGBuffer.fx" as the default shader instead of BasicEffect Below is the progress so far public class DeferredModelProcessor : ModelProcessor { EffectMaterialContent deferredShader; public DeferredModelProcessor() { } protected override MaterialContent ConvertMaterial(MaterialContent material, ContentProcessorContext context) { deferredShader = new EffectMaterialContent(); deferredShader.Effect = new ExternalReference<EffectContent>("DeferredShading/RenderGBuffer.fx"); return context.Convert<MaterialContent, MaterialContent>(deferredShader, typeof(MaterialProcessor).Name); } }

    Read the article

  • "Marching cubes" voxel terrain - triplanar texturing with depth?

    - by Dan the Man
    I am currently working on a voxel terrain that uses the marching cubes algorithm for polygonizing the scalar field of voxels. I am using a triplanar texturing shader for texturing. say I have a grass texture set to the Y axis and a dirt texture for both the X and Z axes. Now, when my player digs downwards, it still appears as grass. How would I make it to appear as dirt? I have been thinking about this for a while, and the only thing I can think of to make this effect, would be to mark vertices that have been dug with a certain vertex color. When it has that vertex color, the shader would apply that dirt texture to the vertices marked. Is there a better method?

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • Separate shaders from HTML file in WebGL

    - by Chris Smith
    I'm ramping up on WebGL and was wondering what is the best way to specify my vertex and fragment shaders. Looking at some tutorials, the shaders are embedded directly in the HTML. (And referenced via an ID.) For example: <script id="shader_1-fs" type="x-shader/x-fragment"> precision highp float; void main(void) { // ... } </script> <script id="shader_1-vs" type="x-shader/x-vertex"> attribute vec3 aVertexPosition; uniform mat4 uMVMatrix; // ... My question is, is it possible to have my shaders referenced in a separate file? (Ideally as plain text.) I presume this is straight forward in JavaScript. Is there essentially a way to do this: var shaderText = LoadRemoteFileOnSever('/shaders/shader_1.txt');

    Read the article

< Previous Page | 16 17 18 19 20 21 22 23 24 25 26 27  | Next Page >