Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 543/1274 | < Previous Page | 539 540 541 542 543 544 545 546 547 548 549 550  | Next Page >

  • Incorrect lighting results with deferred rendering

    - by Lasse
    I am trying to render a light-pass to a texture which I will later apply on the scene. But I seem to calculate the light position wrong. I am working on view-space. In the image above, I am outputting the attenuation of a point light which is currently covering the whole screen. The light is at 0,10,0 position, and I transform it to view-space first: Vector4 pos; Vector4 tmp = new Vector4 (light.Position, 1); // Transform light position for shader Vector4.Transform (ref tmp, ref Camera.ViewMatrix, out pos); shader.SendUniform ("LightViewPosition", ref pos); Now to me that does not look as it should. What I think it should look like is that the white area should be on the center of the scene. The camera is at the corner of the scene, and it seems as if the light would move along with the camera. Here's the fragment shader code: void main(){ // default black color vec3 color = vec3(0); // Pixel coordinates on screen without depth vec2 PixelCoordinates = gl_FragCoord.xy / ScreenSize; // Get pixel position using depth from texture vec4 depthtexel = texture( DepthTexture, PixelCoordinates ); float depthSample = unpack_depth(depthtexel); // Get pixel coordinates on camera-space by multiplying the // coordinate on screen-space by inverse projection matrix vec4 world = (ImP * RemapMatrix * vec4(PixelCoordinates, depthSample, 1.0)); // Undo the perspective calculations vec3 pixelPosition = (world.xyz / world.w) * 3; // How far the light should reach from it's point of origin float lightReach = LightColor.a / 2; // Vector in between light and pixel vec3 lightDir = (LightViewPosition.xyz - pixelPosition); float lightDistance = length(lightDir); vec3 lightDirN = normalize(lightDir); // Discard pixels too far from light source //if(lightReach < lightDistance) discard; // Get normal from texture vec3 normal = normalize((texture( NormalTexture, PixelCoordinates ).xyz * 2) - 1); // Half vector between the light direction and eye, used for specular component vec3 halfVector = normalize(lightDirN + normalize(-pixelPosition)); // Dot product of normal and light direction float NdotL = dot(normal, lightDirN); float attenuation = pow(lightReach / lightDistance, LightFalloff); // If pixel is lit by the light if(NdotL > 0) { // I have moved stuff from here to above so I can debug them. // Diffuse light color color += LightColor.rgb * NdotL * attenuation; // Specular light color color += LightColor.xyz * pow(max(dot(halfVector, normal), 0.0), 4.0) * attenuation; } RT0 = vec4(color, 1); //RT0 = vec4(pixelPosition, 1); //RT0 = vec4(depthSample, depthSample, depthSample, 1); //RT0 = vec4(NdotL, NdotL, NdotL, 1); RT0 = vec4(attenuation, attenuation, attenuation, 1); //RT0 = vec4(lightReach, lightReach, lightReach, 1); //RT0 = depthtexel; //RT0 = 100 / vec4(lightDistance, lightDistance, lightDistance, 1); //RT0 = vec4(lightDirN, 1); //RT0 = vec4(halfVector, 1); //RT0 = vec4(LightColor.xyz,1); //RT0 = vec4(LightViewPosition.xyz/100, 1); //RT0 = vec4(LightPosition.xyz, 1); //RT0 = vec4(normal,1); } What am I doing wrong here?

    Read the article

  • Texture errors in CubeMap

    - by shade4159
    I am trying to apply this texture as a cubemap. This is my result: Clearly I am doing something with my texture coordinates, but I cannot for the life of me figure out what. I don't even see a pattern to the texture fragments. They just seem like a jumble of different faces. Can anyone shed some light on this? Vertex shader: #version 400 in vec4 vPosition; in vec3 inTexCoord; smooth out vec3 texCoord; uniform mat4 projMatrix; void main() { texCoord = inTexCoord; gl_Position = projMatrix * vPosition; } My fragment shader: #version 400 smooth in vec3 texCoord; out vec4 fColor; uniform samplerCube textures void main() { fColor = texture(textures,texCoord); } Vertices of cube: point4 worldVerts[8] = { vec4( 15, 15, 15, 1 ), vec4( -15, 15, 15, 1 ), vec4( -15, 15, -15, 1 ), vec4( 15, 15, -15, 1 ), vec4( -15, -15, 15, 1 ), vec4( 15, -15, 15, 1 ), vec4( 15, -15, -15, 1 ), vec4( -15, -15, -15, 1 ) }; Cube rendering: void worldCube(point4* verts, int& Index, point4* points, vec3* texVerts) { quadInv( verts[0], verts[1], verts[2], verts[3], 1, Index, points, texVerts); quadInv( verts[6], verts[3], verts[2], verts[7], 2, Index, points, texVerts); quadInv( verts[4], verts[5], verts[6], verts[7], 3, Index, points, texVerts); quadInv( verts[4], verts[1], verts[0], verts[5], 4, Index, points, texVerts); quadInv( verts[5], verts[0], verts[3], verts[6], 5, Index, points, texVerts); quadInv( verts[4], verts[7], verts[2], verts[1], 6, Index, points, texVerts); } Backface function (since this is the inside of the cube): void quadInv( const point4& a, const point4& b, const point4& c, const point4& d , int& Index, point4* points, vec3* texVerts) { quad( a, d, c, b, Index, points, texVerts, a.to_3(), b.to_3(), c.to_3(), d.to_3()); } And the quad drawing function: void quad( const point4& a, const point4& b, const point4& c, const point4& d, int& Index, point4* points, vec3* texVerts, const vec3& tex_a, const vec3& tex_b, const vec3& tex_c, const vec3& tex_d) { texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_b.normalized(); points[Index] = b; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_d.normalized(); points[Index] = d; Index++; } Edit: I forgot to mention, in the image, the camera is pointed directly at the back face of the cube. You can kind of see the diagonals leading out of the corners, if you squint.

    Read the article

  • Would someone please explain Octree Collisions to me?

    - by A-Type
    I've been reading everything I can find on the subject and I feel like the pieces are just about to fall into place, but I just can't quite get it. I'm making a space game, where collisions will occur between planets, ships, asteroids, and the sun. Each of these objects can be subdivided into 'chunks', which I have implemented to speed up rendering (the vertices can and will change often at runtime, so I've separated the buffers). These subdivisions also have bounding primitives to test for collision. All of these objects are made of blocks (yeah, it's that kind of game). Blocks can also be tested for rough collisions, though they do not have individual bounding primitives for memory reasons. I think the rough testing seems to be sufficient, though. So, collision needs to be fairly precise; at block resolution. Some functions rely on two blocks colliding. And, of course, attacking specific blocks is important. Now what I am struggling with is filtering my collision pairs. As I said, I've read a lot about Octrees, but I'm having trouble applying it to my situation as many tutorials are vague with very little code. My main issues are: Are Octrees recalculated each frame, or are they stored in memory and objects are shuffled into different divisions as they move? Despite all my reading I still am not clear on this... the vagueness of it all has been frustrating. How far do Octrees subdivide? Planets in my game are quite large, while asteroids are smaller. Do I subdivide to the size of the planet, or asteroid (where planet is in multiple divisions)? Or is the limit something else entirely, like number of elements in the division? Should I load objects into the octrees as 'chunks' or in the whole, then break into chunks later? This could be specific to my implementation, I suppose. I was going to ask about how big my root needed to be, but I did manage to find this question, and the second answer seems sufficient for me. I'm afraid I don't really get what he means by adding new nodes and doing subdivisions upon adding new objects, probably because I'm confused about whether the tree is maintained in memory or recalculated per-frame.

    Read the article

  • Path tables or real time searching for AI?

    - by SirYakalot
    What is the more common practice in commercial games; path lookup tables or real time searches? I've read that in many games path lookup tables are pre-calculated and baked into each map, so to speak, then steering behaviour is used to handle dynamic obstacles. or is it better practice to use optimised hierarchical A* searches? I understand the pro's and cons of each, I'm just curious as to what is most often used in the industry.

    Read the article

  • What can make peaceful game successful?

    - by Miro
    Today, the most successful games are action games like FPS, RPG, MMORPG... I'd like to make peaceful game, but i don't know how to attract people. I can make good graphics, but that's not the main thing that makes people like game more that couple of minutes. The content is important. In game styles mentioned in beginning are main content fight, kill others, make from yourself predator/the most powerful creature/player in the game. But what content can attract people in peaceful game?

    Read the article

  • Why do camera's aspect ratio look good on computer but not on Android devices?

    - by Pooya Fayyaz
    I'm developing a game for Android devices and I have a script that solves the aspect-ratio problem for computer screens but not for my intended target platform. It looks perfect on computer, even when re-sizing the game screen, but not when running my game in landscape mode on mobile phones. This is my script using UnityEngine; using System.Collections; using System.Collections.Generic; public class reso : MonoBehaviour { void Update() { // set the desired aspect ratio (the values in this example are // hard-coded for 16:9, but you could make them into public // variables instead so you can set them at design time) float targetaspect = 16.0f / 9.0f; // determine the game window's current aspect ratio float windowaspect = (float)Screen.width / (float)Screen.height; // current viewport height should be scaled by this amount float scaleheight = windowaspect / targetaspect; // obtain camera component so we can modify its viewport Camera camera = GetComponent<Camera>(); // if scaled height is less than current height, add letterbox if (scaleheight < 1.0f && Screen.width <= 490 ) { Rect rect = camera.rect; rect.width = 1.0f; rect.height = scaleheight; rect.x = 0; rect.y = (1.0f - scaleheight) / 2.0f; camera.rect = rect; } else // add pillarbox { float scalewidth = 1.0f / scaleheight; Rect rect = camera.rect; rect.width = scalewidth; rect.height = 1.0f; rect.x = (1.0f - scalewidth) / 2.0f; rect.y = 0; camera.rect = rect; } } } I figured that my problem occurs in this part of the script: if (scaleheight < 1.0f) { Rect rect = camera.rect; rect.width = 1.0f; rect.height = scaleheight; rect.x = 0; rect.y = (1.0f - scaleheight) / 2.0f; camera.rect = rect; } Its look like this on my mobile phone (portrait): and on landscape mode:

    Read the article

  • Understanding how OpenGL blending works

    - by yuumei
    I am attempting to understand how OpenGL (ES) blending works. I am finding it difficult to understand the documentation and how the results of glBlendFunc and glBlendEquation effect the final pixel that is written. Do the source and destination out of glBlendFunc get added together with GL_FUNC_ADD by default? This seems wrong because "basic" blending of GL_ONE, GL_ONE would output 2,2,2,2 then (Source giving 1,1,1,1 and dest giving 1,1,1,1). I have written the following pseudo-code, what have I got wrong? struct colour { float r, g, b, a; }; colour blend_factor( GLenum factor, colour source, colour destination, colour blend_colour ) { colour colour_factor; float i = min( source.a, 1 - destination.a ); // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml switch( factor ) { case GL_ZERO: colour_factor = { 0, 0, 0, 0 }; break; case GL_ONE: colour_factor = { 1, 1, 1, 1 }; break; case GL_SRC_COLOR: colour_factor = source; break; case GL_ONE_MINUS_SRC_COLOR: colour_factor = { 1 - source.r, 1 - source.g, 1 - source.b, 1 - source.a }; break; // ... } return colour_factor; } colour blend( colour & source, colour destination, GLenum source_factor, // from glBlendFunc GLenum destination_factor, // from glBlendFunc colour blend_colour, // from glBlendColor GLenum blend_equation // from glBlendEquation ) { colour source_colour = blend_factor( source_factor, source, destination, blend_colour ); colour destination_colour = blend_factor( destination_factor, source, destination, blend_colour ); colour output; // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquation.xml switch( blend_equation ) { case GL_FUNC_ADD: output = add( source_colour, destination_colour ); case GL_FUNC_SUBTRACT: output = sub( source_colour, destination_colour ); case GL_FUNC_REVERSE_SUBTRACT: output = sub( destination_colour, source_colour ); } return output; } void do_pixel() { colour final_colour; // Blending if( enable_blending ) { final_colour = blend( current_colour_output, framebuffer[ pixel ], ... ); } else { final_colour = current_colour_output; } } Thanks!

    Read the article

  • Normal map lighting bug in bottom right quadrant

    - by Ryan Capote
    I am currently working on getting normal maps working in my project, and have run into a problem with lighting. As you can see, the normals in the bottom right quadrant of the lighting isn't calculating the correct direction to the light or something. Best seen by the red light If I use flat normals (z normal = 1.0), it seems to be working fine: normals for the tile sheet: Shader: #version 330 uniform sampler2D uDiffuseTexture; uniform sampler2D uNormalsTexture; uniform sampler2D uSpecularTexture; uniform sampler2D uEmissiveTexture; uniform sampler2D uWorldNormals; uniform sampler2D uShadowMap; uniform vec4 uLightColor; uniform float uConstAtten; uniform float uLinearAtten; uniform float uQuadradicAtten; uniform float uColorIntensity; in vec2 TexCoords; in vec2 GeomSize; out vec4 FragColor; float sample(vec2 coord, float r) { return step(r, texture2D(uShadowMap, coord).r); } float occluded() { float PI = 3.14; vec2 normalized = TexCoords.st * 2.0 - 1.0; float theta = atan(normalized.y, normalized.x); float r = length(normalized); float coord = (theta + PI) / (2.0 * PI); vec2 tc = vec2(coord, 0.0); float center = sample(tc, r); float sum = 0.0; float blur = (1.0 / GeomSize.x) * smoothstep(0.0, 1.0, r); sum += sample(vec2(tc.x - 4.0*blur, tc.y), r) * 0.05; sum += sample(vec2(tc.x - 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x - 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x - 1.0*blur, tc.y), r) * 0.15; sum += center * 0.16; sum += sample(vec2(tc.x + 1.0*blur, tc.y), r) * 0.15; sum += sample(vec2(tc.x + 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x + 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x + 4.0*blur, tc.y), r) * 0.05; return sum * smoothstep(1.0, 0.0, r); } float calcAttenuation(float distance) { float linearAtten = uLinearAtten * distance; float quadAtten = uQuadradicAtten * distance * distance; float attenuation = 1.0 / (uConstAtten + linearAtten + quadAtten); return attenuation; } vec3 calcFragPosition(void) { return vec3(TexCoords*GeomSize, 0.0); } vec3 calcLightPosition(void) { return vec3(GeomSize/2.0, 0.0); } float calcDistance(vec3 fragPos, vec3 lightPos) { return length(fragPos - lightPos); } vec3 calcLightDirection(vec3 fragPos, vec3 lightPos) { return normalize(lightPos - fragPos); } vec4 calcFinalLight(vec2 worldUV, vec3 lightDir, float attenuation) { float diffuseFactor = dot(normalize(texture2D(uNormalsTexture, worldUV).rgb), lightDir); vec4 diffuse = vec4(0.0); vec4 lightColor = uLightColor * uColorIntensity; if(diffuseFactor > 0.0) { diffuse = vec4(texture2D(uDiffuseTexture, worldUV.xy).rgb, 1.0); diffuse *= diffuseFactor; lightColor *= diffuseFactor; } else { discard; } vec4 final = (diffuse + lightColor); if(texture2D(uWorldNormals, worldUV).g > 0.0) { return final * attenuation; } else { return final * occluded(); } } void main(void) { vec3 fragPosition = calcFragPosition(); vec3 lightPosition = calcLightPosition(); float distance = calcDistance(fragPosition, lightPosition); float attenuation = calcAttenuation(distance); vec2 worldPos = gl_FragCoord.xy / vec2(1024, 768); vec3 lightDir = calcLightDirection(fragPosition, lightPosition); lightDir = (lightDir*0.5)+0.5; float atten = calcAttenuation(distance); vec4 emissive = texture2D(uEmissiveTexture, worldPos); FragColor = calcFinalLight(worldPos, lightDir, atten) + emissive; }

    Read the article

  • What is wrong with my game loop/mechanic?

    - by elias94xx
    I'm currently working on a 2d sidescrolling game prototype in HTML5 canvas. My implementations so far include a sprite, vector, loop and ticker class/object. Which can be viewed here: http://elias-schuett.de/apps/_experiments/2d_ssg/js/ So my game essentially works well on todays lowspec PC's and laptops. But it does not on an older win xp machine I own and on my Android 2.3 device. I tend to get ~10 FPS with these devices which results in a too high delta value, which than automaticly gets fixed to 1.0 which results in a slow loop. Now I know for a fact that there is a way to implement a super smooth 60 or 30 FPS loop on both devices. Best example would be: http://playbiolab.com/ I don't need all the chunk and debugging technology impact.js offers. I could even write a super simple game where you just control a damn square and it still wouldn't run on a equally fast 30 or 60 fps. Here is the Loop class/object I'm using. It requires a requestAnimationFrame unify function. Both devices I've tested my game on support requestAnimationFrame, so there is no interval fallback. var Loop = function(callback) { this.fps = null; this.delta = 1; this.lastTime = +new Date; this.callback = callback; this.request = null; }; Loop.prototype.start = function() { var _this = this; this.request = requestAnimationFrame(function(now) { _this.start(); _this.delta = (now - _this.lastTime); _this.fps = 1000/_this.delta; _this.delta = _this.delta / (1000/60) > 2 ? 1 : _this.delta / (1000/60); _this.lastTime = now; _this.callback(); }); }; Loop.prototype.stop = function() { cancelAnimationFrame(this.request); };

    Read the article

  • OpenGL sprites and point size limitation

    - by Srdan
    I'm developing a simple particle system that should be able to perform on mobile devices (iOS, Andorid). My plan was to use GL_POINT_SPRITE/GL_PROGRAM_POINT_SIZE method because of it's efficiency (GL_POINTS are enough), but after some experimenting, I found myself in a trouble. Sprite size is limited (to usually 64 pixels). I'm calculating size using this formula gl_PointSize = in_point_size * some_factor / distance_to_camera to make particle sizes proportional to distance to camera. But at some point, when camera is close enough, problem with size limitation emerges and whole system starts looking unrealistic. Is there a way to avoid this problem? If no, what's alternative? I was thinking of manually generating billboard quad for each particle. Now, I have some questions about that approach. I guess minimum geometry data would be four vertices per particle and index array to make quads from these vertices (with GL_TRIANGLE_STRIP). Additionally, for each vertex I need a color and texture coordinate. I would put all that in an interleaved vertex array. But as you can see, there is much redundancy. All vertices of same particle share same color value, and four texture coordinates are same for all particles. Because of how glDrawArrays/Elements works, I see no way to optimise this. Do you know of a better approach on how to organise per-particle data? Should I use buffers or vertex arrays, or there is no difference because each time I have to update all particles' data. About particles simulation... Where to do it? On CPU or on a vertex processors? Something tells me that mobile's CPU would do it faster than it's vertex unit (at least today in 2012 :). So, any advice on how to make a simple and efficient particle system without particle size limitation, for mobile device, would be appreciated. (animation of camera passing through particles should be realistic)

    Read the article

  • efficient collision detection - tile based html5/javascript game

    - by Tom Burman
    Im building a basic rpg game and onto collisions/pickups etc now. Its tile based and im using html5 and javascript. i use a 2d array to create my tilemap. Im currently using a switch statement for whatever key has been pressed to move the player, inside the switch statement. I have if statements to stop the player going off the edge of the map and viewport and also if they player is about to land on a tile with tileID 3 then the player stops. Here is the statement: canvas.addEventListener('keydown', function(e) { console.log(e); var key = null; switch (e.which) { case 37: // Left if (playerX > 0) { playerX--; } if(board[playerX][playerY] == 3){ playerX++; } break; case 38: // Up if (playerY > 0) playerY--; if(board[playerX][playerY] == 3){ playerY++; } break; case 39: // Right if (playerX < worldWidth) { playerX++; } if(board[playerX][playerY] == 3){ playerX--; } break; case 40: // Down if (playerY < worldHeight) playerY++; if(board[playerX][playerY] == 3){ playerY--; } break; } viewX = playerX - Math.floor(0.5 * viewWidth); if (viewX < 0) viewX = 0; if (viewX+viewWidth > worldWidth) viewX = worldWidth - viewWidth; viewY = playerY - Math.floor(0.5 * viewHeight); if (viewY < 0) viewY = 0; if (viewY+viewHeight > worldHeight) viewY = worldHeight - viewHeight; }, false); My question is, is there a more efficient way of handling collisions, then loads of if statements for each key? The reason i ask is because i plan on having many items that the player will need to be able to pickup or not walk through like walls cliffs etc. Thanks for your time and help Tom

    Read the article

  • Simulating Smartphones on PC with Unity

    - by Cengiz Frostclaw
    I want to make a game that depends on the phone orientation (changing shoot direction with tilt), however I need to test this on PC. So is there any tool I can use to simulate the orientation of the phone with mouse or keyboard of my PC? Something like joysticks on the screen. Thanks for any help! Edit : Thanks to @jhocking for his suggestion of Unity Remote. I, however still can accept a solution with using only PC, since I'm afraid of shortening my phone's battery life, for some reason.

    Read the article

  • ConsumeStructuredBuffer, what am I doing wrong?

    - by John
    I'm trying to implement the 3rd exercise in chapter 12 of Introduction to 3D Game Programming with DirectX 11, that is: Implement a Compute Shader to calculate the length of 64 vectors. Previous exercises ask you to do the same with typed buffers and regular structured buffers and I had no problems with them. For what I've read, [Consume|Append]StructuredBuffers are bound to the pipeline using UnorderedAccessViews (as long as they use the D3D11_BUFFER_UAV_FLAG_APPEND, and the buffers have both D3D11_BIND_SHADER_RESOURCE and D3D11_BIND_UNORDERED_ACCESS bind flags). Problem is: my AppendStructuredBuffer works, since I can append data to it and retrieve it from the application to write to a results file, but the ConsumeStructuredBuffer always returns zeroed data. Data is in the buffer, since if I change the UAV to a ShaderResourceView and to a StructuredBuffer in the HLSL side it works. I don't know what I am missing: Should I initialize the ConsumeStructuredBuffer on the GPU, or can I do it when I create the buffer (as I amb currently doing). Is it OK to bind the buffer with a UAV as described above? Do I need to bind it as a ShaderResourceView somehow? Maybe I am missing some step? This is the declaration of buffers in the Compute Shader: struct Data { float3 v; }; struct Result { float l; }; ConsumeStructuredBuffer<Data> gInput; AppendStructuredBuffer<Result> gOutput; And here the creation of the buffer and UAV for input data: D3D11_BUFFER_DESC inputDesc; inputDesc.Usage = D3D11_USAGE_DEFAULT; inputDesc.ByteWidth = sizeof(Data) * mNumElements; inputDesc.BindFlags = D3D11_BIND_SHADER_RESOURCE | D3D11_BIND_UNORDERED_ACCESS; inputDesc.CPUAccessFlags = 0; inputDesc.StructureByteStride = sizeof(Data); inputDesc.MiscFlags = D3D11_RESOURCE_MISC_BUFFER_STRUCTURED; D3D11_SUBRESOURCE_DATA vinitData; vinitData.pSysMem = &data[0]; HR(md3dDevice->CreateBuffer(&inputDesc, &vinitData, &mInputBuffer)); D3D11_UNORDERED_ACCESS_VIEW_DESC uavDesc; uavDesc.Format = DXGI_FORMAT_UNKNOWN; uavDesc.ViewDimension = D3D11_UAV_DIMENSION_BUFFER; uavDesc.Buffer.FirstElement = 0; uavDesc.Buffer.Flags = D3D11_BUFFER_UAV_FLAG_APPEND; uavDesc.Buffer.NumElements = mNumElements; md3dDevice->CreateUnorderedAccessView(mInputBuffer, &uavDesc, &mInputUAV); Initial data is an array of Data structs, which contain a XMFLOAT3 with random data. I bind the UAV to the shader using the Effects framework: ID3DX11EffectUnorderedAccessViewVariable* Input = mFX->GetVariableByName("gInput")->AsUnorderedAccessView(); Input->SetUnorderedAccessView(uav); // uav is mInputUAV Any ideas? Thank you.

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • slick2d missiles

    - by kirchhoff
    Hey I'm making a game in java with slick2d and I want to create planes which shoots: int maxBullets = 40; static int bullet = 0; Missile missile[] = new Missile[maxBullets]; I want to create/move my missiles in the most efficient way, I would appreciate your advises: public void shoot() throws SlickException{ if(bullet<maxBullets){ if(missile[bullet] != null){ missile[bullet].resetLocation(plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); }else{ missile[bullet] = new Missile("resources/missile.png", plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); } }else{ bullet = 0; missile[bullet].resetLocation(plane.getCentreX(), plane.getCentreY(), plane.image.getRotation()); } bullet++; } I created the method "resetLocation" in my Missile class in order to avoid loading again the resource. Is it correct? In the update method I've got this to move all the missiles: if(bullet > 0 && bullet < maxBullets){ float hyp = 0.4f * delta; if(bullet == 1){ missile[0].move(hyp); }else{ for(int x = 0; x<bullet; x++){ missile[x].move(hyp); } } }

    Read the article

  • Constrained/penalized distance function

    - by sigma.z.1980
    Assume a character is located on a n by n grid and has to reach a certain entry on that grid. Its current position is (x1,y1). Also on the same grid is an enemy with coordinates (x2,y2). Each step algorithm randomly generates new candidate locations for the hero (if there are k candidates then there is a kx2 matrix of new potential locations. What I need is some distance objective function to compare the candidates. I'm currently using d1 - c * d2, where d1 is distance to the objective (measure in terms of number of pixels for each axis), d2 is distance to the enemy and c is some coefficient (this is very much like a set-up for Lagrangian). It's not working very well though. I'd be quite keen to learn how what constrained distance function are used for similar cases. Any suggestions are very much appreciated.

    Read the article

  • Blender to 3ds max to cal3d format

    - by Kaliber64
    There are quite a few questions on cal3d but they are old and don't apply anymore. In Blender(must be 2.49a for python script to work!!!): I have a scene with 7 meshes, 1 armature, 10 bones. I tried going to one mesh to simplify it but doesn't change anything. I found a small blend file that was used for cal3d and it exported just fine. So I tried to copy it's setup with no success. EDIT*8/13/2012 In the last week here is what I have found so far. I made the mesh in the newest blender(2.62?) and exported it to import it in the old one(2.49a). Did an animation in the old one because importing new blend files to old blenders, its just said it would lose keyframe data and all was good. And then you get the last problem of it not exporting meshes. BUT I found that meshes made in the old one export regardless. I can't find any that won't export. So if I used the old blender to remake my model I could get it to export :) At this point I found a modified release of cal3d (because the most core model variable would not initiate as I made a really small test subject in old blender instead of remaking my big one which took 4 hours.) which fixes the morph objects and adds what cal3d left off with. Under their license they have to release the modification but it has no documentation so I have to figure it out on my own. Its mostly the same. But with this lib it came with a 3ds max exporter. My question now is how do I transfer armature and mesh information from blender to 3ds max in order to export into cal3d format. Every time I try the models are see through and small and there are no bones. The formats I have tried to import are .3ds .obj(mesh only) and COLLADA. In all of them the mesh is invisible and no bones. It says the default texture is on so I should be able to see it. All the vertices are present I found a vertex highlighter so I can see those. If any of this is confusing let me know so I can clear it up. Its late .<=sleep.

    Read the article

  • Google Cloud Messaging (GCM) for turn-based mobile multiplayer server?

    - by Chris
    I'm designing a multiplayer turn-based game for Android (over 3g). I'm thinking the clients will send data to a central server over a socket or http, and receive data via GCM push messaging. I'd like to know if anyone has practical experience with GCM for pushing 'real-time' turn data to game clients. What kind of performance and limitations does it have? I'm also considering using a RESTful approach with GAE or Amazon EC2. Any advice about these approaches is appreciated.

    Read the article

  • Rendering text with stb_font results in glitches

    - by Fabian Fritz
    I'm trying to render text with OpenGL and an "inline"-font taken from the stb_fonts The relevant code for initializing the font & rendering: LabelFactory::LabelFactory() { static unsigned char fontpixels [STB_SOMEFONT_BITMAP_HEIGHT][STB_SOMEFONT_BITMAP_WIDTH]; STB_SOMEFONT_CREATE(fontdata, fontpixels, STB_SOMEFONT_BITMAP_HEIGHT); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, STB_SOMEFONT_BITMAP_WIDTH, STB_SOMEFONT_BITMAP_HEIGHT, 0, GL_ALPHA, GL_UNSIGNED_BYTE, fontdata); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } void LabelFactory::renderLabel(Label * label) { int x = label->x; int y = label->y; const char * str = label->text; glBindTexture(GL_TEXTURE_2D, texture); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_ALPHA_TEST); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glEnable(GL_TEXTURE_2D); glBegin(GL_QUADS); while (*str) { int char_codepoint = *str++; stb_fontchar *cd = &fontdata[char_codepoint - STB_FONT_arial_14_usascii_FIRST_CHAR]; glTexCoord2f(cd->s0, cd->t0); glVertex2i(x + cd->x0, y + cd->y0); glTexCoord2f(cd->s1, cd->t0); glVertex2i(x + cd->x1, y + cd->y0); glTexCoord2f(cd->s1, cd->t1); glVertex2i(x + cd->x1, y + cd->y1); glTexCoord2f(cd->s0, cd->t1); glVertex2i(x + cd->x0, y + cd->y1); x += cd->advance_int; } glEnd(); } However this results in weird glitches I guess I'm doing something wrong with the alpha blending, however I was unable to improve it by changing the parameters. The size and length of the outline of the text that should be shown seems about right (it should read "Test Test Test").

    Read the article

  • What causes player box/world geometry glitches in old games?

    - by Alexander
    I'm looking to understand and find the terminology for what causes - or allows - players to interfere with geometry in old games. Famously, ID's Quake3 gave birth to a whole community of people breaking the physics by jumping, sliding, getting stuck and launching themselves off points in geometry. Some months ago (though I'd be darned if I can find it again!) I saw a conference held by Bungie's Vic DeLeon and a colleague in which Vic briefly discussed the issues he ran into while attempting to wrap 'collision' objects (please correct my terminology) around environment objects so that players could appear as though they were walking on organic surfaces, while not clipping through them or appear to be walking on air at certain points, due to complexities in the modeling. My aim is to compose a case study essay for University in which I can tackle this issue in games, drawing on early exploits and how techniques have changed to address such exploits and to aid in the gameplay itself. I have 3 current day example of where exploits still exist, however specifically targeting ID Software clearly shows they've massively improved their techniques between Q3 and Q4. So in summary, with your help please, I'd like to gain a slightly better understanding of this issue as a whole (its terminology mainly) so I can use terms and ask the right questions within the right contexts. In practical application, I know what it is, I know how to do it, but I don't have the benefit of level design knowledge yet and its technical widgety knick-knack terms =) Many thanks in advance AJ

    Read the article

  • How do I fix these compiler errors in Apple Crunch?

    - by BluFire
    I've been looking around and I finally got the full source code for a game called Apple-Crunch from Google Code. But when I put it into my project, the source code included so many errors in the class files such as: cannot be resolved into a type the constructor is undefined the method method() is undefined for the type Sprite class.java I downloaded the source directly from the command-line and noticed errors popping up on my project. Since I couldn't figure out how to import the actual folder into my workspace (it wouldn't show up on existing projects) I decided to copy and overwrite the folders into the project. The errors were still there so I looked at the class files and noticed that the classes with errors extended from RokonActivity. I then proceeded to add to the libs folder the Rokon library in hopes to fix the errors. Sadly it didn't work and now I don't what to do to fix the errors. How do I fix the errors without having to manually change the code? The source code should be fully functional so why are there errors?

    Read the article

  • Break the object body

    - by Siddharth
    In my game, I want to break the object body creating slicing effect. After research I found that I have to use ray casting but I don't know how to use it. If some one know how to break the physics body then please provide information to me. EDIT : I don't have any logic how to do that in andengine. Only I have some link to do slicing http://www.emanueleferonato.com/2012/03/05/breaking-objects-with-box2d-the-realistic-way/ Yes I have to slice physics body into two parts. My physics body have 2d objects.

    Read the article

  • JOGL2 test compiles, but doesn't execute - help?

    - by Chuchinyi
    I have a problem with JOGL2. My JOGL2Template.java compiles fine, but executing it results in the following error: D:\java\java\jogl>javac JOGL2Template.java <== compile ok D:\java\java\jogl>java JOGL2Template <== execute error Exception in thread "main" java.lang.ExceptionInInitializerError at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:1176) at JOGL2Template.<init>(JOGL2Template.java:24) at JOGL2Template.main(JOGL2Template.java:57) Caused by: java.lang.SecurityException: no certificate for gluegen-rt.dll in D:\ java\lib\gluegen-rt-natives-windows-i586.jar at com.jogamp.common.util.JarUtil.validateCertificate(JarUtil.java:350) at com.jogamp.common.util.JarUtil.validateCertificates(JarUtil.java:324) at com.jogamp.common.util.cache.TempJarCache.validateCertificates(TempJa rCache.java:328) at com.jogamp.common.util.cache.TempJarCache.bootstrapNativeLib(TempJarC ache.java:283) at com.jogamp.common.os.Platform$3.run(Platform.java:308) at java.security.AccessController.doPrivileged(Native Method) at com.jogamp.common.os.Platform.loadGlueGenRTImpl(Platform.java:298) at com.jogamp.common.os.Platform.<clinit>(Platform.java:207) ... 3 more Here is the JOGL2Template.java source code: import java.awt.Dimension; import java.awt.Frame; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import com.jogamp.opengl.util.FPSAnimator; import javax.swing.JFrame; /* * JOGL 2.0 Program Template For AWT applications */ public class JOGL2Template extends JFrame implements GLEventListener { private static final int CANVAS_WIDTH = 640; // Width of the drawable private static final int CANVAS_HEIGHT = 480; // Height of the drawable private static final int FPS = 60; // Animator's target frames per second // Constructor to create profile, caps, drawable, animator, and initialize Frame public JOGL2Template() { // Get the default OpenGL profile that best reflect your running platform. GLProfile glp = GLProfile.getDefault(); // Specifies a set of OpenGL capabilities, based on your profile. GLCapabilities caps = new GLCapabilities(glp); // Allocate a GLDrawable, based on your OpenGL capabilities. GLCanvas canvas = new GLCanvas(caps); canvas.setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT)); canvas.addGLEventListener(this); // Create a animator that drives canvas' display() at 60 fps. final FPSAnimator animator = new FPSAnimator(canvas, FPS); addWindowListener(new WindowAdapter() { // For the close button @Override public void windowClosing(WindowEvent e) { // Use a dedicate thread to run the stop() to ensure that the // animator stops before program exits. new Thread() { @Override public void run() { animator.stop(); System.exit(0); } }.start(); } }); add(canvas); pack(); setTitle("OpenGL 2 Test"); setVisible(true); animator.start(); // Start the animator } public static void main(String[] args) { new JOGL2Template(); } @Override public void init(GLAutoDrawable drawable) { // Your OpenGL codes to perform one-time initialization tasks // such as setting up of lights and display lists. } @Override public void display(GLAutoDrawable drawable) { // Your OpenGL graphic rendering codes for each refresh. } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int w, int h) { // Your OpenGL codes to set up the view port, projection mode and view volume. } @Override public void dispose(GLAutoDrawable drawable) { // Hardly used. } } Any ideas what might be the cause of these errors?

    Read the article

  • Sharing VBO with multiple objects and fixed size buffer data

    - by Mark Ingram
    I'm just messing around with OpenGL and getting some basic structures in place and my first attempt resulted in each SceneObject class (just contains vertex information right now) having it's own VBO inside it, however I've read that it might be better to share VBOs across multiple objects. Also, I read that you should avoid resizing a VBO (repeated calls to glBufferData with different size parameters), and instead choose a fixed size for a VBO, and just try a range from the buffer. I don't think changing the size of the buffer data would happen too often, but surely it would be better to only allocate the data you need? Choosing an arbitrary value seems risky. I'm looking for some advice on working with individual objects in a scene and their associated buffer data.

    Read the article

  • Complete Guide/Tutorials on LWJGL?

    - by user43353
    Dont get me wrong, I finished these tutorials on http://lwjgl.org/wiki/index.php?title=Main_Page. I finished The Basics section, OpenGL 3.2 and newer section, and I looked at the Example Code section. They were great tutorials, and I have looked at the external tutorials as well. I don't know where to go from here, and OpenGL is not my strong point. Some one suggested Learning Modern 3D Graphics Programming, and I didnt learn much. I looked at the port to LWJGL, but the book was on C and I couldn't really understand what the OpenGL meant. I am trying to learn 2D gaming, not 3D. Maybe later. Is there any tutorials that aren't C/C++ heavy and teach you 2D OpenGL?

    Read the article

< Previous Page | 539 540 541 542 543 544 545 546 547 548 549 550  | Next Page >