Search Results

Search found 1638 results on 66 pages for 'multithreading'.

Page 53/66 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >

  • Implementing deadlock condition

    - by Bhaskar
    I am trying to implementing deadlock condition but somehow I am not able to get it working. Both the threads Thread1 and Thread2 are entering in the run function but only one of them enters in Sub/Sum depending on who entered run first. Example : if Thread2 entered run first the it will call sub() and Thread1 never calls sum(). I have also added sleep time so that Thread2 sleeps before calling sum() and Thread1 gets enough time to enter Sum() but Thread1 never enters. public class ExploringThreads { public static void main(String[] args) { // TODO Auto-generated method stub threadexample a1 = new threadexample(); Thread t1 = new Thread(a1, "Thread1"); Thread t2 = new Thread(a1,"Thread2"); t1.start(); t2.start(); } } class threadexample implements Runnable{ public int a = 10; public void run(){ if(Thread.currentThread().getName().equals("Thread1")) sum(); else if(Thread.currentThread().getName().equals("Thread2")) sub(); } public synchronized void sum() { try { Thread.sleep(2000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"In Sum"); sub(); } public synchronized void sub() { try { Thread.sleep(2000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+"In Sub"); sum(); } }

    Read the article

  • Does the Java Memory Model (JSR-133) imply that entering a monitor flushes the CPU data cache(s)?

    - by Durandal
    There is something that bugs me with the Java memory model (if i even understand everything correctly). If there are two threads A and B, there are no guarantees that B will ever see a value written by A, unless both A and B synchronize on the same monitor. For any system architecture that guarantees cache coherency between threads, there is no problem. But if the architecture does not support cache coherency in hardware, this essentially means that whenever a thread enters a monitor, all memory changes made before must be commited to main memory, and the cache must be invalidated. And it needs to be the entire data cache, not just a few lines, since the monitor has no information which variables in memory it guards. But that would surely impact performance of any application that needs to synchronize frequently (especially things like job queues with short running jobs). So can Java work reasonably well on architectures without hardware cache-coherency? If not, why doesn't the memory model make stronger guarantees about visibility? Wouldn't it be more efficient if the language would require information what is guarded by a monitor? As i see it the memory model gives us the worst of both worlds, the absolute need to synchronize, even if cache coherency is guaranteed in hardware, and on the other hand bad performance on incoherent architectures (full cache flushes). So shouldn't it be more strict (require information what is guarded by a monitor) or more lose and restrict potential platforms to cache-coherent architectures? As it is now, it doesn't make too much sense to me. Can somebody clear up why this specific memory model was choosen? EDIT: My use of strict and lose was a bad choice in retrospect. I used "strict" for the case where less guarantees are made and "lose" for the opposite. To avoid confusion, its probably better to speak in terms of stronger or weaker guarantees.

    Read the article

  • .NET: Start a thread as suspended

    - by Ikaso
    In unmanaged code you can create a thread in suspended state. In .NET Framework I can't find this option. Is it because the Thread constructor puts the thread in a suspended state? Is there other reasons why this is not supported?

    Read the article

  • Thread class closing from other Class (Activity) with protected void onStop() Android

    - by user1761337
    I have a Problem with Closing the Thread. I will Closing the Thread with onStop,onPause and onDestroy. This is my Source in the Activity Class: @Override protected void onStop(){ super.onStop(); finish(); } @Override protected void onPause() { super.onPause(); finish(); } @Override public void onDestroy() { this.mWakeLock.release(); super.onDestroy(); } And the Thread Class: public class GameThread extends Thread { private SurfaceHolder mSurfaceHolder; private Handler mHandler; private Context mContext; private Paint mLinePaint; private Paint blackPaint; //for consistent rendering private long sleepTime; //amount of time to sleep for (in milliseconds) private long delay=1000/30; //state of game (Running or Paused). int state = 1; public final static int RUNNING = 1; public final static int PAUSED = 2; public final static int STOPED = 3; GameSurface gEngine; public GameThread(SurfaceHolder surfaceHolder, Context context, Handler handler,GameSurface gEngineS){ //data about the screen mSurfaceHolder = surfaceHolder; mHandler = handler; mContext = context; gEngine=gEngineS; } //This is the most important part of the code. It is invoked when the call to start() is //made from the SurfaceView class. It loops continuously until the game is finished or //the application is suspended. private long beforeTime; @Override public void run() { //UPDATE while (state==RUNNING) { Log.d("State","Thread is runnig"); //time before update beforeTime = System.nanoTime(); //This is where we update the game engine gEngine.Update(); //DRAW Canvas c = null; try { //lock canvas so nothing else can use it c = mSurfaceHolder.lockCanvas(null); synchronized (mSurfaceHolder) { //clear the screen with the black painter. //reset the canvas c.drawColor(Color.BLACK); //This is where we draw the game engine. gEngine.doDraw(c); } } finally { // do this in a finally so that if an exception is thrown // during the above, we don't leave the Surface in an // inconsistent state if (c != null) { mSurfaceHolder.unlockCanvasAndPost(c); } } this.sleepTime = delay-((System.nanoTime()-beforeTime)/1000000L); try { //actual sleep code if(sleepTime>0){ this.sleep(sleepTime); } } catch (InterruptedException ex) { Logger.getLogger(GameThread.class.getName()).log(Level.SEVERE, null, ex); } while (state==PAUSED){ Log.d("State","Thread is pausing"); try { this.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } }} How i can close the Thread from Activity Class??

    Read the article

  • Multithreaded update of multiple ProgressBars

    - by ClaudeS
    I have developped an application that can process data (in my case image algorithms performed on videos). I have developed different ProcessingMethods. Sometimes several videos are processed in parallel. Each process runs in a seperate thread. I have a GUI with several ProgressBars, one for each thread that is processing data. What is a good way to update the ProgressBar? Today my GUI is creating all the processing threads and one progressBars for each thread. Then I pass those progressBars to the threads, which pass them to the ProcessingMethod. The ProcessingMethod will then update the progressbar (using Invoke(..)). I have different processingMethods. Within each of these methods I have copy-paste code to update the progressBar. Although I am a new to programming, I know copy-paste is not good. What is a good way to make it better?

    Read the article

  • Locking individual elements in a static collection?

    - by user638474
    I have a static collection of objects that will be frequently updated from multiple threads. Is it possible to lock individual objects in a collection instead of locking the entire collection so that only threads trying to access the same object in the collection would get blocked instead of every thread? If there is a better way to update objects in a collection from multiple threads, I'm all ears.

    Read the article

  • Debug.writeline locks

    - by Carra
    My program frequently stops with a deadlock. When I do a break-all and look at the threads I see that three threads are stuck in our logging function: public class Logging { public static void WriteClientLog(LogLevel logLevel, string message) { #if DEBUG System.Diagnostics.Debug.WriteLine(String.Format("{0} {1}", DateTime.Now.ToString("HH:mm:ss"), message)); //LOCK #endif //...Log4net logging } } If I let the program continue the threads are still stuck on that line. I can't see where this can lock. The debug class, string class & datetime class seem to be thread safe. The error goes away when I remove the "#if DEBUG System... #endif" code but I'm curious why this behavior happens. Thread one: public void CleanCache() { Logging.WriteClientLog(LogLevel.Debug, "Start clean cache.");//Stuck } Thread two: private void AliveThread() { Logging.WriteClientLog(LogLevel.Debug, "Check connection");//Stuck }

    Read the article

  • Python threading question (Working with a method that blocks forever)

    - by Nix
    I am trying to wrap a thread around some receiving logic in python. Basically we have an app, that will have a thread in the background polling for messages, the problem I ran into is that piece that actually pulls the messages waits forever for a message. Making it impossible to terminate... I ended up wrapping the pull in another thread, but I wanted to make sure there wasn't a better way to do it. Original code: class Manager: def __init__(self): receiver = MessageReceiver() receiver.start() #do other stuff... class MessageReceiver(Thread): receiver = Receiver() def __init__(self): Thread.__init__(self) def run(self): #stop is a flag that i use to stop the thread... while(not stopped ): #can never stop because pull below blocks message = receiver.pull() print "Message" + message What I refectored to: class Manager: def __init__(self): receiver = MessageReceiver() receiver.start() class MessageReceiver(Thread): receiver = Receiver() def __init__(self): Thread.__init__(self) def run(self): pullThread = PullThread(self.receiver) pullThread.start() #stop is a flag that i use to stop the thread... while(not stopped and pullThread.last_message ==None): pass message = pullThread.last_message print "Message" + message class PullThread(Thread): last_message = None def __init__(self, receiver): Thread.__init(self, target=get_message, args=(receiver)) def get_message(self, receiver): self.last_message = None self.last_message = receiver.pull() return self.last_message I know the obvious locking issues exist, but is this the appropriate way to control a receive thread that waits forever for a message? One thing I did notice was this thing eats 100% cpu while waiting for a message... **If you need to see the stopping logic please let me know and I will post.

    Read the article

  • How do I read and write to a file using threads in java?

    - by WarmWaffles
    I'm writing an application where I need to read blocks in from a single file, each block is roughly 512 bytes. I am also needing to write blocks simultaneously. One of the ideas I had was BlockReader implements Runnable and BlockWriter implements Runnable and BlockManager manages both the reader and writer. The problem that I am seeing with most examples that I have found was locking problems and potential deadlock situations. Any ideas how to implement this?

    Read the article

  • Manually Increasing the Amount of CPU a Java Application Uses

    - by SkylineAddict
    I've just made a program with Eclipse that takes a really long time to execute. It's taking even longer because it's loading my CPU to 25% only (I'm assuming that is because I'm using a quad-core and the program is only using one core). Is there any way to make the program use all 4 cores to max it out? Java is supposed to be natively multi-threaded, so I don't understand why it would only use 25%.

    Read the article

  • What is the absolute fastest way to implement a concurrent queue with ONLY one consumer and one producer?

    - by JohnPristine
    java.util.concurrent.ConcurrentLinkedQueue comes to mind, but is it really optimum for this two-thread scenario? I am looking for the minimum latency possible on both sides (producer and consumer). If the queue is empty you can immediately return null AND if the queue is full you can immediately discard the entry you are offering. Does ConcurrentLinkedQueue use super fast and light locks (AtomicBoolean) ? Has anyone benchmarked ConcurrentLinkedQueue or knows about the ultimate fastest way of doing that? Additional Details: I imagine the queue should be a fair one, meaning the consumer should not make the consumer wait any longer than it needs (by front-running it) and vice-versa.

    Read the article

  • Tomcat thread waiting on and locking the same resource

    - by Adam Matan
    Consider the following Java\Tomcat thread dump: "http-0.0.0.0-4080-4" daemon prio=10 tid=0x0000000019a2b000 nid=0x360e in Object.wait() [0x0000000040b71000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00002ab5565fe358> (a org.apache.tomcat.util.net.JIoEndpoint$Worker) at java.lang.Object.wait(Object.java:485) at org.apache.tomcat.util.net.JIoEndpoint$Worker.await(JIoEndpoint.java:458) - locked <0x00002ab5565fe358> (a org.apache.tomcat.util.net.JIoEndpoint$Worker) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:484) at java.lang.Thread.run(Thread.java:662) Is this a deadlock? It seems that the same resource (0x00002ab5565fe358) is both locked and waited on - what does it mean?

    Read the article

  • boost scoped_lock mutex crashes

    - by JahSumbar
    hello, I have protected a std::queue's access functions, push, pop, size, with boost::mutexes and boost::mutex::scoped_lock in these functions from time to time it crashes in a scoped lock the call stack is this: 0 0x0040f005 boost::detail::win32::interlocked_bit_test_and_set include/boost/thread/win32/thread_primitives.hpp 361 1 0x0040e879 boost::detail::basic_timed_mutex::timed_lock include/boost/thread/win32/basic_timed_mutex.hpp 68 2 0x0040e9d3 boost::detail::basic_timed_mutex::lock include/boost/thread/win32/basic_timed_mutex.hpp 64 3 0x0040b96b boost::unique_lock<boost::mutex>::lock include/boost/thread/locks.hpp 349 4 0x0040b998 unique_lock include/boost/thread/locks.hpp 227 5 0x00403837 MyClass::inboxSize - this is my inboxSize function that uses this code: MyClass::inboxSize () { boost::mutex::scoped_lock scoped_lock(m_inboxMutex); return m_inbox.size(); } and the mutex is declared like this: boost::mutex m_inboxMutex; it crashes at the last pasted line in this function: inline bool interlocked_bit_test_and_set(long* x,long bit) { long const value=1<<bit; long old=*x; and x has this value: 0xababac17 Thanks for the help

    Read the article

  • Faking a Single Address Space

    - by dsimcha
    I have a large scientific computing task that parallelizes very well with SMP, but at too fine grained a level to be easily parallelized via explicit message passing. I'd like to parallelize it across address spaces and physical machines. Is it feasible to create a scheduler that would parallelize already multithreaded code across multiple physical computers under the following conditions: The code is already multithreaded and can scale pretty well on SMP configurations. The fact that not all of the threads are running in the same address space or on the same physical machine must be transparent to the program, even if this comes at a significant performance penalty in some use cases. You may assume that all of the physical machines involved are running operating systems and CPU architectures that are binary compatible. Things like locks and atomic operations may be slow (having network latency to deal with and all) but must "just work".

    Read the article

  • Using AsyncTask, but experiencing unexpected behaviour

    - by capcom
    Please refer to the following code which continuously calls a new AsyncTask. The purpose of the AsyncTask is to make an HTTP request, and update the string result. package room.temperature; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.concurrent.ExecutionException; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import org.apache.http.NameValuePair; import org.apache.http.client.HttpClient; import org.apache.http.client.entity.UrlEncodedFormEntity; import org.apache.http.client.methods.HttpPost; import org.apache.http.impl.client.DefaultHttpClient; import android.app.Activity; import android.os.AsyncTask; import android.os.Bundle; import android.util.Log; import android.widget.TextView; public class RoomTemperatureActivity extends Activity { String result = null; StringBuilder sb=null; TextView TemperatureText, DateText; ArrayList<NameValuePair> nameValuePairs; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); TemperatureText = (TextView) findViewById(R.id.temperature); DateText = (TextView) findViewById(R.id.date); nameValuePairs = new ArrayList<NameValuePair>(); for (int i = 0; i < 10; i++) { RefreshValuesTask task = new RefreshValuesTask(); task.execute(""); } } // The definition of our task class private class RefreshValuesTask extends AsyncTask<String, Integer, String> { @Override protected void onPreExecute() { super.onPreExecute(); } @Override protected String doInBackground(String... params) { InputStream is = null; try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost("http://mywebsite.com/roomtemp/tempscript.php"); httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); is = entity.getContent(); } catch(Exception e) { Log.e("log_tag", "Error in http connection" + e.toString()); } try { BufferedReader reader = new BufferedReader(new InputStreamReader(is,"iso-8859-1"),8); sb = new StringBuilder(); sb.append(reader.readLine()); is.close(); result=sb.toString(); } catch(Exception e) { Log.e("log_tag", "Error converting result " + e.toString()); } return result; } @Override protected void onProgressUpdate(Integer... values) { super.onProgressUpdate(values); } @Override protected void onPostExecute(String result) { super.onPostExecute(result); //System.out.println(result); setValues(result); } } public void setValues(String resultValue) { System.out.println(resultValue); String[] values = resultValue.split("&"); TemperatureText.setText(values[0]); DateText.setText(values[1]); } } The problem I am experiencing relates to the AsyncTask in some way or the function setValues(), but I am not sure how. Essentially, I want each call to the AsyncTask to run, eventually in an infinite while loop, and update the TextView fields as I have attempted in setValues. I have tried since yesterday after asking a question which led to this code, for reference. Oh yes, I did try using the AsyncTask get() method, but that didn't work either as I found out that it is actually a synchronous call, and renders the whole point of AsyncTask useless.

    Read the article

  • C++ volatile required when spinning on boost::shared_ptr operator bool()?

    - by JaredC
    I have two threads referencing the same boost::shared_ptr: boost::shared_ptr<Widget> shared; On thread is spinning, waiting for the other thread to reset the boost::shared_ptr: while(shared) boost::thread::yield(); And at some point the other thread will call: shared.reset(); My question is whether or not I need to declare the shared pointer as volatile to prevent the compiler from optimizing the call to shared.operator bool() out of the loop and never detecting the change? I know that if I were simply looping on a variable, waiting for it to reach 0 I would need volatile, but I'm not sure if boost::shared_ptr is implemented in such a way that it is not necessary here.

    Read the article

  • Will lock() statement block all threads in the proccess/appdomain?

    - by MikeJ
    Maybe the question sounds silly, but I don't understand 'something about threads and locking and I would like to get a confirmation (here's why I ask). So, if I have 10 servers and 10 request in the same time come to each server, that's 100 request across the farm. Without locking, thats 100 request to the database. If I do something like this: private static readonly object myLockHolder = new object(); if (Cache[key] == null) { lock(myLockHolder) { if (Cache[key] == null) { Cache[key] = LengthyDatabaseCall(); } } } How many database requests will I do? 10? 100? Or as much as I have threads?

    Read the article

  • How to debug ConcurrentModificationException?

    - by Dani
    I encountered ConcurrentModificationException and by looking at it I can't see the reason why it's happening; the area throwing the exception and all the places modifying the collection are surrounded by synchronized (this.locks.get(id)) { ... } // locks is a HashMap<String, Object>; I tried to catch the the pesky thread but all I could nail (by setting a breakpoint in the exception) is that the throwing thread owns the monitor while the other thread (there are two threads in the program) sleeps. How should I proceed? What do you usually do when you encounter similar threading issues?

    Read the article

  • How does lock(syncRoot) make sense on a static method?

    - by Rising Star
    The following code is excerpted from the (Windows Identity Foundation SDK) template that MS uses to create a new Security Token Service Web Site. public static CustomSecurityTokenServiceConfiguration Current { get { HttpApplicationState httpAppState = HttpContext.Current.Application; CustomSecurityTokenServiceConfiguration customConfiguration = httpAppState.Get( CustomSecurityTokenServiceConfigurationKey ) as CustomSecurityTokenServiceConfiguration; if ( customConfiguration == null ) { lock ( syncRoot ) { customConfiguration = httpAppState.Get( CustomSecurityTokenServiceConfigurationKey ) as CustomSecurityTokenServiceConfiguration; if ( customConfiguration == null ) { customConfiguration = new CustomSecurityTokenServiceConfiguration(); httpAppState.Add( CustomSecurityTokenServiceConfigurationKey, customConfiguration ); } } } return customConfiguration; } } I'm relatively new to multi-threaded programming. I assume that the reason for the lock statement is to make this code thread-safe in the event that two web requests arrive at the web site at the same time. However, I would have thought that using lock (syncRoot) would not make sense because syncRoot refers to the current instance that this method is operating on... but this is a static method? How does this make sense?

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59 60  | Next Page >