Search Results

Search found 25518 results on 1021 pages for 'iterative development'.

Page 399/1021 | < Previous Page | 395 396 397 398 399 400 401 402 403 404 405 406  | Next Page >

  • How should I do 3D games through Java on a mac?

    - by Steven Rogers
    I have been self-teaching myself Java on the mac mostly because the language is cross-platform. Recently, I have been only able to develop 2D games using the Graphics2D class. Now, I want to learn how to make 3D games in Java. I used to model and animate stuff in 3D, so my knowledge of 3-Dimensional stuff is okay. I have spent the last 3 hours using google to look up ways of making 3D games in java. Apparently the best one to use is OpenGL, so i looked up a tutorial on it and i cannot find a tutorial that shows how to (if there is a way) install JOGL on the Mac platform. Should i continue to use Java? How can i make 3D games using Java? What is the best way to make 3D games on a mac?

    Read the article

  • how can I specify interleaved vertex attributes and vertex indices

    - by freefallr
    I'm writing a generic ShaderProgram class that compiles a set of Shader objects, passes args to the shader (like vertex position, vertex normal, tex coords etc), then links the shader components into a shader program, for use with glDrawArrays. My vertex data already exists in a VertexBufferObject that uses the following data structure to create a vertex buffer: class CustomVertex { public: float m_Position[3]; // x, y, z // offset 0, size = 3*sizeof(float) float m_TexCoords[2]; // u, v // offset 3*sizeof(float), size = 2*sizeof(float) float m_Normal[3]; // nx, ny, nz; float colour[4]; // r, g, b, a float padding[20]; // padded for performance }; I've already written a working VertexBufferObject class that creates a vertex buffer object from an array of CustomVertex objects. This array is said to be interleaved. It renders successfully with the following code: void VertexBufferObject::Draw() { if( ! m_bInitialized ) return; glBindBuffer( GL_ARRAY_BUFFER, m_nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, m_nVboIdIndex ); glEnableClientState( GL_VERTEX_ARRAY ); glEnableClientState( GL_TEXTURE_COORD_ARRAY ); glEnableClientState( GL_NORMAL_ARRAY ); glEnableClientState( GL_COLOR_ARRAY ); glVertexPointer( 3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 0) ); glTexCoordPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 12)); glNormalPointer(GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 20)); glColorPointer(3, GL_FLOAT, sizeof(CustomVertex), ((char*)NULL + 32)); glDrawElements( GL_TRIANGLES, m_nNumIndices, GL_UNSIGNED_INT, ((char*)NULL + 0) ); glDisableClientState( GL_VERTEX_ARRAY ); glDisableClientState( GL_TEXTURE_COORD_ARRAY ); glDisableClientState( GL_NORMAL_ARRAY ); glDisableClientState( GL_COLOR_ARRAY ); glBindBuffer( GL_ARRAY_BUFFER, 0 ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 ); } Back to the Vertex Array Object though. My code for creating the Vertex Array object is as follows. This is performed before the ShaderProgram runtime linking stage, and no glErrors are reported after its steps. // Specify the shader arg locations (e.g. their order in the shader code) for( int n = 0; n < vShaderArgs.size(); n ++) glBindAttribLocation( m_nProgramId, n, vShaderArgs[n].sFieldName.c_str() ); // Create and bind to a vertex array object, which stores the relationship between // the buffer and the input attributes glGenVertexArrays( 1, &m_nVaoHandle ); glBindVertexArray( m_nVaoHandle ); // Enable the vertex attribute array (we're using interleaved array, since its faster) glBindBuffer( GL_ARRAY_BUFFER, vShaderArgs[0].nVboId ); glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, vShaderArgs[0].nVboIndexId ); // vertex data for( int n = 0; n < vShaderArgs.size(); n ++ ) { glEnableVertexAttribArray(n); glVertexAttribPointer( n, vShaderArgs[n].nFieldSize, GL_FLOAT, GL_FALSE, vShaderArgs[n].nStride, (GLubyte *) NULL + vShaderArgs[n].nFieldOffset ); AppLog::Ref().OutputGlErrors(); } This doesn't render correctly at all. I get a pattern of white specks onscreen, in the shape of the terrain rectangle, but there are no regular lines etc. Here's the code I use for rendering: void ShaderProgram::Draw() { using namespace AntiMatter; if( ! m_nShaderProgramId || ! m_nVaoHandle ) { AppLog::Ref().LogMsg("ShaderProgram::Draw() Couldn't draw object, as initialization of ShaderProgram is incomplete"); return; } glUseProgram( m_nShaderProgramId ); glBindVertexArray( m_nVaoHandle ); glDrawArrays( GL_TRIANGLES, 0, m_nNumTris ); glBindVertexArray(0); glUseProgram(0); } Can anyone see errors or omissions in either the VAO creation code or rendering code? thanks!

    Read the article

  • What are the maths behind 'Raiden 2' purple laser?

    - by Aybe
    The path of the laser is affected by user input and enemies present on the screen. Here is a video, at 5:00 minutes the laser in question is shown : Raiden II (PS) - 1 Loop Clear - Part 2 UPDATE Here is a test using Inkscape, ship is at bottom, the first 4 enemies are targeted by the plasma. There seems to be a sort of pattern. I moved the ship first, then the handle from it to form a 45° angle, then while trying to fit the curve I found a pattern of parallel handles and continued so until I reached the last enemy. Update, 5/26/2012 : I started an XNA project using beziers, there is still some work needed, will update the question next week. Stay tuned ! Update : 5/30/2012 : It really seems that they are using Bézier curves, I think I will be able to replicate/imitate a plasma of such grade. There are two new topics I discovered since last time : Arc length, Runge's phenomenon, first one should help in having a linear movement possible over a Bézier curve, second should help in optimizing the number of vertices. Next time I will put a video so you can see the progress 8-)

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • Pong Collision Help in C# w/ XNA

    - by Ramses Brown
    Edit: My goal is to have it function like this: Ball hits 1st Quarter = rebounds higher (aka Y++) Ball hits 2nd Quarter = rebounds higher (using random value) Ball hits 3rd Quarter = rebounds lower (using random value) Ball hits 4th Quarter = rebounds lower (aka Y--) I'm currently using Rectangle Collision for my collision detection, and it's worked. Now I wish to expand it. Instead of it simply detecting whether or not the paddle/ball intersect, I want to make it so that it can determine what section of the paddle gets hit. I wanted it in 4 parts, with each having a different reaction to impact. My first thought is to base it on the Ball's Y position compared to the Paddle's Y position. But since I want it in 4 parts, I don't know how to do that. So it's essentially be if (ball.Y > Paddle.Y) { PaddleSection1 == true; } Except modified so that instead of being top half/bottom half, it's 1st Quarter, etc.

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • How to choose cell to put entity in in an uniform grid used for broad phase collision detection?

    - by nathan
    I'm trying to implement the broad phase of my collision detection algorithm. My game is an arcade game with lot of moving entities in an open space with relatively equivalent sizes. Regarding the above specifications, i decided to use an uniform grid for space partitioning. The problem i have right know is how to efficiently choose in which cells an entity should be added. ATM i'm doing something like this: for (int x = 0; x < gridSize; x++) { for (int y = 0; y < gridSize; y++) { GridCell cell = grid[x][y]; cell.clear(); //remove the previously added entities for (int i = 0; i < entities.size(); i++) { Entity e = entities.get(i); if (cell.isEntityOverlap(e)) { cell.add(e); } } } } The isEntityOverlap is a simple method i added my GridCell class. public boolean isEntityOverlap(Shape s) { return cellArea.intersects(s); } Where cellArea is a Rectangle. cellArea = new Rectangle(x, y, CollisionGrid.CELL_SIZE, CollisionGrid.CELL_SIZE); It works but it's damn slow. What would be a fast way to know all the cells an entity overlaps? Note: by "it works" i mean, the entities are contained in the good cells over the time after movements etc.

    Read the article

  • 2D pathfinding - finding smooth paths

    - by Kooi Nam Ng
    I was trying to implement a simple pathfinding, but the outcome is less satisfactory than what I intended to achieve. The thing is units in games like Starcraft 2 move in all directions whereas units in my case only move in at most 8 directions (Warcraft 1 style) as these 8 directions direct to next available nodes (they move from a tile to next neighboring tile). What should I do in order to achieve the result as in Starcraft 2? Shrink the tile size? On the picture you can see a horizontal line of rock tiles being obstacles, and the found path marked as green tiles. The red line is the path I want to achieve.

    Read the article

  • How to handle wildly varying rendering hardware / getting baseline

    - by edA-qa mort-ora-y
    I've recently started with mobile programming (cross-platform, also with desktop) and am encountering wildly differing hardware performance, in particular with OpenGL and the GPU. I know I'll basically have to adjust my rendering code but I'm uncertain of how to detect performance and what reasonable default settings are. I notice that certain shader functions are basically free in a desktop implemenation but can be unusable in a mobile device. The problem is I have no way of knowing what features will cause what performance issues on all the devices. So my first issue is that even if I allow configuring options I'm uncertain of which options I have to make configurable. I'm wondering also wheher one just writes one very configurable pipeline, or whether I should have 2 distinct options (high/low). I'm also unsure of where to set the default. If I set to the poorest performer the graphics will be so minimal that any user with a modern device would dismiss the game. If I set them even at some moderate point, the low end devices will basically become a slide-show. I was thinking perhaps that I just run some benchmarks when the user first installs and randomly guess what works, but I've not see a game do this before.

    Read the article

  • Undefined fireball movement behavior

    - by optimisez
    Demonstration video I try to do after the player shoot 10 times of fireball, then delete all the fireball objects and recreate a 10 new set of fireball objects. I did it but there is a weird bug happens that sometimes the fireball will come out from top and move to the right after shooting a few times. All the 10 fireballs should follow the player all the time and all the fireball should come out from player even after a new set of fireballs is recreated. Any ideas to fix it? Variables typedef struct gameObject{ float X; float Y; int length; int height; bool action; }; // Fireball #define FIREBALL_NUM 10 LPDIRECT3DTEXTURE9 fireball = NULL; RECT fireballRect; gameObject *fireballDest = new gameObject[FIREBALL_NUM]; int iFireBallAnimation; int fireballCount = 0; Set up Fireball void setUpFireBall() { // Initialize destination rectangle, rectangle height and length for (int i = 0; i < FIREBALL_NUM; i++) { fireballDest[i].X = 0; fireballDest[i].Y = 0; fireballDest[i].length = fireballRect.right - fireballRect.left; fireballDest[i].height = fireballRect.bottom - fireballRect.top; } iFireBallAnimation = fireballRect.right - fireballRect.left; // Initialize boolean for (int i = 0; i < FIREBALL_NUM; i++) { fireballDest[i].action = false; } } Initialize fireball void initFireball() { hr = D3DXCreateTextureFromFileEx(d3dDevice, "fireball.png", 512, 512, D3DX_DEFAULT, NULL, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_DEFAULT, D3DX_DEFAULT, D3DCOLOR_XRGB(255, 255, 0), NULL, NULL, &fireball); // Initialize source rectangle fireballRect.left = 0; fireballRect.top = 256; fireballRect.right = 64; fireballRect.bottom = 320; setUpFireBall(); } Update fireball void update() { updateAnimation(); updateAI(); updatePhysics(); updateGameState(); } void updatePhysics() { motion(); collison(); } void motion() { playerMove(); playerJump(); playerGravity(); shootFireball(); fireballFollowPlayer(); } void shootFireball() { if (keyArr['Z']) fireballDest[fireballCount].action = true; if (fireballDest[fireballCount].action) { fireballDest[fireballCount].X += 10; if (fireballDest[fireballCount].X > 800) fireballCount++; } } void fireballFollowPlayer() { for (int i = 0; i < FIREBALL_NUM; i++) { if (fireballDest[i].action == false) { fireballDest[i].X = playerDest.X - 30; fireballDest[i].Y = playerDest.Y - 14; } } } void updateGameState() { // When no more fireball left, rearm fireball if (fireballCount == FIREBALL_NUM) { delete[] fireballDest; fireballDest = new gameObject[10]; fireballCount = 0; setUpFireBall(); } } Render fireball void renderFireball() { for (int i = 0; i < FIREBALL_NUM; i++) { if (fireballDest[i].action) sprite->Draw(fireball, &fireballRect, NULL, &D3DXVECTOR3(fireballDest[i].X, fireballDest[i].Y, 0), D3DCOLOR_XRGB(255,255, 255)); } }

    Read the article

  • Double sides face with two normals

    - by Marnix
    I think this isn't possible, but I just want to check this: Is it possible to create a face in opengl that has two normals? So: I want the inside and outside of some cilinder to be drawn, but I want the lights to do as expected and not calculate it for the normal given. I was trying to do this with backface culling off, so I would have both faces, but the light was wrongly calculated of course. Is this possible, or do I have to draw an inside and an outside? So draw twice?

    Read the article

  • 2D Platformer Collision Handling

    - by defender-zone
    Hello, everyone! I am trying to create a 2D platformer (Mario-type) game and I am some having some issues with handling collisions properly. I am writing this game in C++, using SDL for input, image loading, font loading, etcetera. I am also using OpenGL via the FreeGLUT library in conjunction with SDL to display graphics. My method of collision detection is AABB (Axis-Aligned Bounding Box), which is really all I need to start with. What I need is an easy way to both detect which side the collision occurred on and handle the collisions properly. So, basically, if the player collides with the top of the platform, reposition him to the top; if there is a collision to the sides, reposition the player back to the side of the object; if there is a collision to the bottom, reposition the player under the platform. I have tried many different ways of doing this, such as trying to find the penetration depth and repositioning the player backwards by the penetration depth. Sadly, nothing I've tried seems to work correctly. Player movement ends up being very glitchy and repositions the player when I don't want it to. Part of the reason is probably because I feel like this is something so simple but I'm over-thinking it. If anyone thinks they can help, please take a look at the code below and help me try to improve on this if you can. I would like to refrain from using a library to handle this (as I want to learn on my own) or the something like the SAT (Separating Axis Theorem) if at all possible. Thank you in advance for your help! void world1Level1CollisionDetection() { for(int i; i < blocks; i++) { if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==true) { int up = 0; int left = 0; int right = 0; int down = 0; if(ball.coords[0] < block[i].coords[0] && block[i].coords[0] < ball.coords[2] && ball.coords[2] < block[i].coords[2]) { left = 1; } if(block[i].coords[0] < ball.coords[0] && ball.coords[0] < block[i].coords[2] && block[i].coords[2] < ball.coords[2]) { right = 1; } if(ball.coords[1] < block[i].coords[1] && block[i].coords[1] < ball.coords[3] && ball.coords[3] < block[i].coords[3]) { up = 1; } if(block[i].coords[1] < ball.coords[1] && ball.coords[1] < block[i].coords[3] && block[i].coords[3] < ball.coords[3]) { down = 1; } cout << left << ", " << right << ", " << up << ", " << down << ", " << endl; if (left == 1) { ball.coords[0] = block[i].coords[0] - 16.0f; ball.coords[2] = block[i].coords[0] - 0.0f; } if (right == 1) { ball.coords[0] = block[i].coords[2] + 0.0f; ball.coords[2] = block[i].coords[2] + 16.0f; } if (down == 1) { ball.coords[1] = block[i].coords[3] + 0.0f; ball.coords[3] = block[i].coords[3] + 16.0f; } if (up == 1) { ball.yspeed = 0.0f; ball.gravity = 0.0f; ball.coords[1] = block[i].coords[1] - 16.0f; ball.coords[3] = block[i].coords[1] - 0.0f; } } if (de2dCheckCollision(ball,block[i],0.0f,0.0f)==false) { ball.gravity = -0.5f; } } } To explain what some of this code means: The blocks variable is basically an integer that is storing the amount of blocks, or platforms. I am checking all of the blocks using a for loop, and the number that the loop is currently on is represented by integer i. The coordinate system might seem a little weird, so that's worth explaining. coords[0] represents the x position (left) of the object (where it starts on the x axis). coords[1] represents the y position (top) of the object (where it starts on the y axis). coords[2] represents the width of the object plus coords[0] (right). coords[3] represents the height of the object plus coords[1] (bottom). de2dCheckCollision performs an AABB collision detection. Up is negative y and down is positive y, as it is in most games. Hopefully I have provided enough information for someone to help me successfully. If there is something I left out that might be crucial, let me know and I'll provide the necessary information. Finally, for anyone who can help, providing code would be very helpful and much appreciated. Thank you again for your help!

    Read the article

  • Algorithm allowing a good waypoint path following?

    - by Thierry Savard Saucier
    I'm more looking into how should I implement this, either a tutorial or even the name of the concept I'm missing. I'm pretty sure some basic pathfinding algorithm could help me here, but I dont know which one ... I have a worldmap, with different cities on it. The player can choose a city from a menu, or click on an available cities on the world map, and the toon should walk over there. But I want him to follow a predefine path. Lets say our hero is on the city 1. He clicks on city 4. I want him to follow the path to city 2 and from there to city 4. I was handling this easily with arrow movement (left right top bottom) since its a single check. Now I'm not sure how I should do this. Should I loop threw each possible path and check which one leads me to D the fastest ... and if I do how do I avoid running in circle forever with cities 1-5-2 ?

    Read the article

  • Maya .IFF plugins for Gimp

    - by Kara Marfia
    Maya's preferred format for saving off a UV Snapshot is its own .IFF format, so I was hoping to find a plugin allowing Gimp 2 (Windows) to read it. I've found plenty of plugins for different linux distros, but none are win-friendly (that I can discern - admittedly I'm no whiz with Gimp). Does anyone know of one? Alternately, .tiff seems to work just fine, so if there's no good reason to bother fiddling with IFFs, I'd appreciate the input there, too. (sorry if this isn't on-topic)

    Read the article

  • Combine 3D objects in XNA 4

    - by Christoph
    Currently I am writing on my thesis for university, the theme I am working on is 3D Visualization of hierarchical structures using cone trees. I want to do is to draw a cone and arrange a number of spheres at the bottom of the cone. The spheres should be arranged according to the radius and the number of spheres correctly. As you can imagine I need a lot of these cone/sphere combinations. First Attempt I was able to find some tutorials that helped with drawing cones and spheres. Cone public Cone(GraphicsDevice device, float height, int tessellation, string name, List<Sphere> children) { //prepare children and calculate the children spacing and radius of the cone if (children == null || children.Count == 0) { throw new ArgumentNullException("children"); } this.Height = height; this.Name = name; this.Children = children; //create the cone if (tessellation < 3) { throw new ArgumentOutOfRangeException("tessellation"); } //Create a ring of triangels around the outside of the cones bottom for (int i = 0; i < tessellation; i++) { Vector3 normal = this.GetCircleVector(i, tessellation); // add the vertices for the top of the cone base.AddVertex(Vector3.Up * height, normal); //add the bottom circle base.AddVertex(normal * this.radius + Vector3.Down * height, normal); //Add indices base.AddIndex(i * 2); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 2) % (tessellation * 2)); base.AddIndex(i * 2 + 1); base.AddIndex((i * 2 + 3) % (tessellation * 2)); base.AddIndex((i * 2 + 2) % (tessellation * 2)); } //create flate triangle to seal the bottom this.CreateCap(tessellation, height, this.Radius, Vector3.Down); base.InitializePrimitive(device); } Sphere public void Initialize(GraphicsDevice device, Vector3 qi) { int verticalSegments = this.Tesselation; int horizontalSegments = this.Tesselation * 2; //single vertex on the bottom base.AddVertex((qi * this.Radius) + this.lowering, Vector3.Down); for (int i = 0; i < verticalSegments; i++) { float latitude = ((i + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //Create a singe ring of latitudes for (int j = 0; j < horizontalSegments; j++) { float longitude = j * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex(normal * this.Radius, normal); } } // Finish with a single vertex at the top of the sphere. AddVertex((qi * this.Radius) + this.lowering, Vector3.Up); // Create a fan connecting the bottom vertex to the bottom latitude ring. for (int i = 0; i < horizontalSegments; i++) { AddIndex(0); AddIndex(1 + (i + 1) % horizontalSegments); AddIndex(1 + i); } // Fill the sphere body with triangles joining each pair of latitude rings. for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } // Create a fan connecting the top vertex to the top latitude ring. for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(CurrentVertex - 1); base.AddIndex(CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(CurrentVertex - 2 - i); } base.InitializePrimitive(device); } The tricky part now is to arrange the spheres at the bottom of the cone. I tried is to draw just the cone and then draw the spheres. I need a lot of these cones, so it would be pretty hard to calculate all the positions correctly. Second Attempt So the second try was to generate a object that builds all vertices of the cone and all of the spheres at once. So I was hoping to render a cone with all its spheres arranged correctly. After a short debug I found out that the cone is created and the first sphere, when it turn of the second sphere I am running into an OutOfBoundsException of ushort.MaxValue. Cone and Spheres public ConeWithSpheres(GraphicsDevice device, float height, float coneDiameter, float sphereDiameter, int coneTessellation, int sphereTessellation, int numberOfSpheres) { if (coneTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the cone. The number must be greater or equal to 3", coneTessellation)); } if (sphereTessellation < 3) { throw new ArgumentException(string.Format("{0} is to small for the tessellation of the sphere. The number must be greater or equal to 3", sphereTessellation)); } //set properties this.Height = height; this.ConeDiameter = coneDiameter; this.SphereDiameter = sphereDiameter; this.NumberOfChildren = numberOfSpheres; //end set properties //generate the cone this.GenerateCone(device, coneTessellation); //generate the spheres //vector that defines the Y position of the sphere on the cones bottom Vector3 lowering = new Vector3(0, 0.888f, 0); this.GenerateSpheres(device, sphereTessellation, numberOfSpheres, lowering); } // ------ GENERATE CONE ------ private void GenerateCone(GraphicsDevice device, int coneTessellation) { int doubleTessellation = coneTessellation * 2; //Create a ring of triangels around the outside of the cones bottom for (int index = 0; index < coneTessellation; index++) { Vector3 normal = this.GetCircleVector(index, coneTessellation); //add the vertices for the top of the cone base.AddVertex(Vector3.Up * this.Height, normal); //add the bottom of the cone base.AddVertex(normal * this.ConeRadius + Vector3.Down * this.Height, normal); //add indices base.AddIndex(index * 2); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 2) % doubleTessellation); base.AddIndex(index * 2 + 1); base.AddIndex((index * 2 + 3) % doubleTessellation); base.AddIndex((index * 2 + 2) % doubleTessellation); } //create flate triangle to seal the bottom this.CreateCap(coneTessellation, this.Height, this.ConeRadius, Vector3.Down); base.InitializePrimitive(device); } // ------ GENERATE SPHERES ------ private void GenerateSpheres(GraphicsDevice device, int sphereTessellation, int numberOfSpheres, Vector3 lowering) { int verticalSegments = sphereTessellation; int horizontalSegments = sphereTessellation * 2; for (int childCount = 1; childCount < numberOfSpheres; childCount++) { //single vertex at the bottom of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Down); for (int verticalSegmentsCount = 0; verticalSegmentsCount < verticalSegments; verticalSegmentsCount++) { float latitude = ((verticalSegmentsCount + 1) * MathHelper.Pi / verticalSegments) - MathHelper.PiOver2; float dy = (float)Math.Sin(latitude); float dxz = (float)Math.Cos(latitude); //create a single ring of latitudes for (int horizontalSegmentsCount = 0; horizontalSegmentsCount < horizontalSegments; horizontalSegmentsCount++) { float longitude = horizontalSegmentsCount * MathHelper.TwoPi / horizontalSegments; float dx = (float)Math.Cos(longitude) * dxz; float dz = (float)Math.Sin(longitude) * dxz; Vector3 normal = new Vector3(dx, dy, dz); base.AddVertex((normal * this.SphereRadius) + lowering, normal); } } //finish with a single vertex at the top of the sphere base.AddVertex((this.GetCircleVector(childCount, this.NumberOfChildren) * this.SphereRadius) + lowering, Vector3.Up); //create a fan connecting the bottom vertex to the bottom latitude ring for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(0); base.AddIndex(1 + (i + 1) % horizontalSegments); base.AddIndex(1 + i); } //Fill the sphere body with triangles joining each pair of latitude rings for (int i = 0; i < verticalSegments - 2; i++) { for (int j = 0; j < horizontalSegments; j++) { int nextI = i + 1; int nextJ = (j + 1) % horizontalSegments; base.AddIndex(1 + i * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); base.AddIndex(1 + i * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + nextJ); base.AddIndex(1 + nextI * horizontalSegments + j); } } //create a fan connecting the top vertiex to the top latitude for (int i = 0; i < horizontalSegments; i++) { base.AddIndex(this.CurrentVertex - 1); base.AddIndex(this.CurrentVertex - 2 - (i + 1) % horizontalSegments); base.AddIndex(this.CurrentVertex - 2 - i); } base.InitializePrimitive(device); } } Any ideas how I could fix this?

    Read the article

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • Mesh with quads to triangle mesh

    - by scape
    I want to use Blender for making models yet realize some of the polygons are not triangles but contain quads or more (example: cylinder top and bottom). I could export the the mesh as a basic mesh file and import it in to an openGL application and workout rendering the quads as tris, but anything with more than 4 vert indices is beyond me. Is it typical to convert the mesh to a triangle-based mesh inside blender before exporting it? I actually tried this through the quads_convert_to_tris method within a blender py script and the top of the cylinder does not look symmetrical. What is typically done to render a loaded mesh as a tri?

    Read the article

  • How do I generate terrain like that of Scorched Earth?

    - by alex
    Hi, I'm a web developer and I am keen to start writing my own games. For familiarity, I've chosen JavaScript and canvas element for now. I want to generate some terrain like that in Scorched Earth. My first attempt made me realise I couldn't just randomise the y value; there had to be some sanity in the peaks and troughs. I have Googled around a bit, but either I can't find something simple enough for me or I am using the wrong keywords. Can you please show me what sort of algorithm I would use to generate something in the example, keeping in mind that I am completely new to games programming (since making Breakout in 2003 with Visual Basic anyway)?

    Read the article

  • Physics timestep questions

    - by SSL
    I've got a projectile working perfectly using the code below: //initialised in loading screen 60 is the FPS - projectilEposition and velocity are Vector3 types gravity = new Vector3(0, -(float)9.81 / 60, 0); //called every frame projectilePosition += projectileVelocity; This seems to work fine but I've noticed in various projectile examples I've seen that the elapsedtime per update is taken into account. What's the difference between the two and how can I convert the above to take into account the elapsedtime? (I'm using XNA - do I use ElapsedTime.TotalSeconds or TotalMilliseconds)? Edit: Forgot to add my attempt at using elapsedtime, which seemed to break the physics: projectileVelocity.Y += -(float)((9.81 * gameTime.ElapsedGameTime.TotalSeconds * gameTime.ElapsedGameTime.TotalSeconds) * 0.5f); Thanks for the help

    Read the article

  • Multiplayer mobile games and coping with high latency

    - by liortal
    I'm currently researching regarding a design for an online (realtime) mobile multiplayer game. As such, i'm taking into consideration that latencies (lag) is going to be high (perhaps higher than PC/consoles). I'd like to know if there are ways to overcome this or minimize the issues of high latency? The model i'll be using is peer-to-peer (using Photon cloud to broadcast messages to all other players). How do i deal with a scenario where a message about a local object's state at time t will only get to other players at *t + HUGE_LAG* ?

    Read the article

  • Pathfinding results in false path costs that are too high

    - by user2144536
    I'm trying to implement pathfinding in a game I'm programming using this method. I'm implementing it with recursion but some of the values after the immediate circle of tiles around the player are way off. For some reason I cannot find the problem with it. This is a screen cap of the problem: The pathfinding values are displayed in the center of every tile. Clipped blocks are displayed with the value of 'c' because the values were too high and were covering up the next value. The red circle is the first value that is incorrect. The code below is the recursive method. //tileX is the coordinates of the current tile, val is the current pathfinding value, used[][] is a boolean //array to keep track of which tiles' values have already been assigned public void pathFind(int tileX, int tileY, int val, boolean[][] used) { //increment pathfinding value int curVal = val + 1; //set current tile to true if it hasn't been already used[tileX][tileY] = true; //booleans to know which tiles the recursive call needs to be used on boolean topLeftUsed = false, topUsed = false, topRightUsed = false, leftUsed = false, rightUsed = false, botomLeftUsed = false, botomUsed = false, botomRightUsed = false; //set value of top left tile if necessary if(tileX - 1 >= 0 && tileY - 1 >= 0) { //isClipped(int x, int y) returns true if the coordinates givin are in a tile that can't be walked through (IE walls) //occupied[][] is an array that keeps track of which tiles have an enemy in them // //if the tile is not clipped and not occupied set the pathfinding value if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX - 1][tileY - 1] == false && !(used[tileX - 1][tileY - 1])) { pathFindingValues[tileX - 1][tileY - 1] = curVal; topLeftUsed = true; used[tileX - 1][tileY - 1] = true; } //if it is occupied set it to an arbitrary high number so enemies find alternate routes if the best is clogged if(occupied[tileX - 1][tileY - 1] == true) pathFindingValues[tileX - 1][tileY - 1] = 1000000000; //if it is clipped set it to an arbitrary higher number so enemies don't travel through walls if(isClipped((tileX - 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY - 1] = 2000000000; } //top middle if(tileY - 1 >= 0 ) { if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX][tileY - 1] == false && !(used[tileX][tileY - 1])) { pathFindingValues[tileX][tileY - 1] = curVal; topUsed = true; used[tileX][tileY - 1] = true; } if(occupied[tileX][tileY - 1] == true) pathFindingValues[tileX][tileY - 1] = 1000000000; if(isClipped(tileX * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX][tileY - 1] = 2000000000; } //top right if(tileX + 1 <= used.length && tileY - 1 >= 0) { if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == false && occupied[tileX + 1][tileY - 1] == false && !(used[tileX + 1][tileY - 1])) { pathFindingValues[tileX + 1][tileY - 1] = curVal; topRightUsed = true; used[tileX + 1][tileY - 1] = true; } if(occupied[tileX + 1][tileY - 1] == true) pathFindingValues[tileX + 1][tileY - 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY - 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY - 1] = 2000000000; } //left if(tileX - 1 >= 0) { if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX - 1][tileY] == false && !(used[tileX - 1][tileY])) { pathFindingValues[tileX - 1][tileY] = curVal; leftUsed = true; used[tileX - 1][tileY] = true; } if(occupied[tileX - 1][tileY] == true) pathFindingValues[tileX - 1][tileY] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY] = 2000000000; } //right if(tileX + 1 <= used.length) { if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == false && occupied[tileX + 1][tileY] == false && !(used[tileX + 1][tileY])) { pathFindingValues[tileX + 1][tileY] = curVal; rightUsed = true; used[tileX + 1][tileY] = true; } if(occupied[tileX + 1][tileY] == true) pathFindingValues[tileX + 1][tileY] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY] = 2000000000; } //botom left if(tileX - 1 >= 0 && tileY + 1 <= used[0].length) { if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX - 1][tileY + 1] == false && !(used[tileX - 1][tileY + 1])) { pathFindingValues[tileX - 1][tileY + 1] = curVal; botomLeftUsed = true; used[tileX - 1][tileY + 1] = true; } if(occupied[tileX - 1][tileY + 1] == true) pathFindingValues[tileX - 1][tileY + 1] = 1000000000; if(isClipped((tileX - 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX - 1][tileY + 1] = 2000000000; } //botom middle if(tileY + 1 <= used[0].length) { if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX][tileY + 1] == false && !(used[tileX][tileY + 1])) { pathFindingValues[tileX][tileY + 1] = curVal; botomUsed = true; used[tileX][tileY + 1] = true; } if(occupied[tileX][tileY + 1] == true) pathFindingValues[tileX][tileY + 1] = 1000000000; if(isClipped((tileX) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX][tileY + 1] = 2000000000; } //botom right if(tileX + 1 <= used.length && tileY + 1 <= used[0].length) { if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == false && occupied[tileX + 1][tileY + 1] == false && !(used[tileX + 1][tileY + 1])) { pathFindingValues[tileX + 1][tileY + 1] = curVal; botomRightUsed = true; used[tileX + 1][tileY + 1] = true; } if(occupied[tileX + 1][tileY + 1] == true) pathFindingValues[tileX + 1][tileY + 1] = 1000000000; if(isClipped((tileX + 1) * 50 + 25, (tileY + 1) * 50 + 25) == true) pathFindingValues[tileX + 1][tileY + 1] = 2000000000; } //call the method on the tiles that need it if(tileX - 1 >= 0 && tileY - 1 >= 0 && topLeftUsed) pathFind(tileX - 1, tileY - 1, curVal, used); if(tileY - 1 >= 0 && topUsed) pathFind(tileX , tileY - 1, curVal, used); if(tileX + 1 <= used.length && tileY - 1 >= 0 && topRightUsed) pathFind(tileX + 1, tileY - 1, curVal, used); if(tileX - 1 >= 0 && leftUsed) pathFind(tileX - 1, tileY, curVal, used); if(tileX + 1 <= used.length && rightUsed) pathFind(tileX + 1, tileY, curVal, used); if(tileX - 1 >= 0 && tileY + 1 <= used[0].length && botomLeftUsed) pathFind(tileX - 1, tileY + 1, curVal, used); if(tileY + 1 <= used[0].length && botomUsed) pathFind(tileX, tileY + 1, curVal, used); if(tileX + 1 <= used.length && tileY + 1 <= used[0].length && botomRightUsed) pathFind(tileX + 1, tileY + 1, curVal, used); }

    Read the article

  • The best way to structure/design game code

    - by Edward
    My question is quite broad and related to the 2D game code design/architecture/structure. Usually the main game consists of the main loop where you update & render your world states. However, it's recommended for many purposes to separate rendering from the game-logic and so on. I am kinda confused about the whole situation. Many game engines/libs/sdks don't follow separation schema. They propagate a way where you define some scenes/stages and they contain some objects and the scene/stage controls the user input and so on. For example, in cocos2d(-x) and libgdx (stage2d) the games are usually done the way that the update logic happens at the same time/place as rendering. Also, the propagated way is to have a structure where an object knows how to draw itself - which is not a separation of updating & rendering. The same with Flash based games, they are usually done the way when an object (class) contains a swf or a texture and some data and holds some update logic itself, or updated from main Scene. And again this object already knows how to draw itself via "addChild". Also, some people recommend to use MVC pattern, which will require to completely obey the structure of those engines/libs/sdks. Maybe I am overthinking everything, but I am totally confused. I would be grateful if somebody could point me to a correct direction with the game code structures. What is your way of doing things in libgdx/cocos2d/flash?

    Read the article

  • Monogame - Input secuence game (Scripting?)

    - by user2662567
    I'm starting to program my very first game, it's a clone of DDR/Stepmania done for research purposes and learning. I (at this early stage) get most of the UI/Music/input work that should be done, but what i still can't grasp is scripting, i've read about Lua and that you shouldn't use it with XNA/Monogame as C# is capable enough, but i cannot get the utility of it. Assuming the needs of my game, ¿What would be the ideal way to implement the input secuences it needs?, i thought of XML/Json, let's say Stage 1 <game> <level id="1"> <step id="1" key="up" time="00:00:01"/> <step id="2" key="left" time="00:00:02"/> </level> </game> Is that a correct implementation? or are there better ways with more benefits?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • RGB values from image into a one dimension array in c#

    - by velocityxyz
    I was wondering if there is a was a way to read rgb values from an image into a one dimensional array in C#. If it doesnt make sense, in java I would do something like this. int[] pixels; BufferedImage image = getClass().getResourceAsStream("asdfghjkl.png"); int w = image.getWidth(); int h = image.getHeight(); pixels = new int[w * h]; image.getRGB(0, 0, w, h, pixels, 0, w) ; So any help would be great, or if you can point me in the right direction, that'd be great

    Read the article

< Previous Page | 395 396 397 398 399 400 401 402 403 404 405 406  | Next Page >