Search Results

Search found 28230 results on 1130 pages for 'embedded development'.

Page 510/1130 | < Previous Page | 506 507 508 509 510 511 512 513 514 515 516 517  | Next Page >

  • How can I improve my isometric tile-picking algorithm?

    - by Cypher
    I've spent the last few days researching isometric tile-picking algorithms (converting screen-coordinates to tile-coordinates), and have obviously found a lot of the math beyond my grasp. I have come fairly close and what I have is workable, but I would like to improve on this algorithm as it's a little off and seems to pick down and to the right of the mouse pointer. I've uploaded a video to help visualize the current implementation: http://youtu.be/EqwWcq1zuaM My isometric rendering algorithm is based on what is found at this stackoverflow question's answer, with the exception that my x and y axis' are inverted (x increased down-right, while y increased up-right). Here is where I am converting from screen to tiles: // these next few lines convert the mouse pointer position from screen // coordinates to tile-grid coordinates. cameraOffset captures the current // mouse location and takes into consideration the camera's position on screen. System.Drawing.Point cameraOffset = new System.Drawing.Point( 0, 0 ); cameraOffset.X = mouseLocation.X + (int)camera.Left; cameraOffset.Y = ( mouseLocation.Y + (int)camera.Top ); // the camera-aware mouse coordinates are then further converted in an attempt // to select only the "tile" portion of the grid tiles, instead of the entire // rectangle. this algorithm gets close, but could use improvement. mouseTileLocation.X = ( cameraOffset.X + 2 * cameraOffset.Y ) / Global.TileWidth; mouseTileLocation.Y = -( ( 2 * cameraOffset.Y - cameraOffset.X ) / Global.TileWidth ); Things to make note of: mouseLocation is a System.Drawing.Point that represents the screen coordinates of the mouse pointer. cameraOffset is the screen position of the mouse pointer that includes the position of the game camera. mouseTileLocation is a System.Drawing.Point that is supposed to represent the tile coordinates of the mouse pointer. If you check out the above link to youtube, you'll notice that the picking algorithm is off a bit. How can I improve on this?

    Read the article

  • Rotation of viewplatform in Java3D

    - by user29163
    I have just started with Java3D programming. I thought I had built up some basic intuition about how the scene graph works, but something that should work, does not work. I made a simple program for rotating a pyramid around the y-axis. This was done just by adding a RotationInterpolator R to the TransformGroup above the pyramid. Then I thought hey, can I now remove the RotationInterpolator from this TransformGroup, then add it to the TransformGroup above my ViewPlatform leaf. This should work if I have understood how things work. Adding the RotationInterpolator to this TransformGroup, should make the children of this TransformGroup rotate, and the ViewingPlatform is a child of the TransformGroup. Any ideas on where my reasoning is flawed? Here is the code for setting up the universe, and the view branchgroup. import java.awt.*; import java.awt.event.*; import javax.media.j3d.*; import javax.vecmath.*; public class UniverseBuilder { // User-specified canvas Canvas3D canvas; // Scene graph elements to which the user may want access VirtualUniverse universe; Locale locale; TransformGroup vpTrans; View view; public UniverseBuilder(Canvas3D c) { this.canvas = c; // Establish a virtual universe that has a single // hi-res Locale universe = new VirtualUniverse(); locale = new Locale(universe); // Create a PhysicalBody and PhysicalEnvironment object PhysicalBody body = new PhysicalBody(); PhysicalEnvironment environment = new PhysicalEnvironment(); // Create a View and attach the Canvas3D and the physical // body and environment to the view. view = new View(); view.addCanvas3D(c); view.setPhysicalBody(body); view.setPhysicalEnvironment(environment); // Create a BranchGroup node for the view platform BranchGroup vpRoot = new BranchGroup(); // Create a ViewPlatform object, and its associated // TransformGroup object, and attach it to the root of the // subgraph. Attach the view to the view platform. Transform3D t = new Transform3D(); Transform3D s = new Transform3D(); t.set(new Vector3f(0.0f, 0.0f, 10.0f)); t.rotX(-Math.PI/4); s.set(new Vector3f(0.0f, 0.0f, 10.0f)); //forandre verdier her for å endre viewing position t.mul(s); ViewPlatform vp = new ViewPlatform(); vpTrans = new TransformGroup(t); vpTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Rotator stuff Transform3D yAxis = new Transform3D(); //yAxis.rotY(Math.PI/2); Alpha rotationAlpha = new Alpha( -1, Alpha.INCREASING_ENABLE, 0, 0,4000, 0, 0, 0, 0, 0); RotationInterpolator rotator = new RotationInterpolator( rotationAlpha, vpTrans, yAxis, 0.0f, (float) Math.PI*2.0f); RotationInterpolator rotator2 = new RotationInterpolator( rotationAlpha, vpTrans); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 1000.0); rotator.setSchedulingBounds(bounds); vpTrans.addChild(rotator); vpTrans.addChild(vp); vpRoot.addChild(vpTrans); view.attachViewPlatform(vp); // Attach the branch graph to the universe, via the // Locale. The scene graph is now live! locale.addBranchGraph(vpRoot); } public void addBranchGraph(BranchGroup bg) { locale.addBranchGraph(bg); } }

    Read the article

  • How to improve Minecraft-esque voxel world performance?

    - by SomeXnaChump
    After playing Minecraft I marveled a bit at its large worlds but at the same time I found them extremely slow to navigate, even with a quad core and meaty graphics card. Now I assume Minecraft is fairly slow because: A) It's written in Java, and as most of the spatial partitioning and memory management activities happen in there, it would naturally be slower than a native C++ version. B) It doesn't partition its world very well. I could be wrong on both assumptions; however it got me thinking about the best way to manage large voxel worlds. As it is a true 3D world, where a block can exist in any part of the world, it is basically a big 3D array [x][y][z], where each block in the world has a type (i.e BlockType.Empty = 0, BlockType.Dirt = 1 etc.) Now, I am assuming to make this sort of world perform well you would need to: A) Use a tree of some variety (oct/kd/bsp) to split all the cubes out; it seems like an oct/kd would be the better option as you can just partition on a per cube level not a per triangle level. B) Use some algorithm to work out which blocks can currently be seen, as blocks closer to the user could obfuscate the blocks behind, making it pointless to render them. C) Keep the block object themselves lightweight, so it is quick to add and remove them from the trees. I guess there is no right answer to this, but I would be interested to see peoples' opinions on the subject. How would you improve performance in a large voxel-based world?

    Read the article

  • How can I select an audio output device in directshow

    - by Vibhore Tanwer
    I was wondering how I can select the output device for audio in directshow. I am able to get available audio output devices in directshow. But how can I make one of these to be audio output device. Its always going for the default audio device. I want to be able to output audio on my choice of device. I have been struggling through google but couldn't find anything useful. All I could get was this link but it doesn't really solve my problem. Any help will be really helpful for me.

    Read the article

  • Procedural Planets, Heightmaps and Textures

    - by henryprescott
    I am currently working on an OpenGL procedural planet generator. I hope to use it for a space RPG, that will not allow players to go down to the surface of a planet so I have ignored anything ROAM related. At the moment I am drawing a cube with VBOs and mapping onto a sphere. I am familiar with most fractal heightmap generating techniques and have already implemented my own version of midpoint displacement (not that useful in this case I know). My question is, what is the best way to procedurally generate the heightmap. I have looked at libnoise which allows me to make tilable heightmaps/textures, but as far as I can see I would need to generate a net like this. Leaving the tiling obvious. Could anyone advise me on the best route to take? Any input would be much appreciated.

    Read the article

  • OpenGL error LNK2019

    - by Ghilliedrone
    I'm trying to compile a basic OpenGL program. I linked opengl32.lib and glu32.lib but I'm getting errors. The errors I get are: error LNK1120: 7 unresolved externals error LNK2019: unresolved external symbol _main referenced in function ___tmainCRTStartup error LNK2019: unresolved external symbol "public: float __thiscall GLWindow::getElapsedSeconds(void)" (?getElapsedSeconds@GLWindow@@QAEMXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: bool __thiscall GLWindow::isRunning(void)" (?isRunning@GLWindow@@QAE_NXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: void __thiscall GLWindow::attachExample(class Example *)" (?attachExample@GLWindow@@QAEXPAVExample@@@Z) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: void __thiscall GLWindow::destroy(void)" (?destroy@GLWindow@@QAEXXZ) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "public: __thiscall GLWindow::GLWindow(struct HINSTANCE__ *)" (??0GLWindow@@QAE@PAUHINSTANCE__@@@Z) referenced in function _WinMain@16 error LNK2019: unresolved external symbol "private: void __thiscall GLWindow::setupPixelFormat(void)" (?setupPixelFormat@GLWindow@@AAEXXZ) referenced in function "public: long __stdcall GLWindow::WndProc(struct HWND__ *,unsigned int,unsigned int,long)" (?WndProc@GLWindow@@QAGJPAUHWND__@@IIJ@Z)

    Read the article

  • Omni-directional light shadow mapping with cubemaps in WebGL

    - by Winged
    First of all I must say, that I have read a lot of posts describing an usage of cubemaps, but I'm still confused about how to use them. My goal is to achieve a simple omni-directional (point) light type shading in my WebGL application. I know that there is a lot more techniques (like using Two-Hemispheres or Camera Space Shadow Mapping) which are way more efficient, but for an educational purpose cubemaps are my primary goal. Till now, I have adapted a simple shadow mapping which works with spotlights (with one exception: I don't know how to cut off the glitchy part beyond the reach of a single shadow map texture): glitchy shadow mapping<<< So for now, this is how I understand the usage of cubemaps in shadow mapping: Setup a framebuffer (in case of cubemaps - 6 framebuffers; 6 instead of 1 because every usage of framebufferTexture2D slows down an execution which is nicely described here <<<) and a texture cubemap. Also in WebGL depth components are not well supported, so I need to render it to RGBA first. this.texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_CUBE_MAP, this.texture); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.LINEAR); for (var face = 0; face < 6; face++) gl.texImage2D(gl.TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, gl.RGBA, this.size, this.size, 0, gl.RGBA, gl.UNSIGNED_BYTE, null); gl.bindTexture(gl.TEXTURE_CUBE_MAP, null); this.framebuffer = []; for (face = 0; face < 6; face++) { this.framebuffer[face] = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer[face]); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + face, this.texture, 0); gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, this.depthbuffer); var e = gl.checkFramebufferStatus(gl.FRAMEBUFFER); // Check for errors if (e !== gl.FRAMEBUFFER_COMPLETE) throw "Cubemap framebuffer object is incomplete: " + e.toString(); } Setup the light and the camera (I'm not sure if should I store all of 6 view matrices and send them to shaders later, or is there a way to do it with just one view matrix). Render the scene 6 times from the light's position, each time in another direction (X, -X, Y, -Y, Z, -Z) for (var face = 0; face < 6; face++) { gl.bindFramebuffer(gl.FRAMEBUFFER, shadow.buffer.framebuffer[face]); gl.viewport(0, 0, shadow.buffer.size, shadow.buffer.size); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); camera.lookAt( light.position.add( cubeMapDirections[face] ) ); scene.draw(shadow.program); } In a second pass, calculate the projection a a current vertex using light's projection and view matrix. Now I don't know If should I calculate 6 of them, because of 6 faces of a cubemap. ScaleMatrix pushes the projected vertex into the 0.0 - 1.0 region. vDepthPosition = ScaleMatrix * uPMatrixFromLight * uVMatrixFromLight * vWorldVertex; In a fragment shader calculate the distance between the current vertex and the light position and check if it's deeper then the depth information read from earlier rendered shadow map. I know how to do it with a 2D Texture, but I have no idea how should I use cubemap texture here. I have read that texture lookups into cubemaps are performed by a normal vector instead of a UV coordinate. What vector should I use? Just a normalized vector pointing to the current vertex? For now, my code for this part looks like this (not working yet): float shadow = 1.0; vec3 depth = vDepthPosition.xyz / vDepthPosition.w; depth.z = length(vWorldVertex.xyz - uLightPosition) * linearDepthConstant; float shadowDepth = unpack(textureCube(uDepthMapSampler, vWorldVertex.xyz)); if (depth.z > shadowDepth) shadow = 0.5; Could you give me some hints or examples (preferably in WebGL code) how I should build it?

    Read the article

  • Change players state and controls in-game

    - by Samurai Fox
    I'm using Unity 3D Let's say the player is an ice cube. You control it like a normal player. On press of a button, ice transforms (with animation) into water. You control it completely different than the ice cube. Another great example would be: Player is human being and has normal FPS controls. On press of a button human transforms into birds and now has completely different controls. Now, my question is, what would be easier and better: make one object with animation transition and to stay in that state of anim. until button is pressed again make two object: ice and water. Ice has an animation of turning into water. So replace ice (with animation) with water object And if anyone knows this one too: how to switch between 2 different types of player controls.

    Read the article

  • how to modify shadow mapping in "3D Graphics with XNA Game Studio 4.0"?

    - by naprox
    So I've been following the tutorials from the book Sean James's "3D Graphics with XNA Game Studio 4.0", and have been doing fine until i reached the shadow mapping part. in this book it creates point lights with a Sphere model. my first Q is how to draw a directional Light with this frame work? secondly it can do shadow mapping just for one light, how can i do shadow mapping for all or parts of the lights in the game? i just want to know how to modify this codes to do the above tasks. I've followed tutorials on MSDN and some other sites and didn't got the answer. please help me, its so urgent. and if any one wants, the complete code is here: http://www.mediafire.com/?6ct11mc1g8f891h

    Read the article

  • 2D Tile based Game Collision problem

    - by iNbdy
    I've been trying to program a tile based game, and I'm stuck at the collision detection. Here is my code (not the best ^^): void checkTile(Character *c, int **map) { int x1,x2,y1,y2; /* Character position in the map */ c->upY = (c->y) / TILE_SIZE; // Top left corner c->downY = (c->y + c->h) / TILE_SIZE; // Bottom left corner c->leftX = (c->x) / TILE_SIZE; // Top right corner c->rightX = (c->x + c->w) / TILE_SIZE; // Bottom right corner x1 = (c->x + 10) / TILE_SIZE; // 10px from left side point x2 = (c->x + c->w - 10) / TILE_SIZE; // 10px from right side point y1 = (c->y + 10) / TILE_SIZE; // 10px from top side point y2 = (c->y + c->h - 10) / TILE_SIZE; // 10px from bottom side point /* Top */ if (map[c->upY][x1] > 2 || map[c->upY][x2] > 2) c->topCollision = 1; else c->topCollision = 0; /* Bottom */ if ((map[c->downY][x1] > 2 || map[c->downY][x2] > 2)) c->downCollision = 1; else c->downCollision = 0; /* Left */ if (map[y1][c->leftX] > 2 || map[y2][c->leftX] > 2) c->leftCollision = 1; else c->leftCollision = 0; /* Right */ if (map[y1][c->rightX] > 2 || map[y2][c->rightX] > 2) c->rightCollision = 1; else c->rightCollision = 0; } That calculates 8 collision points My moving function is like that: void movePlayer(Character *c, int **map) { if ((c->dirX == LEFT && !c->leftCollision) || (c->dirX == RIGHT && !c->rightCollision)) c->x += c->vx; if ((c->dirY == UP && !c->topCollision) || (c->dirY == DOWN && !c->downCollision)) c->y += c->vy; checkPosition(c, map); } and the checkPosition: void checkPosition(Character *c, int **map) { checkTile(c, map); if (c->downCollision) { if (c->state != JUMPING) { c->vy = 0; c->y = (c->downY * TILE_SIZE - c->h); } } if (c->leftCollision) { c->vx = 0; c->x = (c->leftX) * TILE_SIZE + TILE_SIZE; } if (c->rightCollision) { c->vx = 0; c->x = c->rightX * TILE_SIZE - c->w; } } This works, but sometimes, when the player is landing on ground, right and left collision points become equal to 1. So it's as if there were collision coming from left or right. Does anyone know why this is doing this?

    Read the article

  • Isometric layer moving inside map

    - by gronzzz
    i'm created isometric map and now trying to limit layer moving. Main idea, that i have left bottom, right bottom, left top, right top points, that camera can not move outside, so player will not see map out of bounds. But i can not understand algorithm of how to do that. It's my layer scale/moving code. - (void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event { _isTouchBegin = YES; } - (void)touchMoved:(UITouch *)touch withEvent:(UIEvent *)event { NSArray *allTouches = [[event allTouches] allObjects]; UITouch *touchOne = [allTouches objectAtIndex:0]; CGPoint touchLocationOne = [touchOne locationInView: [touchOne view]]; CGPoint previousLocationOne = [touchOne previousLocationInView: [touchOne view]]; // Scaling if ([allTouches count] == 2) { _isDragging = NO; UITouch *touchTwo = [allTouches objectAtIndex:1]; CGPoint touchLocationTwo = [touchTwo locationInView: [touchTwo view]]; CGPoint previousLocationTwo = [touchTwo previousLocationInView: [touchTwo view]]; CGFloat currentDistance = sqrt( pow(touchLocationOne.x - touchLocationTwo.x, 2.0f) + pow(touchLocationOne.y - touchLocationTwo.y, 2.0f)); CGFloat previousDistance = sqrt( pow(previousLocationOne.x - previousLocationTwo.x, 2.0f) + pow(previousLocationOne.y - previousLocationTwo.y, 2.0f)); CGFloat distanceDelta = currentDistance - previousDistance; CGPoint pinchCenter = ccpMidpoint(touchLocationOne, touchLocationTwo); pinchCenter = [self convertToNodeSpace:pinchCenter]; CGFloat predictionScale = self.scale + (distanceDelta * PINCH_ZOOM_MULTIPLIER); if([self predictionScaleInBounds:predictionScale]) { [self scale:predictionScale scaleCenter:pinchCenter]; } } else { // Dragging _isDragging = YES; CGPoint previous = [[CCDirector sharedDirector] convertToGL:previousLocationOne]; CGPoint current = [[CCDirector sharedDirector] convertToGL:touchLocationOne]; CGPoint delta = ccpSub(current, previous); self.position = ccpAdd(self.position, delta); } } - (void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event { _isDragging = NO; _isTouchBegin = NO; // Check if i need to bounce _touchLoc = [touch locationInNode:self]; } #pragma mark - Update - (void)update:(CCTime)delta { CGPoint position = self.position; float scale = self.scale; static float friction = 0.92f; //0.96f; if(_isDragging && !_isScaleBounce) { _velocity = ccp((position.x - _lastPos.x)/2, (position.y - _lastPos.y)/2); _lastPos = position; } else { _velocity = ccp(_velocity.x * friction, _velocity.y *friction); position = ccpAdd(position, _velocity); self.position = position; } if (_isScaleBounce && !_isTouchBegin) { float min = fabsf(self.scale - MIN_SCALE); float max = fabsf(self.scale - MAX_SCALE); int dif = max > min ? 1 : -1; if ((scale > MAX_SCALE - SCALE_BOUNCE_AREA) || (scale < MIN_SCALE + SCALE_BOUNCE_AREA)) { CGFloat newSscale = scale + dif * (delta * friction); [self scale:newSscale scaleCenter:_touchLoc]; } else { _isScaleBounce = NO; } } }

    Read the article

  • PHP city-sim castle layout

    - by Gert
    I am currently contemplating the layout system for my php based game but i've run into a couple of worries. So my idea is a 9X9 grid where the center 3X3 are inner castle. The inner castle will be 6X6 if you enter it(click on it). and with the option to expand the inner castle converting one of the 9X9 tiles to a 4X4 inner castle tile. So here is my question: What is the best way to tackle this type of layout? my original idea was a 18X18 grid and saving it in the db as (idCastle, Y, X) where X is a string of 18 numbers long telling me if the tile is an inner/outer tile or a inner/outer building. but i am not really fond of this idea and would like to hear some other ideas on how to tackle this. Thanks in Advance, Gert

    Read the article

  • Batching dynamic sprites in OpenGL

    - by Aaron
    I'm trying to wrap my head around how batching is done in a 2D sprite-based game. My understanding is I'd get the vertices that represent each sprite I want to draw and stuff them all into a single mesh. That way I'd only need a single draw call to render everything. Does this apply when the sprites I render are different between frames, or when some sprites are moving? Because it sounds like I'd then have to recreate my batch mesh each frame, using either glDrawArrays/glDrawElements or a streaming VBO I assume. Does this sound correct?

    Read the article

  • How can I use WebGL to create a tile-based multi-layer scrolling platform game?

    - by Nicholas Hill
    I've found WebGL (based on OpenGL) to be a fiendish and unforgiving framework for those learning to write HTML5-based games. Despite the presence of many examples on how to get started, I'm really struggling to understand how I could simply load a bunch of images and render them to a canvas quickly using WebGL. My specific scenario involves trying to render a map using a bespoke but simple multi-layered tile engine, where each value in a three dimensional array points to the image to use for that location in the rendered image. Think "Sonic the Hedgehog" via tilesets, tiles, maps, layers, sprites etc. Can anyone enlighten me: 1) How can I load an image that I can use as a texture in WebGL? 2) How can I dynamically select an image at run time and draw it at any co-ordinate, that I also select at run time?

    Read the article

  • Apply bone tranforms when importing FBX in XNA

    - by hichaeretaqua
    Preconditions: I have some models, that does only contain some meshes and one texture. There is no animation within the model. An example: a model of a table. I want to draw the Model with a custom effect, so I have to swap the effect after loading the model. In order to draw them correctly, I have to apply the bone transformation manually on each draw for each mesh and effect as can be seen here. So there are two questions: Is there a option during import that allows my to apply the bone transformation on all vertices, so that during draw call I should not have to do this? Is there a option during import that merges all vertices into a Vertex- and IndexBuffer, that allows me to draw the whole model with just one call? I'm pretty sure that the build-in "Autodesk FBX - XNA Framework" does not support this features, but maybe there is an other imported available or an other possibility I missed. The aim is to speed up rendering a little bit especially by using instancing. So having one VertexBuffer to draw at one time would be pretty nice.

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Projective texture and deferred lighting

    - by Vodácek
    In my previous question, I asked whether it is possible to do projective texturing with deferred lighting. Now (more than half a year later) I have a problem with my implementation of the same thing. I am trying to apply this technique in light pass. (my projector doesn't affect albedo). I have this projector View a Projection matrix: Matrix projection = Matrix.CreateOrthographicOffCenter(-halfWidth * Scale, halfWidth * Scale, -halfHeight * Scale, halfHeight * Scale, 1, 100000); Matrix view = Matrix.CreateLookAt(Position, Target, Vector3.Up); Where halfWidth and halfHeight is are half of the texture's width and height, Position is the Projector's position and target is the projector's target. This seems to be ok. I am drawing full screen quad with this shader: float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; texture2D ProjectorTexture; float4x4 ProjectorViewProjection; sampler2D depthSampler = sampler_state { texture = <DepthTexture>; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = <NormalTexture>; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D projectorSampler = sampler_state { texture = <ProjectorTexture>; AddressU = Clamp; AddressV = Clamp; }; float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position :POSITION0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = input.Position; output.PositionCopy=output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float2 texCoord =postProjToScreen(input.PositionCopy) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); //return float4(depth.r,0,0,1); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; //compute projection float3 projection=tex2D(projectorSampler,postProjToScreen(mul(position,ProjectorViewProjection)) + halfPixel()); return float4(projection,1); } In first part of pixel shader is recovered position from G-buffer (this code I am using in other shaders without any problem) and then is tranformed to projector viewprojection space. Problem is that projection doesn't appear. Here is an image of my situation: The green lines are the rendered projector frustum. Where is my mistake hidden? I am using XNA 4. Thanks for advice and sorry for my English. EDIT: Shader above is working but projection was too small. When I changed the Scale property to a large value (e.g. 100), the projection appears. But when the camera moves toward the projection, the projection expands, as can bee seen on this YouTube video.

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • 2D Side scroller collision detection

    - by Shanon Simmonds
    I am trying to do some collision detection between objects and tiles, but the tiles do not have there own x and y position, they are just rendered to the x and y position given, there is an array of integers which has the ids of the tiles to use(which are given from an image and all the different colors are assigned different tiles) int x0 = camera.x / 16; int y0 = camera.y / 16; int x1 = (camera.x + screen.width) / 16; int y1 = (camera.y + screen.height) / 16; for(int y = y0; y < y1; y++) { if(y < 0 || y >= height) continue; // height is the height of the level for(int x = x0; x < x1; x++) { if(x < 0 || x >= width) continue; // width is the width of the level getTile(x, y).render(screen, x * 16, y * 16); } } I tried using the levels getTile method to see if the tile that the object was going to advance to, to see if it was a certain tile, but, it seems to only work in some directions. Any ideas on what I'm doing wrong and fixes would be greatly appreciated. What's wrong is that it doesn't collide properly in every direction and also this is how I tested for a collision in the objects class if(!level.getTile((x + xa) / 16, (y + ya) / 16).isSolid()) { x += xa; y += ya; } EDIT: xa and ya represent the direction as well as the movement, if xa is negative it means the object is moving left, if its positive it is moving right, and same with ya except negative for up, positive for down.

    Read the article

  • Writing Game Engine from scratch with OpenGL [on hold]

    - by Wazery
    I want to start writing my game engine from scratch for learning purpose, what is the prerequisites and how to do that, what programming languages and things you recommend me? Also if you have good articles and books on that it will be great. Thanks in advance! My Programming languages and tools are: C/C++ is it good to use only C? Python OpenGL Git GDB What I want to learn from it: Core Game Engine Rendering / Graphics Game Play/Rules Input (keyboard/mouse/controllers, etc) In Rendering/Graphics: 3D Shading Lighting Texturing

    Read the article

  • Make Interactive Story more Variable [on hold]

    - by Guest0343
    I'm creating an interactive story that allows users to make choices based on a story. However, it doesn't give users room to do much creatively on their own. They are bound by the script at the moment. I'm wondering if anyone can suggest any element I can add that might give users some personalization. I was thinking about maybe character editing, but that doesn't add too much. I also thought about a stats system where they can have certain attributes and stats they might earn, but I'm not sure how they might use those stats. Anything is helpful!

    Read the article

  • Game Input mouse filtering

    - by aaron
    I'm having a problem with filtering mouse inputs, the method I am doing right know moves the cursor back to the center of the screen each frame. But I cant do this because it messes with other things. Does anyone know how to implement this with delta mouse movement. Here is the relevant code. void update() { static float oldX = 0; static float oldY = 0; static float walkSpeed = .05f; static float sensitivity = 0.002f;//mouse sensitivity static float smooth = 0.7f;//mouse smoothing (0.0 - 0.99) float w = ScreenResolution.x/2.0f; float h = ScreenResolution.y/2.0f; Vec2f scrc(w,h); Vec2f mpos(getMouseX(),getMouseY()); float x = scrc.x-mpos.x; float y = scrc.y-mpos.y; oldX = (oldX*smooth + x*(1.0-smooth)); oldY = (oldY*smooth + y*(1.0-smooth)); x = oldX * sensitivity; y = oldY * sensitivity; camera->rotate(Vec3f(y,0,0)); transform->setRotation(transform->getRotation()*Quaternionf::fromAxisAngle(0.0f,1.0f,0.0f,-x)); setMousePosition((int)scrc.x,(int)scrc.y);//THIS IS THE PROBLEM LINE HOW CAN I AVOID THIS .... }

    Read the article

  • Posting to facebook from unity3d on iOS and android

    - by Guye Incognito
    I've made a game in unity3d for iOS and android. We have our own server to manage high scores and stuff like that. We'd also like to have the possibility post high scores to facebook, and also do things like this.. If you and your friend are have both posted a score for our game to facebook and you post a better score then you can send them a notification. I'm reading around about this now, but I'm wondering whats the normal way people do this? Possible ways.. Use the unity facebook SDK Looks like it would work but there are different versions for iOS and android. Call the facebook graph API directly from our server. This would unify the iOS and android versions and also it makes sense as our server holds / deals with all the highscore info. I can just imagine difficulties with logging in / authentication

    Read the article

  • Per-pixel collision detection - why does XNA transform matrix return NaN when adding scaling?

    - by JasperS
    I looked at the TransformCollision sample on MSDN and added the Matrix.CreateTranslation part to a property in my collision detection code but I wanted to add scaling. The code works fine when I leave scaling commented out but when I add it and then do a Matrix.Invert() on the created translation matrix the result is NaN ({NaN,NaN,NaN},{NaN,NaN,NaN},...) Can anyone tell me why this is happening please? Here's the code from the sample: // Build the block's transform Matrix blockTransform = Matrix.CreateTranslation(new Vector3(-blockOrigin, 0.0f)) * // Matrix.CreateScale(block.Scale) * would go here Matrix.CreateRotationZ(blocks[i].Rotation) * Matrix.CreateTranslation(new Vector3(blocks[i].Position, 0.0f)); public static bool IntersectPixels( Matrix transformA, int widthA, int heightA, Color[] dataA, Matrix transformB, int widthB, int heightB, Color[] dataB) { // Calculate a matrix which transforms from A's local space into // world space and then into B's local space Matrix transformAToB = transformA * Matrix.Invert(transformB); // When a point moves in A's local space, it moves in B's local space with a // fixed direction and distance proportional to the movement in A. // This algorithm steps through A one pixel at a time along A's X and Y axes // Calculate the analogous steps in B: Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, transformAToB); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, transformAToB); // Calculate the top left corner of A in B's local space // This variable will be reused to keep track of the start of each row Vector2 yPosInB = Vector2.Transform(Vector2.Zero, transformAToB); // For each row of pixels in A for (int yA = 0; yA < heightA; yA++) { // Start at the beginning of the row Vector2 posInB = yPosInB; // For each pixel in this row for (int xA = 0; xA < widthA; xA++) { // Round to the nearest pixel int xB = (int)Math.Round(posInB.X); int yB = (int)Math.Round(posInB.Y); // If the pixel lies within the bounds of B if (0 <= xB && xB < widthB && 0 <= yB && yB < heightB) { // Get the colors of the overlapping pixels Color colorA = dataA[xA + yA * widthA]; Color colorB = dataB[xB + yB * widthB]; // If both pixels are not completely transparent, if (colorA.A != 0 && colorB.A != 0) { // then an intersection has been found return true; } } // Move to the next pixel in the row posInB += stepX; } // Move to the next row yPosInB += stepY; } // No intersection found return false; }

    Read the article

  • Unity3D problem. Bullets fall down instead of flying like they should

    - by user2342080
    I used this tutorial as a reference. http://www.youtube.com/watch?v=3L8eaoyZ0Go My problem is that whenever I play the game, EVERYTHING works but the bullets. It just falls down instead of flying forward. This is the flash version of the game: http://v1k.me/swf/ Can some one help me out? Should I upload the project? This is my "Shoot.js": public var bulletPrefab : Transform; public var bulletSpeed : float = 20; function Update() { if(Input.GetMouseButton(0)) { if(bulletPrefab || bulletSpeed) { var bulletCreate = Instantiate(bulletPrefab, GameObject.Find("SpawnPoint").transform.position, Quaternion.identity); bulletCreate.rigidbody.AddForce(transform.forward * bulletSpeed); } } }

    Read the article

< Previous Page | 506 507 508 509 510 511 512 513 514 515 516 517  | Next Page >