Search Results

Search found 38203 results on 1529 pages for 'library development'.

Page 584/1529 | < Previous Page | 580 581 582 583 584 585 586 587 588 589 590 591  | Next Page >

  • 2-d lighting day/night cycle

    - by Richard
    Off the back of this post in which I asked two questions and received one answer, which I accepted as a valid answer. I have decided to re-ask the outstanding question. I have implemented light points with shadow casting as shown here but I would like an overall map light with no point/light source. The map setup is a top-down 2-d 50X50 pixel grid. How would I go about implementing a day/night cycle lighting across a map?

    Read the article

  • How can I use the dualforward parameter in my unity shader to use lightmaps and normal maps together?

    - by Raphaeltm
    I'm using the free version of unity and I would like to combine lightmaps with specularity and normal maps. After doing a -bunch- of research, I've figured out that there doesn't seem to be any easy way to do this in the free version of unity, which doesn't support deferred rendering/easy use of dual lightmaps. However, it looks like it's possible, by writing a custom shader, using the "dualforward" parameter in a shader, switching the lightmapping mode to "dual lightmaps" and turning on "Use in forward ren." (basically, writing a shader that specifies the use of dual lightmaps, which should allow for a combination of lightmaps and normal maps) So I downloaded the source code for the default shaders (because all I need is a normal specular bumped shader) and added "dualforward" to the parameters: Shader "Bumped Specular Dual Lightmaps" { Properties { _Color ("Main Color", Color) = (1,1,1,1) _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1) _Shininess ("Shininess", Range (0.03, 1)) = 0.078125 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {} _BumpMap ("Normalmap", 2D) = "bump" {} } SubShader { Tags { "RenderType"="Opaque" } LOD 400 CGPROGRAM #pragma surface surf BlinnPhong dualforward sampler2D _MainTex; sampler2D _BumpMap; fixed4 _Color; half _Shininess; struct Input { float2 uv_MainTex; float2 uv_BumpMap; }; void surf (Input IN, inout SurfaceOutput o) { fixed4 tex = tex2D(_MainTex, IN.uv_MainTex); o.Albedo = tex.rgb * _Color.rgb; o.Gloss = tex.a; o.Alpha = tex.a * _Color.a; o.Specular = _Shininess; o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)); } ENDCG } FallBack "Specular" } This, however, doesn't seem to work. When I keep the "dualforward" param, every object that uses it seems to be lit by the one directional light in the scene. When I remove the "dualforward" param, it they look like normal lightmapped objects with no normal maps or specularity. I noticed that the support for "dualforward" seems to be new in v.3.4.2, so I made sure to download it (I was running 3.4.1), but it still doesn't work. Anybody have any advice for me?

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • How to calculate vertext normals for a mesh in Java in OpenGL ES application?

    - by alan mc
    Can some one point me to Java code ( in Java not C or C++) that calculates all the normals for all the vertices of a mesh for OpenGL ES application. I need this for lighting. Lets say I have a cube with following vertices and indices: float vertices[] = { -width, -height, -depth, // 0 width, -height, -depth, // 1 width, height, -depth, // 2 -width, height, -depth, // 3 -width, -height, depth, // 4 width, -height, depth, // 5 width, height, depth, // 6 -width, height, depth // 7 }; short indices[] = { 0, 2, 1, 0, 3, 2, 1,2,6, 6,5,1, 4,5,6, 6,7,4, 2,3,6, 6,3,7, 0,7,3, 0,4,7, 0,1,5, 0,5,4 }; In above specific example how many normals we need ?

    Read the article

  • Maya Animated Character export for XNA 4.0 problem

    - by FahidK
    To begin with, I'm trying to export an animated character in .fbx format from Maya 2013 to XNA 4.0 In Maya, The Model has a basic rig and the animations are in clips made in the Trax editor. so the issue i'm having is after selecting the model and the root joint and then hitting export in .fbx format, for some reason when i open the exported .fbx file the joint system is detached from the model with no animation. Btw, i have the animations in clips so that they can be called in code, for example "run","walk","attack". So, what can i do to solve this problem? Thank you.

    Read the article

  • forward motion car physics - gradual slow

    - by spartan2417
    Im having trouble creating realistic car movements in xna 4. Right now i have a car going forward and hitting a terminal velocity which is fine but when i release the up key i need to the car to slow down gradually and then come to a stop. Im pretty sure this is easy code but i cant seem to get it to work the code - update if (Keyboard.GetState().IsKeyDown(Keys.Up)) { double elapsedTime = gameTime.ElapsedGameTime.Milliseconds; CalcTotalForce(); Acceleration = Vector2.Divide(CalcTotalForce(), MASS); Velocity = Vector2.Add(Velocity, Vector2.Multiply(Acceleration, (float)(elapsedTime))); Position = Vector2.Add(Position, Vector2.Multiply(Velocity, (float)(elapsedTime))); } added functions public Vector2 CalcTraction() { //Traction force = vector direction * engine force return Vector2.Multiply(forwardDirection, ENGINE_FORCE); } public Vector2 CalcDrag() { //Drag force = constdrag * velocity * speed return Vector2.Multiply(Vector2.Multiply(Velocity, DRAG_CONST), Velocity.Y); } public Vector2 CalcRoll() { //roll force = const roll * velocity return Vector2.Multiply(Velocity, ROLL_CONST); } public Vector2 CalcTotalForce() { //total force = traction + (-drag) + (-rolling) return Vector2.Add(CalcTraction(), Vector2.Add(-CalcDrag(), -CalcRoll())); } anyone have any ideas?

    Read the article

  • Which will be faster? Switching shaders or ignore that some cases don't need full code?

    - by PolGraphic
    I have two types of 2d objects: In first case (for about 70% of objects), I need that code in the shader: float2 texCoord = input.TexCoord + textureCoord.xy But in the second case I have to use: float2 texCoord = fmod(input.TexCoord, texCoordM.xy - textureCoord.xy) + textureCoord.xy I can use second code also for first case, but it will be a little slower (fmod is useless here, input.TexCoord will be always lower than textureCoord.xy - textureCoord.xy for sure). My question is, which way will be faster: Making two independent shaders for both types of rectangles, group rectangles by types and switch shaders during rendering. Make one shader and use some if statement. Make one shader and ignore that sometimes (70% of cases) I don't need to use fmod.

    Read the article

  • Automatically zoom out the camera to show all players (XNA)

    - by user36159
    I am building a game in XNA that takes place in a rectangular arena. The game is multiplayer and each player may go where they like within the arena. The camera is a persepective camera that looks directly downwards. The camera should be automatically repositioned based on the game state. Currently, the xy position is a weighted sum of the xy positions of important entities. I would like the camera's z position to be calculated from the xy coordinates so that it zooms out to the point where all important entities are visible. My current approach is to: hw = the greatest x distance from the camera to an important entity hh = the greatest y distance from the camera to an important entity Calculate z = max(hw / tan(FoVx), hh / tan(FoVy)) My code seems to almost work as it should, but the resulting z values are always too low by a factor of about 4. Any ideas?

    Read the article

  • How to implement an intelligent enemy in a shoot-em-up?

    - by bummzack
    Imagine a very simple shoot-em-up, something we all know: You're the player (green). Your movement is restricted to the X axis. Our enemy (or enemies) is at the top of the screen, his movement is also restricted to the X axis. The player fires bullets (yellow) at the enemy. I'd like to implement an A.I. for the enemy that should be really good at avoiding the players bullets. My first idea was to divide the screen into discrete sections and assign weights to them: There are two weights: The "bullet-weight" (grey) is the danger imposed by a bullet. The closer the bullet is to the enemy, the higher the "bullet-weight" (0..1, where 1 is highest danger). Lanes without a bullet have a weight of 0. The second weight is the "distance-weight" (lime-green). For every lane I add 0.2 movement cost (this value is kinda arbitrary now and could be tweaked). Then I simply add the weights (white) and go to the lane with the lowest weight (red). But this approach has an obvious flaw, because it can easily miss local minima as the optimal place to go would be simply between two incoming bullets (as denoted with the white arrow). So here's what I'm looking for: Should find a way through bullet-storm, even when there's no place that doesn't impose a threat of a bullet. Enemy can reliably dodge bullets by picking an optimal (or almost optimal) solution. Algorithm should be able to factor in bullet movement speed (as they might move with different velocities). Ways to tweak the algorithm so that different levels of difficulty can be applied (dumb to super-intelligent enemies). Algorithm should allow different goals, as the enemy doesn't only want to evade bullets, he should also be able to shoot the player. That means that positions where the enemy can fire at the player should be preferred when dodging bullets. So how would you tackle this? Contrary to other games of this genre, I'd like to have only a few, but very "skilled" enemies instead of masses of dumb enemies.

    Read the article

  • Reacting to rectangle on rectangle collisions

    - by mcjohnalds45
    I don't know how to react to collisions between two axis aligned rectangles that have x, y, width and height values (x and y are from the centre of the box) to make them simply not overlap. I figured I'd just make them move away from each other depending on how far they intersect in the opposite direction (left, right, up or down) of where they collided. If I check for collisions only on the x axis or only on the y axis it works fine, but when checking for both collisions crazy stuff happens. This code executes when the first box collides with the second. It's in lua but feel free to answer in anything that isn't to too counter-intuitive. if box1.x < box2.x then box1.x = box1.x + box2.x - box1.x - (box1.width / 2) - (box2.width / 2) end if box1.x > box2.x then box1.x = box1.x - (box1.x - box2.x - (box1.width / 2) - (box2.width / 2)) end if box1.y < box2.y then box1.y = box1.y + box2.y - box1.y - (box1.height / 2) - (box2.height / 2) end if box1.y > box2.y then box1.y = box1.y - (box1.y - box2.y - (box1.height / 2) - (box2.height / 2)) end

    Read the article

  • Creating a frozen bubble clone

    - by Vaughan Hilts
    This photo illustrates the environment: http://i.imgur.com/V4wbp.png I'll shoot the cannon, it'll bounce off the wall and it's SUPPOSED to stick to the bubble. It does at pretty much every other angle. The problem is always reproduced here, when hit off the wall into those bubbles. It also exists in other cases, but I'm not sure what triggers it. What actually happens: The ball will sometimes set to the wrong cell, and my "dropping" code will detect it as a loner and drop it off the stage. *There are many implementations of "Frozen Bubble" on the web, but I can't for the life of me find a good explanation as to how the algorithm for the "Bubble Sticking" works. * I see this: http://www.wikiflashed.com/wiki/BubbleBobble https://frozenbubblexna.svn.codeplex.com/svn/FrozenBubble/ But I can't figure out the algorithims... could anyone explain possibly the general idea behind getting the balls to stick? Code in question: //Counstruct our bounding rectangle for use var nX = currentBall.x + ballvX * gameTime; var nY = currentBall.y - ballvY * gameTime; var movingRect = new BoundingRectangle(nX, nY, 32, 32); var able = false; //Iterate over the cells and draw our bubbles for (var x = 0; x < 8; x++) { for (var y = 0; y < 12; y++) { //Get the bubble at this layout var bubble = bubbleLayout[x][y]; var rowHeight = 27; //If this slot isn't empty, draw if (bubble != null) { var bx = 0, by = 0; if (y % 2 == 0) { bx = x * 32 + 270; by = y * 32 + 45; } else { bx = x * 32 + 270 + 16; by = y * 32 + 45; } //Check var targetBox = new BoundingRectangle(bx, by, 32, 32); if (targetBox.intersects(movingRect)) { able = true; } } } } cellY = Math.round((currentBall.y - 45) / 32); if (cellY % 2 == 0) cellX = Math.round((currentBall.x - 270) / 32); else cellX = Math.round((currentBall.x - 270 - 16) / 32); Any ideas are very much welcome. Things I've tried: Flooring and Ceiling values Changing the wall bounce to a lower value Slowing down the ball None of these seem to affect it. Is there something in my math I'm not getting?

    Read the article

  • Are there any good guides for making mods for Minecraft?

    - by Pureferret
    I've been coding in Java for 5 months at work now, and having past experience with programming in other languages, modifying existing code at Uni etc. I feel like I want to get started on (read: continue learning to program by) modding with minecraft. I know what I need, but not exactly how to do so. I once saw some good guides on the minecraft forum, but they all explained how to write in java, hows different classes in the code work etc. I'm more interested in how you decompile the code, write your own separate from the main 'trunk' of minecraft and then package it to install with a tool like 'Magic Loader'. My issue with these guides is that they always relied on being in windows, but I'm primarily a linux user, and the guides on the forums only seemed to assume you were on a Windows box. So is there a good 'walkthrough' for modding for Minecraft? Especially one where it assumes or at least allows for the fact you are in linux?

    Read the article

  • Getting FEATURE_LEVEL_9_3 to work in DX11

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • cocos2d-x simple shader usage [on hold]

    - by Narek
    I want to obtain color ramp effect from this tutorial: http://www.raywenderlich.com/10862/how-to-create-cool-effects-with-custom-shaders-in-opengl-es-2-0-and-cocos2d-2-x Here is my code in cocos2d-x 3: bool HelloWorld::init() { ////////////////////////////// // 1. super init first if ( !Layer::init() ) { return false; } Vec2 origin = Director::getInstance()->getVisibleOrigin(); sprite = Sprite::create("HelloWorld.png"); sprite->setAnchorPoint(Vec2(0, 0)); sprite->setRotation(3); sprite->setPosition(origin); addChild(sprite); std::string str = FileUtils::getInstance()->getStringFromFile("CSEColorRamp.fsh"); const GLchar * fragmentSource = str.c_str(); GLProgram* p = GLProgram::createWithByteArrays(ccPositionTextureA8Color_vert, fragmentSource); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_POSITION, GLProgram::VERTEX_ATTRIB_POSITION); p->bindAttribLocation(GLProgram::ATTRIBUTE_NAME_TEX_COORD, GLProgram::VERTEX_ATTRIB_TEX_COORD); p->link(); p->updateUniforms(); sprite->setGLProgram(p); // 3 colorRampUniformLocation = glGetUniformLocation(sprite->getGLProgram()->getProgram(), "u_colorRampTexture"); glUniform1i(colorRampUniformLocation, 1); // 4 colorRampTexture = Director::getInstance()->getTextureCache()->addImage("colorRamp.png"); colorRampTexture->setAliasTexParameters(); // 5 sprite->getGLProgram()->use(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, colorRampTexture->getName()); glActiveTexture(GL_TEXTURE0); return true; } And here is the fragment shader as it is in the tutorial: #ifdef GL_ES precision mediump float; #endif // 1 varying vec2 v_texCoord; uniform sampler2D u_texture; uniform sampler2D u_colorRampTexture; void main() { // 2 vec3 normalColor = texture2D(u_texture, v_texCoord).rgb; // 3 float rampedR = texture2D(u_colorRampTexture, vec2(normalColor.r, 0)).r; float rampedG = texture2D(u_colorRampTexture, vec2(normalColor.g, 0)).g; float rampedB = texture2D(u_colorRampTexture, vec2(normalColor.b, 0)).b; // 4 gl_FragColor = vec4(rampedR, rampedG, rampedB, 1); } As a result I get a black screen with 2 draw calls. What is wrong? Do I miss something?

    Read the article

  • Why does creating dynamic bodies in JBox2D freeze my app?

    - by Amplify91
    My game hangs/freezes when I create dynamic bullet objects with Box2D and I don't know why. I am making a game where the main character can shoot bullets by the user tapping on the screen. Each touch event spawns a new FireProjectileEvent that is handled properly by an event queue. So I know my problem is not trying to create a new body while the box2d world is locked. My bullets are then created and managed by an object pool class like this: public Projectile getProjectile(){ for(int i=0;i<mProjectiles.size();i++){ if(!mProjectiles.get(i).isActive){ return mProjectiles.get(i); } } return mSpriteFactory.createProjectile(); } mSpriteFactory.createProjectile() leads to the physics component of the Projectile class creating its box2d body. I have narrowed the issue down to this method and it looks like this: public void create(World world, float x, float y, Vec2 vertices[], boolean dynamic){ BodyDef bodyDef = new BodyDef(); if(dynamic){ bodyDef.type = BodyType.DYNAMIC; }else{ bodyDef.type = BodyType.STATIC; } bodyDef.position.set(x, y); mBody = world.createBody(bodyDef); PolygonShape dynamicBox = new PolygonShape(); dynamicBox.set(vertices, vertices.length); FixtureDef fixtureDef = new FixtureDef(); fixtureDef.shape = dynamicBox; fixtureDef.density = 1.0f; fixtureDef.friction = 0.0f; mBody.createFixture(fixtureDef); mBody.setFixedRotation(true); } If the dynamic parameter is set to true my game freezes before crashing, but if it is false, it will create a projectile exactly how I want it just doesn't function properly (because a projectile is not a static object). Why does my program fail when I try to create a dynamic object at runtime but not when I create a static one? I have other dynamic objects (like my main character) that work fine. Any help would be greatly appreciated. This is a screenshot of a method profile I did: Especially notable is number 8. I'm just still unsure what I'm doing wrong. Other notes: I am using JBox2D 2.1.2.2. (Upgraded from 2.1.2.1 to try to fix this problem) When the application freezes, if I hit the back button, it appears to move my game backwards by one update tick. Very strange.

    Read the article

  • 2D Animation Smoothness - Delta time vs. Kinematics

    - by viperld002
    I'm animating a sprite in 2D with key frames of rotation and xy-positions. I've recently had a discussion with someone saying that when the device (happens to be an iPad using cocos2D) hits a performance bump due to whatever else the user may be doing, lag will arise and that the best way to fight it is to not use actual positions, but velocities, accelerations and torques with kinematics. His message is to evaluate the positions and rotations from these speeds at the current point in time. I've never experienced a situation where I've heard of using kinematics to stem lag in 2D animations and am not sure of how effective it could be. Also, it seems to be overkill. The application is not networked so it's all running on a local device. The desired effect is that the animation always plays as closely as it can to the target frame rate. Wouldn't the technique suffer the same problems as just using the time since the last frame or a fixed time step since the kinematics would also require some time value to perform the calculation? What techniques could you suggest to best achieve the desired effect? EDIT 1 Thank you for your responses, they are very illuminating. I want to clarify my question before choosing an answer however, to make sure that this post really serves it's purpose. I have a sprite of a ball, and a text file with 3 arrays worth of information (rotation,translations x, translations y) with each unit of information existing as a key frame to be stepped through (0 to 49 and back to 0 to replay it again). I have this playing by interpolating from the current key frame to the next, every n-units of time. The animation is visibly correct when compared to a video I was given of it, and it is smooth because of the interpolations between the key frames. This is the existing state of the project. There are no physics simulated, only a static animation of a ball moving in a way an artist specifically designed. Should I, instead of rotation in degrees and translations by positions in space, derive velocities, accelerations and torques to express this static animation as a function of time? As in, position now = foo(time now), where foo uses kinematics.

    Read the article

  • what's wrong with this Lua code (creating text inside listener in Corona)

    - by Greg
    If you double/triple click on the myObject here the text does NOT disappear. Why is this not working when there are multiple events being fired? That is, are there actually multiple "text" objects, with some existing but no longer having a reference to them held by the local "myText" variable? Do I have to manually removeSelf() on the local "myText" field before assigning it another "display.newText(...)"? display.setStatusBar( display.HiddenStatusBar ) local myText local function hideMyText(event) print ("hideMyText") myText.isVisible = false end local function showTextListener(event) if event.phase == "began" then print("showTextListener") myText = display.newText("Hello World!", 0, 0, native.systemFont, 30) timer.performWithDelay(1000, hideMyText, 1 ) end end -- Display object to press to show text local myObject = display.newImage( "inventory_button.png", display.contentWidth/2, display.contentHeight/2) myObject:addEventListener("touch", showTextListener) Question 2 - Also why is it the case that if I add a line BEFORE "myText = ..." of: a) "if myText then myText:removeSelf() end" = THIS FIXES THINGS, whereas b) "if myText then myText=nil end" = DOES NOT FIX THINGS Interested in hearing how Lua works here re the answer...

    Read the article

  • FBX Importer - Texture Name

    - by CmasterG
    I have a problem with the FBX SDK. I read in the data for the vertex position and the uv coordinates. It works fine, but now I want to read for each polygon to which texture it belongs, so that I can have models with multiple textures. Can anyone tell me how I can get the texture name (file name) for my polygon. My code to read in vertex position and uv coordinates is the following: int i, j, lPolygonCount = pMesh->GetPolygonCount(); FbxVector4* lControlPoints = pMesh->GetControlPoints(); int vertexId = 0; for (i = 0; i < lPolygonCount; i++) { int lPolygonSize = pMesh->GetPolygonSize(i); for (j = 0; j < lPolygonSize; j++) { int lControlPointIndex = pMesh->GetPolygonVertex(i, j); FbxVector4 pos = lControlPoints[lControlPointIndex]; current_model[vertex_index].x = pos.mData[0] - pivot_offset[0]; current_model[vertex_index].y = pos.mData[1] - pivot_offset[1]; current_model[vertex_index].z = pos.mData[2]- pivot_offset[2]; FbxVector4 vertex_normal; pMesh->GetPolygonVertexNormal(i,j, vertex_normal); current_model[vertex_index].nx = vertex_normal.mData[0]; current_model[vertex_index].ny = vertex_normal.mData[1]; current_model[vertex_index].nz = vertex_normal.mData[2]; //read in UV data FbxStringList lUVSetNameList; pMesh->GetUVSetNames(lUVSetNameList); //get lUVSetIndex-th uv set const char* lUVSetName = lUVSetNameList.GetStringAt(0); const FbxGeometryElementUV* lUVElement = pMesh->GetElementUV(lUVSetName); if(!lUVElement) continue; // only support mapping mode eByPolygonVertex and eByControlPoint if( lUVElement->GetMappingMode() != FbxGeometryElement::eByPolygonVertex && lUVElement->GetMappingMode() != FbxGeometryElement::eByControlPoint ) return; //index array, where holds the index referenced to the uv data const bool lUseIndex = lUVElement->GetReferenceMode() != FbxGeometryElement::eDirect; const int lIndexCount= (lUseIndex) ? lUVElement->GetIndexArray().GetCount() : 0; FbxVector2 lUVValue; //get the index of the current vertex in control points array int lPolyVertIndex = pMesh->GetPolygonVertex(i,j); //the UV index depends on the reference mode //int lUVIndex = lUseIndex ? lUVElement->GetIndexArray().GetAt(lPolyVertIndex) : lPolyVertIndex; int lUVIndex = pMesh->GetTextureUVIndex(i, j); lUVValue = lUVElement->GetDirectArray().GetAt(lUVIndex); current_model[vertex_index].tu = (float)lUVValue.mData[0]; current_model[vertex_index].tv = (float)lUVValue.mData[1]; vertex_index ++; } } float v1[3], v2[3], v3[3]; v1[0] = current_model[vertex_index - 3].x; v1[1] = current_model[vertex_index - 3].y; v1[2] = current_model[vertex_index - 3].z; v2[0] = current_model[vertex_index - 2].x; v2[1] = current_model[vertex_index - 2].y; v2[2] = current_model[vertex_index - 2].z; v3[0] = current_model[vertex_index - 1].x; v3[1] = current_model[vertex_index - 1].y; v3[2] = current_model[vertex_index - 1].z; collision_model->addTriangle(v1,v2,v3);

    Read the article

  • Numerically stable(ish) method of getting Y-intercept of mouse position?

    - by Fraser
    I'm trying to unproject the mouse position to get the position on the X-Z plane of a ray cast from the mouse. The camera is fully controllable by the user. Right now, the algorithm I'm using is... Unproject the mouse into the camera to get the ray: Vector3 p1 = Vector3.Unproject(new Vector3(x, y, 0), 0, 0, width, height, nearPlane, farPlane, viewProj; Vector3 p2 = Vector3.Unproject(new Vector3(x, y, 1), 0, 0, width, height, nearPlane, farPlane, viewProj); Vector3 dir = p2 - p1; dir.Normalize(); Ray ray = Ray(p1, dir); Then get the Y-intercept by using algebra: float t = -ray.Position.Y / ray.Direction.Y; Vector3 p = ray.Position + t * ray.Direction; The problem is that the projected position is "jumpy". As I make small adjustments to the mouse position, the projected point moves in strange ways. For example, if I move the mouse one pixel up, it will sometimes move the projected position down, but when I move it a second pixel, the project position will jump back to the mouse's location. The projected location is always close to where it should be, but it does not smoothly follow a moving mouse. The problem intensifies as I zoom the camera out. I believe the problem is caused by numeric instability. I can make minor improvements to this by doing some computations at double precision, and possibly abusing the fact that floating point calculations are done at 80-bit precision on x86, however before I start micro-optimizing this and getting deep into how the CLR handles floating point, I was wondering if there's an algorithmic change I can do to improve this? EDIT: A little snooping around in .NET Reflector on SlimDX.dll: public static Vector3 Unproject(Vector3 vector, float x, float y, float width, float height, float minZ, float maxZ, Matrix worldViewProjection) { Vector3 coordinate = new Vector3(); Matrix result = new Matrix(); Matrix.Invert(ref worldViewProjection, out result); coordinate.X = (float) ((((vector.X - x) / ((double) width)) * 2.0) - 1.0); coordinate.Y = (float) -((((vector.Y - y) / ((double) height)) * 2.0) - 1.0); coordinate.Z = (vector.Z - minZ) / (maxZ - minZ); TransformCoordinate(ref coordinate, ref result, out coordinate); return coordinate; } // ... public static void TransformCoordinate(ref Vector3 coordinate, ref Matrix transformation, out Vector3 result) { Vector3 vector; Vector4 vector2 = new Vector4 { X = (((coordinate.Y * transformation.M21) + (coordinate.X * transformation.M11)) + (coordinate.Z * transformation.M31)) + transformation.M41, Y = (((coordinate.Y * transformation.M22) + (coordinate.X * transformation.M12)) + (coordinate.Z * transformation.M32)) + transformation.M42, Z = (((coordinate.Y * transformation.M23) + (coordinate.X * transformation.M13)) + (coordinate.Z * transformation.M33)) + transformation.M43 }; float num = (float) (1.0 / ((((transformation.M24 * coordinate.Y) + (transformation.M14 * coordinate.X)) + (coordinate.Z * transformation.M34)) + transformation.M44)); vector2.W = num; vector.X = vector2.X * num; vector.Y = vector2.Y * num; vector.Z = vector2.Z * num; result = vector; } ...which seems to be a pretty standard method of unprojecting a point from a projection matrix, however this serves to introduce another point of possible instability. Still, I'd like to stick with the SlimDX Unproject routine rather than writing my own unless it's really necessary.

    Read the article

  • 2D Car Simulation with Throttle Linear Physics

    - by James
    I'm trying to make a simulation game for an automatic cruise control system. The system simulates a car on varying inclinations and throttle speeds. I've coded up to the car physics but these do note make sense. The dynamics of the simulation are specified as follows: a = V' - V T = (k1)V + ?(k2) + ma V' = (1 - (k1 / m) V) + T - ( k2 / m) * ? Where T = throttle position k1 = viscous friction V = speed V' = next speed ? = angle of incline k2 = m g sin ? a = acceleration m = mass Notice that the angle of incline in the equation is not chopped up by sin or cos. Even the equation for acceleration isn't right. Can anyone correct them or am I misinterpreting the physics?

    Read the article

  • Zoom Layer centered on a Sprite

    - by clops
    I am in process of developing a small game where a space-ship travels through a layer (doh!), in some situations the spaceship comes close to an enemy space ship, and the whole layer is zoomed in on the two with the zoom level being dependent on the distance between the ship and the enemy. All of this works fine. The main question, however, is how do I keep the zoom being centered on the center point between the two space-ships and make sure that the two are not off-screen? Currently I control the zooming in the GameLayer object through the update method, here is the code (there is no layer repositioning here yet): -(void) prepareLayerZoomBetweenSpaceship{ CGPoint mainSpaceShipPosition = [mainSpaceShip position]; CGPoint enemySpaceShipPosition = [enemySpaceShip position]; float distance = powf(mainSpaceShipPosition.x - enemySpaceShipPosition.x, 2) + powf(mainSpaceShipPosition.y - enemySpaceShipPosition.y,2); distance = sqrtf(distance); /* Distance > 250 --> no zoom Distance < 100 --> maximum zoom */ float myZoomLevel = 0.5f; if(distance < 100){ //maximum zoom in myZoomLevel = 1.0f; }else if(distance > 250){ myZoomLevel = 0.5f; }else{ myZoomLevel = 1.0f - (distance-100)*0.0033f; } [self zoomTo:myZoomLevel]; } -(void) zoomTo:(float)zoom { if(zoom > 1){ zoom = 1; } // Set the scale. if(self.scale != zoom){ self.scale = zoom; } } Basically my question is: How do I zoom the layer and center it exactly between the two ships? I guess this is like a pinch zoom with two fingers!

    Read the article

  • OpenGL ES rotate texture

    - by 0xSina
    I just got started with OpenGL ES... I have a fragment: const char * sFragment = _STRINGIFY( varying highp vec2 coordinate; precision mediump float; uniform vec4 maskC; uniform float threshold; uniform sampler2D videoframe; uniform sampler2D videosprite; uniform vec4 mask; uniform vec4 maskB; uniform int recording; vec3 normalize(vec3 color, float meanr) { return color*vec3(0.75 + meanr, 1., 1. - meanr); } void main() { float d; float dB; float dC; float meanr; float meanrB; float meanrC; float minD; vec4 pixelColor; vec4 spriteColor; pixelColor = texture2D(videoframe, coordinate); spriteColor = texture2D(videosprite, coordinate); meanr = (pixelColor.r + mask.r)/8.; meanrB = (pixelColor.r + maskB.r)/8.; meanrC = (pixelColor.r + maskC.r)/8.; d = distance(normalize(pixelColor.rgb, meanr), normalize(mask.rgb, meanr)); dB = distance(normalize(pixelColor.rgb, meanrB), normalize(maskB.rgb, meanrB)); dC = distance(normalize(pixelColor.rgb, meanrC), normalize(maskC.rgb, meanrC)); minD = min(d, dB); minD = min(minD, dC); gl_FragColor = spriteColor; if (minD > threshold) { gl_FragColor = pixelColor; } } Now, depending on wether recording is 0 or 1, I want to rotate uniform sampler2D videosprite 180 degrees (reflection in x-axis, flip vertically). How can I do that? I found the function glRotatef(), but how do i specify that I want to rotate video sprite and not videoframe? Thanks

    Read the article

  • backface culling error (in world space)

    - by acrilige
    I write simple software renderer. In my pipeline i have stage of backface culling. But looks like it has some error (see picture). I perform culling right after world transformation (is it correct?). (i can't insert picture in post coz i don't have enough points, so i just upload it (cube model): http://imageshack.us/photo/my-images/705/bcerror.png/) Vector3F view_dir(0.0f, 0.0f, 1.0f); std::vector<Triangle> to_remove; for (Triangle &t : m_triangles) { Vector4F e1 = t.v2 - t.v1; Vector4F e2 = t.v3 - t.v1; Vector3F normal( e1.y * e2.z - e1.z * e2.y, e1.z * e2.x - e1.x * e2.z, e1.x * e2.y - e1.y * e2.x ); normal.Normalize(); float dot = Dot(view_dir, normal); if (dot <= 0) to_remove.push_back(t); } for (Triangle& t : to_remove) m_triangles.erase(std::remove(m_triangles.begin(), m_triangles.end(), t), m_triangles.end()); Camera sits in origin and points in screen (RH). What is the reason? For better explanation i upload picture with cube rotation screenshots: http://imageshack.us/photo/my-images/842/bcmove.png/ UPDATED: The error occurs only when triangle has non-zero offset from origin UPDATED 2: If i process backface culling in clip space (after transforming all vertices with view and projection matrix), and just check z coordinate of triangle normal - it works perfect... Can i perform culing RIGHT BEFORE view/proj transforms? In this case looks like culling will not depends of projection and it's not right?.. UPDATED 3: I found answer and will post it in two hours - again coz of reputation lack.

    Read the article

  • How to emulate Mode 13h in a modern 3D renderer?

    - by David Gouveia
    I was indulging in nostalgia and remembered the first game I created, which used Mode 13h. This mode was really simple to work with, since it was essentially just an array of bytes with an element for each pixel on the screen (using an indexed color scheme). So I thought it might be fun to create something nowadays under these restrictions, but on modern hardware. The API could be as simple as: public class Mode13h { public byte[] VideoMemory = new byte[320 * 200]; public Color[] Palette = new Color[256]; } Now I'm wondering what would be the best way to get this data on the screen, using something like XNA / DirectX / OpenGL. The only solution I could think of was to create a texture with the same size as the VideoMemory array, write the contents of VideoMemory to it every frame, then render that texture in a full screen quad with the correct aspect ratio and using point texture filtering for that retro look. Is there a better way?

    Read the article

  • How does gluLookAt work?

    - by Chan
    From my understanding, gluLookAt( eye_x, eye_y, eye_z, center_x, center_y, center_z, up_x, up_y, up_z ); is equivalent to: glRotatef(B, 0.0, 0.0, 1.0); glRotatef(A, wx, wy, wz); glTranslatef(-eye_x, -eye_y, -eye_z); But when I print out the ModelView matrix, the call to glTranslatef() doesn't seem to work properly. Here is the code snippet: #include <stdlib.h> #include <stdio.h> #include <GL/glut.h> #include <iomanip> #include <iostream> #include <string> using namespace std; static const int Rx = 0; static const int Ry = 1; static const int Rz = 2; static const int Ux = 4; static const int Uy = 5; static const int Uz = 6; static const int Ax = 8; static const int Ay = 9; static const int Az = 10; static const int Tx = 12; static const int Ty = 13; static const int Tz = 14; void init() { glClearColor(0.0, 0.0, 0.0, 0.0); glEnable(GL_DEPTH_TEST); glShadeModel(GL_SMOOTH); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); GLfloat lmodel_ambient[] = { 0.8, 0.0, 0.0, 0.0 }; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient); } void displayModelviewMatrix(float MV[16]) { int SPACING = 12; cout << left; cout << "\tMODELVIEW MATRIX\n"; cout << "--------------------------------------------------" << endl; cout << setw(SPACING) << "R" << setw(SPACING) << "U" << setw(SPACING) << "A" << setw(SPACING) << "T" << endl; cout << "--------------------------------------------------" << endl; cout << setw(SPACING) << MV[Rx] << setw(SPACING) << MV[Ux] << setw(SPACING) << MV[Ax] << setw(SPACING) << MV[Tx] << endl; cout << setw(SPACING) << MV[Ry] << setw(SPACING) << MV[Uy] << setw(SPACING) << MV[Ay] << setw(SPACING) << MV[Ty] << endl; cout << setw(SPACING) << MV[Rz] << setw(SPACING) << MV[Uz] << setw(SPACING) << MV[Az] << setw(SPACING) << MV[Tz] << endl; cout << setw(SPACING) << MV[3] << setw(SPACING) << MV[7] << setw(SPACING) << MV[11] << setw(SPACING) << MV[15] << endl; cout << "--------------------------------------------------" << endl; cout << endl; } void reshape(int w, int h) { float ratio = static_cast<float>(w)/h; glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, ratio, 1.0, 425.0); } void draw() { float m[16]; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glGetFloatv(GL_MODELVIEW_MATRIX, m); gluLookAt( 300.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f ); glColor3f(1.0, 0.0, 0.0); glutSolidCube(100.0); glGetFloatv(GL_MODELVIEW_MATRIX, m); displayModelviewMatrix(m); glutSwapBuffers(); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(400, 400); glutInitWindowPosition(100, 100); glutCreateWindow("Demo"); glutReshapeFunc(reshape); glutDisplayFunc(draw); init(); glutMainLoop(); return 0; } No matter what value I use for the eye vector: 300, 0, 0 or 0, 300, 0 or 0, 0, 300 the translation vector is the same, which doesn't make any sense because the order of code is in backward order so glTranslatef should run first, then the 2 rotations. Plus, the rotation matrix, is completely independent of the translation column (in the ModelView matrix), then what would cause this weird behavior? Here is the output with the eye vector is (0.0f, 300.0f, 0.0f) MODELVIEW MATRIX -------------------------------------------------- R U A T -------------------------------------------------- 0 0 0 0 0 0 0 0 0 1 0 -300 0 0 0 1 -------------------------------------------------- I would expect the T column to be (0, -300, 0)! So could anyone help me explain this? The implementation of gluLookAt from http://www.mesa3d.org void GLAPIENTRY gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz) { float forward[3], side[3], up[3]; GLfloat m[4][4]; forward[0] = centerx - eyex; forward[1] = centery - eyey; forward[2] = centerz - eyez; up[0] = upx; up[1] = upy; up[2] = upz; normalize(forward); /* Side = forward x up */ cross(forward, up, side); normalize(side); /* Recompute up as: up = side x forward */ cross(side, forward, up); __gluMakeIdentityf(&m[0][0]); m[0][0] = side[0]; m[1][0] = side[1]; m[2][0] = side[2]; m[0][1] = up[0]; m[1][1] = up[1]; m[2][1] = up[2]; m[0][2] = -forward[0]; m[1][2] = -forward[1]; m[2][2] = -forward[2]; glMultMatrixf(&m[0][0]); glTranslated(-eyex, -eyey, -eyez); }

    Read the article

< Previous Page | 580 581 582 583 584 585 586 587 588 589 590 591  | Next Page >