Search Results

Search found 35343 results on 1414 pages for 'development tools'.

Page 497/1414 | < Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >

  • Sounds to describe the weather?

    - by Matthew
    I'm trying to think of sounds that will help convey the time of day and weather condition. I'm not even sure of all the weather conditions I would consider, and some are obvious. Like if it's raining, the sound of rain. But then I'm thinking, what about for a calm day? If it's morning time, I could do birds chirping or something. Night time could be an owl or something. What are some good combinations of sounds/weather/time to have a good effect?

    Read the article

  • Data Structures for Logic Games / Deduction Rules / Sufficient Set of Clues?

    - by taserian
    I've been cogitating about developing a logic game similar to Einstein's Puzzle , which would have different sets of clues for every new game replay. What data structures would you use to handle the different entities (pets, colors of houses, nationalities, etc.), deduction rules, etc. to guarantee that the clues you provide point to a unique solution? I'm having a hard time thinking about how to get the deduction rules to play along with the possible clues; any insight would be appreciated.

    Read the article

  • Unity 3d (Using Blender) - anime/manga/cel-shaded style characters

    - by David Archer
    Making a game using Blender for 3D models and Unity for the game engine. Just wondering if anyone knows any links to pages that give a tutorial on Japanese anime style 3D modelling, texturing and shading through blender. I'm actually looking to create a cel-shaded look eventually (read: Okami/Jet Set Radio style) and I'm kind of stuck with the design stuff. I'm not a Blender expert by any means, and still kind of new to the design side of things (I'm a programmer by trade), so please don't vote me down too hard. I've tried googling, but there doesn't seem to be much in the way of what I'm after. The only thing I've found really is a plugin for blender called freestyle, or using the ToonShader shading tool. If there are any good tutorials or anything, I'm really happy to sit through them - just want to learn :) Thanks for any help :)

    Read the article

  • Render an image with separate layers for shadows/reflections in 3D Studio Max?

    - by Bernd Plontsch
    I have a scene with a simple object standing on a ground in the center. Caused by lights and the ground material there is some shadow and reflection on the ground surrounding the object. How can I render an image containing 3 separate layers for the object the ground the reflection / shadow on the ground Which format to use for this (it should include all 3 layers + I should be able to enable/disable them in Photoshop)? How do I define or prepare those layers for being rendering as image layers?

    Read the article

  • XNA - Finding boundaries in isometric tilemap

    - by Yheeky
    I have an issue with my 2D isometric engine. I'm using my own 2D camera class which works with matrices and need to find the tilemaps boundaries so the user always sees the map. Currently my map size is 100x100 (with 128x128 tiles) so the calculation (e.g. for the right boundary) is: var maxX = (TileMap.MapWidth + 1) * (TileMap.TileWidth / 2) - ViewSize.X; var maxX = (100 + 1) * (128 / 2) - 1360; // = 5104 pixels. This works fine while having scale factor of 1.0f but not for any other zoom factor. When I zoom out to 0.9f the right border should be at approx. 4954. I´m using the following code for transformation but I always get a wrong value: var maxXVector = new Vector2(maxX, 0); var maxXTransformed = Vector2.Transform(maxXVector, tempTransform).X; The result is 4593. Does anyone of you have an idea what I´m during wrong? Thanks for your help! Yheeky

    Read the article

  • Calculate an AABB for bone animated model

    - by Byte56
    I have a model that has its initial bounding box calculated by finding the maximum and minimum on the x, y and z axes. Producing a correct result like so: The vertices are then stored in a VBO and only altered with matrices for rotation and bone animation. Currently the bounds are not updated when the model is altered. So the animated and rotated model has bounds like so: (Maybe it's hard to tell, but the bounds are the same as before, and don't accurately represent the rotated/animated model) So my question is, how can I calculate the bounding box using the armature matrices and rotation/translation matrices for each model? Keep in mind the modified vertex data is not available because those calculations are performed on the GPU in the shader. The end result I want is to have an accurate AABB the represents the animated model for picking/basic collision checks.

    Read the article

  • How to create a 3D world with 2D sprites similar to Ragnorak online?

    - by Romoku
    As far as I know Ragnorak Online is a 3D game world with 2D sprites overlayed. I would like to use this style in a game I am making in Unity, so I would like the player to be able to select little square tiles on the terrain. There are a couple routes I could take such as using a bunch of cubic polygons and linking them together or using one big map. The former approach doesn't seem to make any sense if the world is not flat as polygons wouldn't be reused often. The goal is to break down a 3D polygon into tiles which is heard to wrap my head around. I believe using something like an interval tree or array would be appropriate to store the rectangle grid, but how would I display a rectangle around the selection the player has his mouse over on the polygon terrain itself? Here is a screenshot. Here is a gameplay video. Here is the camera usage.

    Read the article

  • What light attenuation function does UDK use?

    - by ananamas
    I'm a big fan of the light attenuation in UDK. Traditionally I've always used the constant-linear-quadratic falloff function to control how "soft" the falloff is, which gives three values to play with. In UDK you can get similar results, but you only need to tweak one value: FalloffExponent. I'm interested in what the actual mathematical function here is. The UDK lighting reference describes it as follows: FalloffExponent: This allows you to modify the falloff of a light. The default falloff is 2. The smaller the number, the sharper the falloff and the more the brightness is maintained until the radius is reached. Does anyone know what it's doing behind the scenes?

    Read the article

  • How to design good & continuous tiles

    - by Mikalichov
    I have trouble designing tiles so that when assembled, they don't look like tiles, but look like an homogeneous thing. For example on the image below: even though the main part of the grass is only one tile, you don't "see" the grid; you know where it is if you look a bit carefully, but it is not obvious. Whereas when I design tiles, you can only see "oh, jeez, 64 times the same tile". A bit like on that image: (taken from a gamedev.stackexchange question, sorry; no critic about the game, but it proves my point, and actually has better tile design that what I manage) I think the main problem is that I design them so they are independent, there is no junction between two tiles if put closed to each other. I think having the tiles more "continuous" would have a smoother effect, but can't manage to do it, it seems overly complex to me. I think it is probably simpler than I think once you know how to do it, but couldn't find a tutorial on that specific point. Is there a known method to design continuous / homogeneous tiles? (my terminology might be totally wrong, don't hesitate to correct me)

    Read the article

  • How to do geometric projection shadows?

    - by John Murdoch
    I have decided that since my game world is mostly flat I don't need better shadows than geometric projections - at least for now. The only problem is I don't even know how to do those properly - that is to produce a 4x4 matrix which would render shadows for my objects (that is, I guess, project them on a horizontal XZ plane). I would like a light source at infinity (e.g., the sun at some point in the sky) and thus parallel projection. My current code does something that looks almost right for small flying objects, but actually is a very rude approximation, as it doesn't project the objects onto the ground, but simply moves them there (I think). Also it always wrongly assumes the sun is always on the zenith (projecting straight down). Gdx.gl20.glEnable(GL10.GL_BLEND); Gdx.gl20.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); //shells shellTexture.bind(); shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); transform.mul(state.transform); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); // shadows shader.begin(); for (ShellState state : shellStates.values()) { transform.set(camera.combined); m4.set(state.transform); state.transform.getTranslation(v3); m4.translate(0, -v3.y + 0.5f, 0); // TODO HACK: + 0.5f is a hack to ensure the shadow appears above the ground; this is overall a hack as we are just moving the shell to the surface instead of projecting it on the surface! transform.mul(m4); shader.setUniformMatrix("u_worldView", transform); shader.setUniformi("u_texture", 0); // TODO: make shadow black somehow shellMesh.render(shader, GL10.GL_TRIANGLES); } shader.end(); Gdx.gl.glDisable(GL10.GL_BLEND); So my questions are: a) What is the proper way to produce a Matrix4 to pass to openGL which would render the shadows for my objects? b) I am supposed to use another fragment shader for the shadows which would paint them in semi-transparent grey, correct? c) The limitation of this simplistic approach is that whenever there is some object on the ground (it is not flat) the shadows will not be drawn, correct? d) Do I need to add something very small to the y (up) coordinate to avoid z-fighting with ground textures? Or is the fact they will be semi-transparent enough to resolve that problem?

    Read the article

  • IrrKlang with Ogre

    - by Vinnie
    I'm trying to set up sound in my Ogre3D project. I have installed irrKlang 1.4.0 and added it's include and lib directories to my projects VC++ Include and Library directories, but I'm still getting a Linker error when I attempt to build. Any suggestions? (Error 4007 error LNK2019: unresolved external symbol "__declspec(dllimport) class irrklang::ISoundEngine * __cdecl irrklang::createIrrKlangDevice(enum irrklang::E_SOUND_OUTPUT_DRIVER,int,char const *,char const *)" (_imp?createIrrKlangDevice@irrklang@@YAPAVISoundEngine@1@W4E_SOUND_OUTPUT_DRIVER@1@HPBD1@Z) referenced in function "public: __thiscall SoundManager::SoundManager(void)" (??0SoundManager@@QAE@XZ)

    Read the article

  • What collision detection approach for top down car game?

    - by nathan
    I have a quite advanced top down car game and i use masks to detect collisions. I have the actual designed track (what the player see) with fancy graphics etc. and two other pictures i use as mask for my detection collisions. Each mask has only two colors, white and black and i check each frame if a pixel of the car collide with a black pixel of the masks. This approach works of course but it's not really flexible. Whenever i want to change the look of a track, i have to redraw the mask and it's a real pain. What is the general approach for this kind of game? How can i improve the flexibility of such a mask based approach?

    Read the article

  • Doing powerups in a component-based system

    - by deft_code
    I'm just starting really getting my head around component based design. I don't know what the "right" way to do this is. Here's the scenario. The player can equip a shield. The the shield is drawn as bubble around the player, it has a separate collision shape, and reduces the damage the player receives from area effects. How is such a shield architected in a component based game? Where I get confused is that the shield obviously has three components associated with it. Damage reduction / filtering A sprite A collider. To make it worse different shield variations could have even more behaviors, all of which could be components: boost player maximum health health regen projectile deflection etc Am I overthinking this? Should the shield just be a super component? I really think this is wrong answer. So if you think this is the way to go please explain. Should the shield be its own entity that tracks the location of the player? That might make it hard to implement the damage filtering. It also kinda blurs the lines between attached components and entities. Should the shield be a component that houses other components? I've never seen or heard of anything like this, but maybe it's common and I'm just not deep enough yet. Should the shield just be a set of components that get added to the player? Possibly with an extra component to manage the others, e.g. so they can all be removed as a group. (accidentally leave behind the damage reduction component, now that would be fun). Something else that's obvious to someone with more component experience?

    Read the article

  • Pygame set_colorkey transparency issues

    - by Nathan Chowning
    I'm having a strange issue that I cannot seem to remedy. I am doing some prototyping with Pygame on a desktop running windows and a laptop running OS X. Both are running python v2.7.3 (installed via homebrew for the Macbook) and pygame v1.9.1. For transparency, I have been using set_colorkey with a transparency color of (255, 0, 255). Here is the applicable code: transColor = pygame.Color(255, 0, 255) image = pygame.image.load(playerPath + "idle.png").convert() image.set_colorkey(transColor) This works flawlessly on my windows machine. On my laptop, it does not work. It just shows the hideous magenta color. Here's the strange part. If I change the transColor to (0, 0, 0), all black pixels in my images are transparent. Has anyone run into this issue before?

    Read the article

  • How should I do 3D games through Java on a mac?

    - by Steven Rogers
    I have been self-teaching myself Java on the mac mostly because the language is cross-platform. Recently, I have been only able to develop 2D games using the Graphics2D class. Now, I want to learn how to make 3D games in Java. I used to model and animate stuff in 3D, so my knowledge of 3-Dimensional stuff is okay. I have spent the last 3 hours using google to look up ways of making 3D games in java. Apparently the best one to use is OpenGL, so i looked up a tutorial on it and i cannot find a tutorial that shows how to (if there is a way) install JOGL on the Mac platform. Should i continue to use Java? How can i make 3D games using Java? What is the best way to make 3D games on a mac?

    Read the article

  • how to move the camera behind a model with the same angle? in XNA

    - by Mehdi Bugnard
    I meet are having difficulty in moving my camera behind an object in a 3D world. I would create two view mode. 1: for fps (first person). 2nd: external view behind the character (second person). I searched the net some example but it does not work in my project. Here is my code used to change view if F2 is pressed //Camera double X1 = this.camera.PositionX; double X2 = this.player.Position.X; double Z1 = this.camera.PositionZ; double Z2 = this.player.Position.Z; //Verify that the user must not let the press F2 if (!this.camera.IsF2TurnedInBoucle) { // If the view mode is the second person if (this.camera.ViewCamera_type == CameraSimples.ChangeView.SecondPerson) { this.camera.ViewCamera_type = CameraSimples.ChangeView.firstPerson; //Calcul position - ?? Here my problem double direction = Math.Atan2(X2 - X1, Z2 - Z1) * 180.0 / 3.14159265; //Calcul angle - ?? Here my problem this.camera.position = .. this.camera.rotation = .. this.camera.MouseRadian_LeftrightRot = (float)direction; } //IF mode view is first person else { //....

    Read the article

  • 2D XNA C#: Texture2D Wrapping Issue

    - by Kieran
    Working in C#/XNA for a Windows game: I'm using Texture2D to draw sprites. All of my sprites are 16 x 32. The sprites move around the screen as you would expect, by changing the top X/Y position of them when they're being drawn by the spritebatch. Most of the time when I run the game, the sprites appear like this: and when moved, they move as I expect, as one element. Infrequently they appear like this: and when moved it's like there are two sprites with a gap in between them - it's hard to describe. It only seems to happen sometimes - is there something I'm missing? I'd really like to know why this is happening. [Edit:] Adding Draw code as requested: This is the main draw routine - it first draws the sprite to a RenderTarget then blows it up by a scale of 4: protected override void Draw(GameTime gameTime) { // Draw to render target GraphicsDevice.SetRenderTarget(renderTarget); GraphicsDevice.Clear(Color.CornflowerBlue); Texture2D imSprite = null; spriteBatch.Begin(SpriteSortMode.FrontToBack, null, SamplerState.PointWrap, null, null); ManSprite.Draw(spriteBatch); base.Draw(gameTime); spriteBatch.End(); // Draw render target to screen GraphicsDevice.SetRenderTarget(null); imageFrame = (Texture2D)renderTarget; GraphicsDevice.Clear(ClearOptions.Target | ClearOptions.DepthBuffer, Color.DarkSlateBlue, 1.0f, 0); spriteBatch.Begin(SpriteSortMode.FrontToBack, null, SamplerState.PointClamp, null, null); spriteBatch.Draw(imageFrame, new Vector2(0, 0), null, Color.White, 0, new Vector2(0, 0), IM_SCALE, SpriteEffects.None, 0); spriteBatch.End(); } This is the draw routine for the Sprite class: public virtual void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw(Texture, new Vector2(PositionX, PositionY), null, Color.White, 0.0f, Vector2.Zero, Scale, SpriteEffects.None, 0.3f); }

    Read the article

  • Shadow mapping: what is the light looking at?

    - by PgrAm
    I'm all set to set up shadow mapping in my 3d engine but there is one thing I am struggling to understand. The scene needs to be rendered from the light's point of view so I simply first move my camera to the light's position but then I need to find out which direction the light is looking. Since its a point light its not shining in any particular direction. How do I figure out what the orientation for the light point of view is?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Rotation based on x coordinate and x velocity?

    - by Lewis
    -(void) accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration *)acceleration { float deceleration = 0.3f, sensitivity = 8.0f, maxVelocity = 150; // adjust velocity based on current accelerometer acceleration playerVelocity.x = playerVelocity.x * deceleration + acceleration.x * sensitivity; // we must limit the maximum velocity of the player sprite, in both directions (positive & negative values) playerVelocity.x = fmaxf(fminf(playerVelocity.x, maxVelocity), -maxVelocity); } Hi, I want to rotate my sprite based on the velocity and accelerometer input. My sprite can move along the X axis like so: <--------- sprite ----------- But it always faces forwards, if it is moving left I want it to point slightly to the left, the degree of how far it is pointing to be judged from the velocity. This should also work for the right. I tried using atan but as the y velocity and position is always the same the function returns 0, which doesn't rotate it at all. Any ideas? Regards, Lewis.

    Read the article

  • Gap in parallaxing background loop

    - by CinetiK
    The bug here is that my background kind of offset a bit itself from where it should draw and so I have this line. I have some troubles understanding why I get this bug when I set a speed that is different then 1,2,4,8,16,... In main class I set the speed depending on the player speed bgSpeed = -(int)playerMoveSpeed.X / 10; and here's my background class class ParallaxingBackground { Texture2D texture; Vector2[] positions; public int Speed { get; set;} public void Initialize(ContentManager content, String texturePath, int screenWidth, int speed) { texture = content.Load<Texture2D>(texturePath); this.Speed = speed; positions = new Vector2[screenWidth / texture.Width + 2]; for (int i = 0; i < positions.Length; i++) { positions[i] = new Vector2(i * texture.Width, 0); } } public void Update() { for (int i = 0; i < positions.Length; i++) { positions[i].X += Speed; if (Speed <= 0) { if (positions[i].X <= -texture.Width) { positions[i].X = texture.Width * (positions.Length - 1); } } else { if (positions[i].X >= texture.Width*(positions.Length - 1)) { positions[i].X = -texture.Width; } } } } public void Draw(SpriteBatch spriteBatch) { for (int i = 0; i < positions.Length; i++) { spriteBatch.Draw(texture, positions[i], Color.White); } } }

    Read the article

  • AndEngine doesn't fill correctly an image on my device

    - by Guille
    I'm learning about AndEngine a little bit, I'm trying to follow a tutorial but I don't get to fill the background image correctly, so, it's just appear in one side of my screen. My device is a Galaxy Nexus (1270x768 I think...). The image is 800x480. The code is: public EngineOptions onCreateEngineOptions() { camera = new Camera(0, 0, 800, 480); EngineOptions engineOptions = new EngineOptions(true, ScreenOrientation.LANDSCAPE_FIXED, new FillResolutionPolicy(), this.camera); engineOptions.getAudioOptions().setNeedsMusic(true).setNeedsSound(true); engineOptions.getRenderOptions().setMultiSampling(true);//.getConfigChooserOptions().setRequestedMultiSampling(true); engineOptions.setWakeLockOptions(WakeLockOptions.SCREEN_ON); return engineOptions; } I have been trying with several values in the camera, but it doesn't fill in all the screen, why?

    Read the article

  • Game Clock Precision

    - by Philip
    I'm reading a fantastic article about game timer precision and here is a quote about 2/3 of the way into the article: If you start your game clock at about 4 billion (more precisely 2^32, or any large power of two) then your exponent, and hence your precision, will remain constant for the next ~4 billion seconds, or ~136 years. He doesn't give a concrete example of this though. Does this mean I would want to add 2^32 to the game clock value that I store at the beginning of each frame? Or is there a way to actually set the clock in Windows so that the numbers start at 2^32?

    Read the article

  • how to implement motion blur effect?

    - by PlayerOne
    I wanted to know how one would implement this motion blur or fade effect behind the soccer ball . Here is what I was thinking . You have the balls current position and you also keep its previous position(couple of sec back). and you draw a "streak" sprite between the 2 points. I have seen this effect lots of time implemented for projects in various 2d games and wanted to know if there is a standard technique. http://i45.tinypic.com/2n24j7r.png

    Read the article

  • Skanska Builds Global Workforce Insight with Cloud-Based HCM System

    - by HCM-Oracle
    By David Baum - Originally posted on Profit Peter Bjork grew up building things. He started his work life learning all sorts of trades at his father’s construction company in the northern part of Sweden. So in college, it was natural for him to pursue a bachelor’s degree in construction engineering—but he broke new ground when he added a master’s degree in finance to his curriculum vitae. Written on a traditional résumé, Bjork’s current title (vice president of information systems strategies) doesn’t reveal the diversity of his experience—that he’s adept with hammer and nails as well as rows and columns. But a big part of his current job is to work with his counterparts in human resources (HR) designing, building, and deploying the systems needed to get a complete view of the skills and potential of Skanska’s 22,000-strong white-collar workforce. And Bjork believes that complete view is essential to Skanska’s success. “Our business is really all about people,” says Bjork, who has worked with Skanska for 16 years. “You can have equipment and financial resources, but to truly succeed in a business like ours you need to have the right people in the right places. That’s what this system is helping us accomplish.” In a global HR environment that suffers from a paradox of high unemployment and a scarcity of skilled labor, managers need to have a complete understanding of workforce capabilities to develop management skills, recruit for open positions, ensure that staff is getting the training they need, and reduce attrition. Skanska’s human capital management (HCM) systems, based on Oracle Talent Management Cloud, play a critical role delivering that understanding. “Skanska’s philosophy of having great people, encouraging their development, and giving them the chance to move across business units has nurtured a culture of collaboration, but managing a diverse workforce spread across the globe is a monumental challenge,” says Annika Lindholm, global human resources system owner in the HR department at Skanska’s headquarters just outside of Stockholm, Sweden. “We depend heavily on Oracle’s cloud technology to support our HCM function.” Construction, Workers For Skanska’s more than 60,000 employees and contractors, managing huge construction projects is an everyday job. Beyond erecting signature buildings, management’s goal is to build a corporate culture where valuable talent can be sought out and developed, bringing in the right mix of people to support and grow the business. “Of all the companies in our space, Skanska is probably one of the strongest ones, with a laser focus on people and people development,” notes Tom Crane, chief HR and communications officer for Skanska in the United States. “Our business looks like equipment and material, but all we really have at the end of the day are people and their intellectual capital. Without them, second only to clients, of course, you really can’t achieve great things in the high-profile environment in which we work.” During the 1990s, Skanska entered an expansive growth phase. A string of successful acquisitions paved the way for the company’s transformation into a global enterprise. “Today the company’s focus is on profitable growth,” continues Crane. “But you can’t really achieve growth unless you are doing a very good job of developing your people and having the right people in the right places and driving a culture of growth.” In the United States alone, Skanska has more than 8,000 employees in four distinct business units: Skanska USA Building, also known as the Construction Manager, builds everything at ground level and above—hospitals, educational facilities, stadiums, airport terminals, and other massive projects. Skanska USA Civil does everything at ground level and below, such as light rail, water treatment facilities, power plants or power industry facilities, highways, and bridges. Skanska Infrastructure Development develops public-private partnerships—projects in which Skanska adds equity and also arranges for outside financing. Skanska Commercial Development acts like a commercial real estate developer, acquiring land and building offices on spec or build-to-suit for its clients. Skanska's international portfolio includes construction of the new Meadowlands Stadium. Getting the various units to operate collaboratatively helps Skanska deliver high value to clients and shareholders. “When we have this collaboration among units, it allows us to enrich each of the business units and, at the same time, develop our future leaders to be more facile in operating across business units—more accepting of a ‘one Skanska’ approach,” explains Crane. Workforce Worldwide But HR needs processes and tools to support managers who face such business dynamics. Oracle Talent Management Cloud is helping Skanska implement world-class recruiting strategies and generate the insights needed to drive quality hiring practices, internal mobility, and a proactive approach to building talent pipelines. With their new cloud system in place, Skanska HR leaders can manage everything from recruiting, compensation, and goal and performance management to employee learning and talent review—all as part of a single, cohesive software-as-a-service (SaaS) environment. Skanska has successfully implemented two modules from Oracle Talent Management Cloud—the recruiting and performance management modules—and is in the process of implementing the learn module. Internally, they call the systems Skanska Recruit, Skanska Talent, and Skanska Learn. The timing is apropos. With high rates of unemployment in recent years, there have been many job candidates on the market. However, talent scarcity continues to frustrate recruiters. Oracle Taleo Recruiting Cloud Service, one of the applications in the Oracle Talent Management cloud portfolio, enables Skanska managers to create more-intelligent recruiting strategies, pulling high-performer profile statistics to create new candidate profiles and using multitiered screening and assessments to ensure that only the best-suited candidate applications make it to the recruiter’s desk. Tools such as applicant tracking, interview management, and requisition management help recruiters and hiring managers streamline the hiring process. Oracle’s cloud-based software system automates and streamlines many other HR processes for Skanska’s multinational organization and delivers insight into the success of recruiting and talent-management efforts. “The Oracle system is definitely helping us to construct global HR processes,” adds Bjork. “It is really important that we have a business model that is decentralized, so we can effectively serve our local markets, and interact with our global ERP [enterprise resource planning] systems as well. We would not be able to do this without a really good, well-integrated HCM system that could support these efforts.” A key piece of this effort is something Skanska has developed internally called the Skanska Leadership Profile. Core competencies, on which all employees are measured, are used in performance reviews to determine weak areas but also to discover talent, such as those who will be promoted or need succession plans. This global profiling system brings consistency to the way HR professionals evaluate and review talent across the company, with a consistent set of ratings and a consistent definition of competencies. All salaried employees in Skanska are tied to a talent management process that gives opportunity for midyear and year-end reviews. Using the performance management module, managers can align individual goals with corporate goals; provide clear visibility into how each employee contributes to the success of the organization; and drive a strategic, end-to-end talent management strategy with a single, integrated system for all talent-related activities. This is critical to a company that is highly focused on ensuring that every employee has a development plan linked to his or her succession potential. “Our approach all along has been to deploy software applications that are seamless to end users,” says Crane. “The beauty of a cloud-based system is that much of the functionality takes place behind the scenes so we can focus on making sure users can access the data when they need it. This model greatly improves their efficiency.” The employee profile not only sets a competency baseline for new employees but is also integrated with Skanska’s other back-office Oracle systems to ensure consistency in the way information is used to support other business functions. “Since we have about a dozen different HR systems that are providing us with information, we built a master database that collects all the information,” explains Lindholm. “That data is sent not only to Oracle Talent Management Cloud, but also to other systems that are dependent on this information.” Collaboration to Scale Skanska is poised to launch a new Oracle module to link employee learning plans to the review process and recruitment assessments. According to Crane, connecting these processes allows Skanska managers to see employees’ progress and produce an updated learning program. For example, as employees take classes, supervisors can consult the Oracle Talent Management Cloud portal to monitor progress and align it to each individual’s training and development plan. “That’s a pretty compelling solution for an organization that wants to manage its talent on a real-time basis and see how the training is working,” Crane says. Rolling out Oracle Talent Management Cloud was a joint effort among HR, IT, and a global group that oversaw the worldwide implementation. Skanska deployed the solution quickly across all markets at once. In the United States, for example, more than 35 offices quickly got up to speed on the new system via webinars for employees and face-to-face training for the HR group. “With any migration, there are moments when you hold your breath, but in this case, we had very few problems getting the system up and running,” says Crane. Lindholm adds, “There has been very little resistance to the system as users recognize its potential. Customizations are easy, and a lasting partnership has developed between Skanska and Oracle when help is needed. They listen to us.” Bjork elaborates on the implementation process from an IT perspective. “Deploying a SaaS system removes a lot of the complexity,” he says. “You can downsize the IT part and focus on the business part, which increases the probability of a successful implementation. If you want to scale the system, you make a quick phone call. That’s all it took recently when we added 4,000 users. We didn’t have to think about resizing the servers or hiring more IT people. Oracle does that for us, and they have provided very good support.” As a result, Skanska has been able to implement a single, cost-effective talent management solution across the organization to support its strategy to recruit and develop a world-class staff. Stakeholders are confident that they are providing the most efficient recruitment system possible for competent personnel at all levels within the company—from skilled workers at construction sites to top management at headquarters. And Skanska can retain skilled employees and ensure that they receive the development opportunities they need to grow and advance.

    Read the article

< Previous Page | 493 494 495 496 497 498 499 500 501 502 503 504  | Next Page >