Search Results

Search found 975 results on 39 pages for 'physics'.

Page 4/39 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Create indefinitely oscillating pendulum in Farseer Physics 3.3.1/Box2d

    - by GONeale
    I am new to Farseer Physics and using version 3.3.1. I am after some help and would even be happy to receive Box2d answers just to ensure I get a response as I should then be able to convert it! -- Thanks ...After a lot of tinkering around I have managed to produce a thin vertical rectangle shape on the screen and I wish this to swing back and forth pinned at the top up to an angle I set (90 degrees would be fine for this sample). When it is approaching the top I wish it to slow down, then fall back the way it just came, increase speed then obviously slow to a stop at the top again. Almost how a swinging pirate ship would work at a theme park. This is the code I have so far which swings the shape, but it is seeming to lose speed on each swing eventually grinding to a halt: float playerWidth = ConvertUnits.ToSimUnits(5), playerHeight = ConvertUnits.ToSimUnits(68); playerPosition = ConvertUnits.ToSimUnits(-350, 0); playerBody = BodyFactory.CreateRectangle(World, playerWidth, playerHeight, 2f, playerPosition); playerBody.BodyType = BodyType.Dynamic; // create player sprite based on player body _rectangleSprite = new Sprite(ScreenManager.Assets.TextureFromShape(playerBody.FixtureList[0].Shape, MaterialType.Player, Color.Orange, 1f)); // Create swinging joint var joint = JointFactory.CreateFixedRevoluteJoint(World, playerBody, ConvertUnits.ToSimUnits(0, -34), playerBody.Position); If somebody could also provide the command I would need to pause the shape on a mouse click or keyboard command at it's current angle and then continue when I let go of the mouse click that would be super fantastic! (I actually posted this on StackOverflow as well before I realised there was a dedicated game development forum) Cheers

    Read the article

  • 3D physics engine for accurate collision handling on desktop/laptop computers (non-console)

    - by Georges Oates Larsen
    What are your suggestions for a physics engine that satisfies the following criteria? Capable of calculating collisions between multiple concave mesh-based colliders Handles many collisions going on at once (for instance one mesh being wedged between two others, which themselves may be wedged between two meshes) Does not allow for collider passthrough, even at high speeds. For instance, if I am applying force to a programmatically hinged object that makes it spin, I do not want it to pass through another rigidbody that it collides with while spinning. I have this problem using PhysX As implied before, reacts well to hinged objects, preferably has its own implementation of a hinge, but I am willing to program my own. The important part is that it has some sort of interface that guarantees accurate collision tracking even when dealing with these things Platform independent -- runs on mac as well as PC, also not tied down to specific graphics cards I think that's the best way to explain what I am looking for. Basically, I need SUPER reliable collisions. Something that can't be accomplished with a simple ray casting approach that sends a ray from the last position of the object to the current position (as this object may be potentially large and colliding with small objects via rotation) Bonus points for also including an OPEN SOURCE engine.

    Read the article

  • Correct way to use Farseer Physics in XNA

    - by user1640602
    I am using Farseer Physics for my 2D sidescroller game and I'm not sure how to proceed with it. I currently have a Sprite class (handles nothing but graphics), a GameObject class (contains specific object info like hit points), a World object which contains the list of Bodies, and a Level object which contains all of these objects. Originally I was trying to keep track of the Sprites, GameObjects, and Bodies separately because I felt that would provide loose coupling but it quickly became a headache. So my new idea was to add a Sprite member to the GameObject class but I'm still not sure how to maintain the Bodies because they have to communicate with GameObject. Specifically, my issue is this: The position of the Body is used to draw the Sprite inside of the Level. In order to do that I would have to maintain a link between GameObjects and Bodies. Is this correct or is there a better way to architect my game? If any of this is unclear please ask and I'll try to clarify. Thank you in advance for any help.

    Read the article

  • Using Bullet physics engine to find the moment of object contact before penetration

    - by MooMoo
    I would like to use Bullet Physics engine to simulate the objects in 3D world. One of the objects in the world will move using the position from 3D mouse control. I will call it "Mouse Object" and any object in the world as "Object A" I define the time before "mouse object" and "Object A" collide as t-1 The time "mouse object" penetrate "Object A" as t Now there is a problem about rendering the scene because when I move the mouse very fast, "Mouse object" will reside in "Object A" before "Object A" start to move. I would like the "Mouse Object" to stop right away attach to the "Object A". Also If the "Object A" move, the "Mouse object" should move following (attach) the "Object A" without stop at the first collision take place. This is what i did I find the position of the "Mouse Object" at time t-1 and time t. I will name it as pos(t-1) and pos(t) The contact time will be sometime between t-1 to t, which the time of contact I name it as t_contact, therefore the contact position (without penetration) between "Mouse object" and "Object A" will be pos(t_contact) then I create multiple "Mouse object"s using this equation pos[n] = pos(t-1) * C * ( pos(t) - pos(t-1) ) where 0 <= C <= 1 if I choose C = 0.1, 0.2, 0.3,0.4..... 1.0, I will get pos[n] for 10 values Then I test collision for all of these 10 "Mouse Objects" and choose the one that seperate between "no collision" and "collision". I feel this method is super non-efficient. I am not sure the way other people find the time-of-contact or the position-of-contact when "Object A" can move.

    Read the article

  • Bullet Physics - Casting a ray straight down from a rigid body (first person camera)

    - by Hydrocity
    I've implemented a first person camera using Bullet--it's a rigid body with a capsule shape. I've only been using Bullet for a few days and physics engines are new to me. I use btRigidBody::setLinearVelocity() to move it and it collides perfectly with the world. The only problem is the Y-value moves freely, which I temporarily solved by setting the Y-value of the translation vector to zero before the body is moved. This works for all cases except when falling from a height. When the body drops off a tall object, you can still glide around since the translate vector's Y-value is being set to zero, until you stop moving and fall to the ground (the velocity is only set when moving). So to solve this I would like to try casting a ray down from the body to determine the Y-value of the world, and checking the difference between that value and the Y-value of the camera body, and disable or slow down movement if the difference is large enough. I'm a bit stuck on simply casting a ray and determining the Y-value of the world where it struck. I've implemented this callback: struct AllRayResultCallback : public btCollisionWorld::RayResultCallback{ AllRayResultCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld) : m_rayFromWorld(rayFromWorld), m_rayToWorld(rayToWorld), m_closestHitFraction(1.0){} btVector3 m_rayFromWorld; btVector3 m_rayToWorld; btVector3 m_hitNormalWorld; btVector3 m_hitPointWorld; float m_closestHitFraction; virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, bool normalInWorldSpace) { if(rayResult.m_hitFraction < m_closestHitFraction) m_closestHitFraction = rayResult.m_hitFraction; m_collisionObject = rayResult.m_collisionObject; if(normalInWorldSpace){ m_hitNormalWorld = rayResult.m_hitNormalLocal; } else{ m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis() * rayResult.m_hitNormalLocal; } m_hitPointWorld.setInterpolate3(m_rayFromWorld, m_rayToWorld, m_closestHitFraction); return 1.0f; } }; And in the movement function, I have this code: btVector3 from(pos.x, pos.y + 1000, pos.z); // pos is the camera's rigid body position btVector3 to(pos.x, 0, pos.z); // not sure if 0 is correct for Y AllRayResultCallback callback(from, to); Base::getSingletonPtr()->m_btWorld->rayTest(from, to, callback); So I have the callback.m_hitPointWorld vector, which seems to just show the position of the camera each frame. I've searched Google for examples of casting rays, as well as the Bullet documentation, and it's been hard to just find an example. An example is really all I need. Or perhaps there is some method in Bullet to keep the rigid body on the ground? I'm using Ogre3D as a rendering engine, and casting a ray down is quite straightforward with that, however I want to keep all the ray casting within Bullet for simplicity. Could anyone point me in the right direction? Thanks.

    Read the article

  • Bullet Physics implementing custom MotionState class

    - by Arosboro
    I'm trying to make my engine's camera a kinematic rigid body that can collide into other rigid bodies. I've overridden the btMotionState class and implemented setKinematicPos which updates the motion state's tranform. I use the overridden class when creating my kinematic body, but the collision detection fails. I'm doing this for fun trying to add collision detection and physics to Sean O' Neil's Procedural Universe I referred to the bullet wiki on MotionStates for my CPhysicsMotionState class. If it helps I can add the code for the Planetary rigid bodies, but I didn't want to clutter the post. Here is my motion state class: class CPhysicsMotionState: public btMotionState { protected: // This is the transform with position and rotation of the camera CSRTTransform* m_srtTransform; btTransform m_btPos1; public: CPhysicsMotionState(const btTransform &initialpos, CSRTTransform* srtTransform) { m_srtTransform = srtTransform; m_btPos1 = initialpos; } virtual ~CPhysicsMotionState() { // TODO Auto-generated destructor stub } virtual void getWorldTransform(btTransform &worldTrans) const { worldTrans = m_btPos1; } void setKinematicPos(btQuaternion &rot, btVector3 &pos) { m_btPos1.setRotation(rot); m_btPos1.setOrigin(pos); } virtual void setWorldTransform(const btTransform &worldTrans) { btQuaternion rot = worldTrans.getRotation(); btVector3 pos = worldTrans.getOrigin(); m_srtTransform->m_qRotate = CQuaternion(rot.x(), rot.y(), rot.z(), rot.w()); m_srtTransform->SetPosition(CVector(pos.x(), pos.y(), pos.z())); m_btPos1 = worldTrans; } }; I add a rigid body for the camera: // Create rigid body for camera btCollisionShape* cameraShape = new btSphereShape(btScalar(5.0f)); btTransform startTransform; startTransform.setIdentity(); // forgot to add this line CVector vCamera = m_srtCamera.GetPosition(); startTransform.setOrigin(btVector3(vCamera.x, vCamera.y, vCamera.z)); m_msCamera = new CPhysicsMotionState(startTransform, &m_srtCamera); btScalar tMass(80.7f); bool isDynamic = (tMass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) cameraShape->calculateLocalInertia(tMass,localInertia); btRigidBody::btRigidBodyConstructionInfo rbInfo(tMass, m_msCamera, cameraShape, localInertia); m_rigidBody = new btRigidBody(rbInfo); m_rigidBody->setCollisionFlags(m_rigidBody->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); m_rigidBody->setActivationState(DISABLE_DEACTIVATION); This is the code in Update() that runs each frame: CSRTTransform srtCamera = CCameraTask::GetPtr()->GetCamera(); Quaternion qRotate = srtCamera.m_qRotate; btQuaternion rot = btQuaternion(qRotate.x, qRotate.y, qRotate.z, qRotate.w); CVector vCamera = CCameraTask::GetPtr()->GetPosition(); btVector3 pos = btVector3(vCamera.x, vCamera.y, vCamera.z); CPhysicsMotionState* cameraMotionState = CCameraTask::GetPtr()->GetMotionState(); cameraMotionState->setKinematicPos(rot, pos);

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • Bullet physics engine, how to freeze an object?

    - by Markus
    Using Bullet 2.76 I'm trying to freeze an object (rigid body) so that it instantly stops moving, but still responds to collisions. I tried setting it's activation state to DISABLE_SIMULATION, but then it's virtually nonexistent to other objects. Furthermore, if objects "collide" with it when it's disabled, strange things begin to happen (object's falling through static bodies, etc.) I suppose, temporarily converting it to a static rigid body could work, but is there an existing "native" way to achieve this on Bullet's side? Edit: Is there a way to turn off gravity for a specific object?

    Read the article

  • Good book or tutorial for learning how to apply integration methods

    - by Cumatru
    I'm looking to animate a graph layout using edges as springs and nodes as weights ( a node with more links will have a bigger weight ). I'm not capable of wrapping my head around the usage of mathematical and physics relations in my application. As far as i read, Runge Kutta 4 ( preferably ) or Verlet will be a good choice, but i have problems with understanding how they really work, and what physics equations should i apply. If i can't understand them, i can't use them. I'm looking for a book or a tutorial which describe the things that i need.

    Read the article

  • Bouncing ball isssue

    - by user
    I am currently working on the 2D Bouncing ball physics that bounces the ball up and down. The physics behaviour works fine but at the end the velocity keep +3 then 0 non-stop even the ball has stopped bouncing. How should I modify the code to fix this issue? ballPos = D3DXVECTOR2( 50, 100 ); velocity = 0; accelaration = 3.0f; isBallUp = false; void GameClass::Update() { velocity += accelaration; ballPos.y += velocity; if ( ballPos.y >= 590 ) isBallUp = true; else isBallUp = false; if ( isBallUp ) { ballPos.y = 590; velocity *= -1; } // Graphics Rendering m_Graphics.BeginFrame(); ComposeFrame(); m_Graphics.EndFrame(); }

    Read the article

  • What is going on in this SAT/vector projection code?

    - by ssb
    I'm looking at the example XNA SAT collision code presented here: http://www.xnadevelopment.com/tutorials/rotatedrectanglecollisions/rotatedrectanglecollisions.shtml See the following code: private int GenerateScalar(Vector2 theRectangleCorner, Vector2 theAxis) { //Using the formula for Vector projection. Take the corner being passed in //and project it onto the given Axis float aNumerator = (theRectangleCorner.X * theAxis.X) + (theRectangleCorner.Y * theAxis.Y); float aDenominator = (theAxis.X * theAxis.X) + (theAxis.Y * theAxis.Y); float aDivisionResult = aNumerator / aDenominator; Vector2 aCornerProjected = new Vector2(aDivisionResult * theAxis.X, aDivisionResult * theAxis.Y); //Now that we have our projected Vector, calculate a scalar of that projection //that can be used to more easily do comparisons float aScalar = (theAxis.X * aCornerProjected.X) + (theAxis.Y * aCornerProjected.Y); return (int)aScalar; } I think the problems I'm having with this come mostly from translating physics concepts into data structures. For example, earlier in the code there is a calculation of the axes to be used, and these are stored as Vector2, and they are found by subtracting one point from another, however these points are also stored as Vector2s. So are the axes being stored as slopes in a single Vector2? Next, what exactly does the Vector2 produced by the vector projection code represent? That is, I know it represents the projected vector, but as it pertains to a Vector2, what does this represent? A point on a line? Finally, what does the scalar at the end actually represent? It's fine to tell me that you're getting a scalar value of the projected vector, but none of the information I can find online seems to tell me about a scalar of a vector as it's used in this context. I don't see angles or magnitudes with these vectors so I'm a little disoriented when it comes to thinking in terms of physics. If this final scalar calculation is just a dot product, how is that directly applicable to SAT from here on? Is this what I use to calculate maximum/minimum values for overlap? I guess I'm just having trouble figuring out exactly what the dot product is representing in this particular context. Clearly I'm not quite up to date on my elementary physics, but any explanations would be greatly appreciated.

    Read the article

  • Farseer Physics Engine and the Ms-PL License

    - by Stephen Tierney
    Am I able to produce code for a game which uses the Farseer engine and release my code under an open source license other than the Ms-PL? My concern is with the following section from the license: If you distribute any portion of the software in source code form, you may do so only under this license by including a complete copy of this license with your distribution. If you distribute any portion of the software in compiled or object code form, you may only do so under a license that complies with this license. If I do not include Farseer in my source code distribution does this give me an exemption from this clause as I am not distributing the software? My code merely uses its functions. No where in the license does it force you to provide source code for derivative works or linking works, it simply gives you the option of "if you distribute".

    Read the article

  • Physics in carrom like game using cocos2d + Box2D

    - by Raj
    I am working on carrom like game using cocos2d + Box2D. I set world gravity(0,0), want gravity in z-axis. I set following values for coin and striker body: Coin body (circle with radius - 15/PTM_RATIO): density = 20.0f; friction = 0.4f; restitution = 0.6f; Striker body (circle with radius - 15/PTM_RATIO): density = 25.0f; friction = 0.6f; restitution = 0.3f; Output is not smooth. When I apply ApplyLinearImpulse(force,position) the coin movement looks like floating in the air - takes too much time to stop. What values for coin and striker make it look like real carrom?

    Read the article

  • 2D platformers: why make the physics dependent on the framerate?

    - by Archagon
    "Super Meat Boy" is a difficult platformer that recently came out for PC, requiring exceptional control and pixel-perfect jumping. The physics code in the game is dependent on the framerate, which is locked to 60fps; this means that if your computer can't run the game at full speed, the physics will go insane, causing (among other things) your character to run slower and fall through the ground. Furthermore, if vsync is off, the game runs extremely fast. Could those experienced with 2D game programming help explain why the game was coded this way? Wouldn't a physics loop running at a constant rate be a better solution? (Actually, I think a physics loop is used for parts of the game, since some of the entities continue to move normally regardless of the framerate. Your character, on the other hand, runs exactly [fps/60] as fast.) What bothers me about this implementation is the loss of abstraction between the game engine and the graphics rendering, which depends on system-specific things like the monitor, graphics card, and CPU. If, for whatever reason, your computer can't handle vsync, or can't run the game at exactly 60fps, it'll break spectacularly. Why should the rendering step in any way influence the physics calculations? (Most games nowadays would either slow down the game or skip frames.) On the other hand, I understand that old-school platformers on the NES and SNES depended on a fixed framerate for much of their control and physics. Why is this, and would it be possible to create a patformer in that vein without having the framerate dependency? Is there necessarily a loss of precision if you separate the graphics rendering from the rest of the engine? Thank you, and sorry if the question was confusing.

    Read the article

  • Quaternion dfference + time --> angular velocity (gyroscope in physics library)

    - by AndrewK
    I am using Bullet Physic library to program some function, where I have difference between orientation from gyroscope given in quaternion and orientation of my object, and time between each frame in milisecond. All I want is set the orientation from my gyroscope to orientation of my object in 3D space. But all I can do is set angular velocity to my object. I have orientation difference and time, and from that I calculate vector of angular velocity [Wx,Wy,Wz] from that formula: W(t) = 2 * dq(t)/dt * conj(q(t)) My code is: btQuaternion diffQuater = gyroQuater - boxQuater; btQuaternion conjBoxQuater = gyroQuater.inverse(); btQuaternion velQuater = ((diffQuater * 2.0f) / d_time) * conjBoxQuater; And everything works well, till I get: 1 rotating around Y axis, angle about 60 degrees, then I have these values in 2 critical frames: x: -0.013220 y: -0.038050 z: -0.021979 w: -0.074250 - diffQuater x: 0.120094 y: 0.818967 z: 0.156797 w: -0.538782 - gyroQuater x: 0.133313 y: 0.857016 z: 0.178776 w: -0.464531 - boxQuater x: 0.207781 y: 0.290452 z: 0.245594 - diffQuater -> euler angles x: 3.153619 y: -66.947929 z: 175.936615 - gyroQuater -> euler angles x: 4.290697 y: -57.553043 z: 173.320053 - boxQuater -> euler angles x: 0.138128 y: 2.823307 z: 1.025552 w: 0.131360 - velQuater d_time: 0.058000 x: 0.211020 y: 1.595124 z: 0.303650 w: -1.143846 - diffQuater x: 0.089518 y: 0.771939 z: 0.144527 w: -0.612543 - gyroQuater x: -0.121502 y: -0.823185 z: -0.159123 w: 0.531303 - boxQuater x: nan y: nan z: nan - diffQuater -> euler angles x: 2.985240 y: -76.304405 z: -170.555054 - gyroQuater -> euler angles x: 3.269681 y: -65.977966 z: 175.639420 - boxQuater -> euler angles x: -0.730262 y: -2.882153 z: -1.294721 w: 63.325996 - velQuater d_time: 0.063000 2 rotating around X axis, angle about 120 degrees, then I have these values in 2 critical frames: x: -0.013045 y: -0.004186 z: -0.005667 w: -0.022482 - diffQuater x: -0.848030 y: -0.187985 z: 0.114400 w: 0.482099 - gyroQuater x: -0.834985 y: -0.183799 z: 0.120067 w: 0.504580 - boxQuater x: 0.036336 y: 0.002312 z: 0.020859 - diffQuater -> euler angles x: -113.129463 y: 0.731925 z: 25.415056 - gyroQuater -> euler angles x: -110.232368 y: 0.860897 z: 25.350458 - boxQuater -> euler angles x: -0.865820 y: -0.456086 z: 0.034084 w: 0.013184 - velQuater d_time: 0.055000 x: -1.721662 y: -0.387898 z: 0.229844 w: 0.910235 - diffQuater x: -0.874310 y: -0.200132 z: 0.115142 w: 0.426933 - gyroQuater x: 0.847352 y: 0.187766 z: -0.114703 w: -0.483302 - boxQuater x: -144.402298 y: 4.891629 z: 71.309158 - diffQuater -> euler angles x: -119.515343 y: 1.745076 z: 26.646086 - gyroQuater -> euler angles x: -112.974533 y: 0.738675 z: 25.411509 - boxQuater -> euler angles x: 2.086195 y: 0.676526 z: -0.424351 w: 70.104248 - velQuater d_time: 0.057000 2 rotating around Z axis, angle about 120 degrees, then I have these values in 2 critical frames: x: -0.000736 y: 0.002812 z: -0.004692 w: -0.008181 - diffQuater x: -0.003829 y: 0.012045 z: -0.868035 w: 0.496343 - gyroQuater x: -0.003093 y: 0.009232 z: -0.863343 w: 0.504524 - boxQuater x: -0.000822 y: -0.003032 z: 0.004162 - diffQuater -> euler angles x: -1.415189 y: 0.304210 z: -120.481873 - gyroQuater -> euler angles x: -1.091881 y: 0.227784 z: -119.399445 - boxQuater -> euler angles x: 0.159042 y: 0.169228 z: -0.754599 w: 0.003900 - velQuater d_time: 0.025000 x: -0.007598 y: 0.024074 z: -1.749412 w: 0.968588 - diffQuater x: -0.003769 y: 0.012030 z: -0.881377 w: 0.472245 - gyroQuater x: 0.003829 y: -0.012045 z: 0.868035 w: -0.496343 - boxQuater x: -5.645197 y: 1.148993 z: -146.507187 - diffQuater -> euler angles x: -1.418294 y: 0.270319 z: -123.638245 - gyroQuater -> euler angles x: -1.415183 y: 0.304208 z: -120.481873 - boxQuater -> euler angles x: 0.017498 y: -0.013332 z: 2.040073 w: 148.120056 - velQuater d_time: 0.027000 The problem is the most visible in diffQuater - euler angles vector. Can someone tell me why it is like that? and how to solve that problem? All suggestions are welcome.

    Read the article

  • Box2D physics editor for complex bodies

    - by Paul Manta
    Is there any editor out there that would allow me to define complex entities, with joins connecting their multiple bodies, instead of regular single body entities? For example, an editor that would allow me to 'define' a car as having a main body with two circles as wheels, connected through joints. Clarification: I realize I haven't been clear enough about what I need. I'd like to make my engine data-driven, so all entities (and therefore their Box2D bodies) should be defined externally, not in code. I'm looking for a program like Code 'N' Web's PhysicsEditor, except that one only handles single body entities, no joints or anything like that. Like PhysicsEditor, the program should be configurable so that I can save the data in whatever format I want to. Does anyone know of any such software?

    Read the article

  • forward motion car physics - gradual slow

    - by spartan2417
    Im having trouble creating realistic car movements in xna 4. Right now i have a car going forward and hitting a terminal velocity which is fine but when i release the up key i need to the car to slow down gradually and then come to a stop. Im pretty sure this is easy code but i cant seem to get it to work the code - update if (Keyboard.GetState().IsKeyDown(Keys.Up)) { double elapsedTime = gameTime.ElapsedGameTime.Milliseconds; CalcTotalForce(); Acceleration = Vector2.Divide(CalcTotalForce(), MASS); Velocity = Vector2.Add(Velocity, Vector2.Multiply(Acceleration, (float)(elapsedTime))); Position = Vector2.Add(Position, Vector2.Multiply(Velocity, (float)(elapsedTime))); } added functions public Vector2 CalcTraction() { //Traction force = vector direction * engine force return Vector2.Multiply(forwardDirection, ENGINE_FORCE); } public Vector2 CalcDrag() { //Drag force = constdrag * velocity * speed return Vector2.Multiply(Vector2.Multiply(Velocity, DRAG_CONST), Velocity.Y); } public Vector2 CalcRoll() { //roll force = const roll * velocity return Vector2.Multiply(Velocity, ROLL_CONST); } public Vector2 CalcTotalForce() { //total force = traction + (-drag) + (-rolling) return Vector2.Add(CalcTraction(), Vector2.Add(-CalcDrag(), -CalcRoll())); } anyone have any ideas?

    Read the article

  • Scaling Sound Effects and Physics with Framerate

    - by Thomas Bradsworth
    (I'm using XNA and C#) Currently, my game (a shooter) runs flawlessly with 60 FPS (which I developed around). However, if the framerate is changed, there are two major problems: Gunshot sound effects are slower Jumping gets messed up Here's how I play gunshot sounds: update(gametime) { if(leftMouseButton.down) { enqueueBulletForSend(); playGunShot(); } } Now, obviously, the frequency of playGunShot depends on the framerate. I can easily fix the issue if the FPS is higher than 60 FPS by capping the shooting rate of the gun, but what if the FPS is less than 60? At first I thought to just loop and play more gunshots per frame, but I found that this can cause audio clipping or make the bullets fire in "clumps." Now for the second issue: Here's how jumping works in my game: if(jumpKey.Down && canJump) { velocity.Y += 0.224f; } // ... (other code) ... if(!onGround) velocity.Y += GRAVITY_ACCELERATION * elapsedSeconds; position += velocity; The issue here is that at < 60 FPS, the "intermediate" velocity is lost and therefore the character jumps lower. At 60 FPS, the game adds more "intermediate" velocities, and therefore the character jumps higher. For example, at 60 FPS, the following occurs: Velocity increased to 0.224 Not on ground, so velocity decreased by X Position increased by (0.224 - X) <-- this is the "intermediate" velocity At 30 FPS, the following occurs: Velocity increased to 0.224 Not on ground, so velocity decreased by 2X Position increased by (0.224 - 2X) <-- the "intermediate" velocity was lost All help is appreciated!

    Read the article

  • Farseer Physics: Ways to create a Body?

    - by EdgarT
    I want to create something similar to this using farsser and Kinect: https://vimeo.com/33500649 This is my implementation until now: http://www.youtube.com/watch?v=GlIvJRhco4U I have the outline vertices and the triangulation of the user. And following the Texture to Polygonmsample i used this line to create the shape, where farseerObject is a list of vertices of the triangles: _compound = BodyFactory.CreateCompoundPolygon(World, farseerObject, 1f, BodyType.Dynamic); But I have to update the body each frame (like 30 fps) and this is very slow. I get just 2 or 3 fps. There's another (faster) way to create the Body from a list of triangles or the contour vertices?

    Read the article

  • Farseer Physics Samples and Krypton how to reference game

    - by Krell
    I'm sure this is totally simple and yes I am new at this. I am trying to set up Krypton inside farseer. 1. create a new Krypton engine in my sub screen aka AdvancedDemo1 : PhysicsGameScreen, IDemoScreen Via this.krypton = new KryptonEngine(this, "KryptonEffect"); The problem is the KryptonEngine(this wants reference to Game game, I cant seem to reference it from FarseerPhysicsGame : Game So how would I do that? or 2. I can put it directly in FarsserPhysicsGame but again I cant seem to figure out how to reference FarseerPhysicsGame in AdvancedDemo1. or 3. I can put it inside the public FarseerPhysicsGame() and do Componenets.Add(krypton) [which works] HOWEVER I cant figure out how to reference the compoenet once it is added. You should be able to stop reading here , but for more detail I simply took the Farseer XNA Samples went into FarseerPhysicsGame.cs and deleted all the screens and menus except AdvancedDemo1 so there is one option and I just click that to load into the advancedDemo1 and thats where I want to put the lights from krypton. Thanks. Edit: Figured out 1 solution though I am still curious about others. Solution 1 I was able to use ScreenManager.Game(not sure why it was there but Ill try to figure it out later)

    Read the article

  • Jumping Physics

    - by CogWheelz
    With simplicity, how can I make a basic jump without the weird bouncing? It jumps like 2 pixels and back Here's what I use y += velY x += velX then keypresses MAX_SPEED = 180; falling = true; if(Gdx.input.isKeyPressed(Keys.W)) {//&& !jumped && !p.falling) { p.y += 20; } if(!Gdx.input.isKeyPressed(Keys.W)) p.velY = 0; if(Gdx.input.isKeyPressed(Keys.D)) p.velX = 5; if(!Gdx.input.isKeyPressed(Keys.D) && !(Gdx.input.isKeyPressed(Keys.A))) p.velX = 0; if(Gdx.input.isKeyPressed(Keys.A)) p.velX = -5; if(!Gdx.input.isKeyPressed(Keys.A) && !(Gdx.input.isKeyPressed(Keys.D))) p.velX = 0; if(p.falling == true || p.jumping == true) { p.velY -= 2; } if(p.velY > MAX_SPEED) p.velY = MAX_SPEED; if(p.velX > MAX_SPEED) p.velX = MAX_SPEED;

    Read the article

  • Simulating the effects of wind

    - by jernej
    I am developing a mobile game for Android. It is a 3D jumping game (like ski jump) where wind plays a important role so i need to simulate it. How could I achieve this? The game uses libgdx for rendering and a port of Bullet physics engine for physics. To simulate the jump I have 2 spheres which are placed at the start and at the end of the player and gravity is applied to them (they role down the hill and jump at the end). I use them to calculate the angle and the position of the player. If a button is pressed some extra y speed is applied to them (to simulate the jump before the end of the jumping ramp). But now I have to add wind to it. How is this usually done? Which collision box/method should I use? The way I understand it I only have to apply some force with direction to the player while in mid air. How can I do this in Bullet?

    Read the article

  • Impulsioned jumping

    - by Mutoh
    There's one thing that has been puzzling me, and that is how to implement a 'faux-impulsed' jump in a platformer. If you don't know what I'm talking about, then think of the jumps of Mario, Kirby, and Quote from Cave Story. What do they have in common? Well, the height of your jump is determined by how long you keep the jump button pressed. Knowing that these character's 'impulses' are built not before their jump, as in actual physics, but rather while in mid-air - that is, you can very well lift your finger midway of the max height and it will stop, even if with desacceleration between it and the full stop; which is why you can simply tap for a hop and hold it for a long jump -, I am mesmerized by how they keep their trajetories as arcs. My current implementation works as following: While the jump button is pressed, gravity is turned off and the avatar's Y coordenate is decremented by the constant value of the gravity. For example, if things fall at Z units per tick, it will rise Z units per tick. Once the button is released or the limit is reached, the avatar desaccelerates in an amount that would make it cover X units until its speed reaches 0; once it does, it accelerates up until its speed matches gravity - sticking to the example, I could say it accelerates from 0 to Z units/tick while still covering X units. This implementation, however, makes jumps too diagonal, and unless the avatar's speed is faster than the gravity, which would make it way too fast in my current project (it moves at about 4 pixels per tick and gravity is 10 pixels per tick, at a framerate of 40FPS), it also makes it more vertical than horizontal. Those familiar with platformers would notice that the character's arc'd jump almost always allows them to jump further even if they aren't as fast as the game's gravity, and when it doesn't, if not played right, would prove itself to be very counter-intuitive. I know this because I could attest that my implementation is very annoying. Has anyone ever attempted at similar mechanics, and maybe even succeeded? I'd like to know what's behind this kind of platformer jumping. If you haven't ever had any experience with this beforehand and want to give it a go, then please, don't try to correct or enhance my explained implementation, unless I was on the right way - try to make up your solution from scratch. I don't care if you use gravity, physics or whatnot, as long as it shows how these pseudo-impulses work, it does the job. Also, I'd like its presentation to avoid a language-specific coding; like, sharing us a C++ example, or Delphi... As much as I'm using the XNA framework for my project and wouldn't mind C# stuff, I don't have much patience to read other's code, and I'm certain game developers of other languages would be interested in what we achieve here, so don't mind sticking to pseudo-code. Thank you beforehand.

    Read the article

  • How to achieve highly accurate car physics such as Liveforspeed?

    - by Kim Jong Woo
    Liveforspeed is a racing simulator, there is amazing amount of realistic physics. for example, tires get warm, tire actually deforms when you turn corners. You need to play this game with a mouse at the minimum because it almost drives like the real thing. Anyhow, how does one achieve that level of physics simulation? Are there off-the-shelf solutions out there? If not, how does one start with simulating real world physics as close as possible. I would love to be able to work on an opensource car physics focused game. Imagine, more passionate developers, it could keep things going.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >