Search Results

Search found 22499 results on 900 pages for 'game level'.

Page 64/900 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • Collision Detection on floor tiles Isometric game

    - by Anivrom
    I am having a very hard to time figuring out a bug in my code. It should have taken me 20 minutes but instead I've been working on it for over 12 hours. I am writing a isometric tile based game where the characters can walk freely amongst the tiles, but not be able to cross over to certain tiles that have a collides flag. Sounds easy enough, just check ahead of where the player is going to move using a Screen Coordinates to Tile method and check the tiles array using our returned xy indexes to see if its collidable or not. if its not, then don't move the character. The problem I'm having is my Screen to Tile method isn't spitting out the proper X,Y tile indexes. This method works flawlessly for selecting tiles with the mouse. NOTE: My X tiles go from left to right, and my Y tiles go from up to down. Reversed from some examples on the net. Here's the relevant code: public Vector2 ScreentoTile(Vector2 screenPoint) { //Vector2 is just a object with x and y float properties //camOffsetX,Y are my camera values that I use to shift everything but the //current camera target when the target moves //tilescale = 128, screenheight = 480, the -46 offset is to center // vertically + 16 px for some extra gfx in my tile png Vector2 tileIndex = new Vector2(-1,-1); screenPoint.x -= camOffsetX; screenPoint.y = screenHeight - screenPoint.y - camOffsetY - 46; tileIndex.x = (screenPoint.x / tileScale) + (screenPoint.y / (tileScale / 2)); tileIndex.y = (screenPoint.x / tileScale) - (screenPoint.y / (tileScale / 2)); return tileIndex; } The method that calls this code is: private void checkTileTouched () { if (Gdx.input.justTouched()) { if (last.x >= 0 && last.x < levelWidth && last.y >= 0 && last.y < levelHeight) { if (lastSelectedTile != null) lastSelectedTile.setColor(1, 1, 1, 1); Sprite sprite = levelTiles[(int) last.x][(int) last.y].sprite; sprite.setColor(0, 0.3f, 0, 1); lastSelectedTile = sprite; } } if (touchDown) { float moveX=0,moveY=0; Vector2 pos = new Vector2(); if (player.direction == direction_left) { moveX = -(player.moveSpeed); moveY = -(player.moveSpeed / 2); Gdx.app.log("Movement", String.valueOf("left")); } else if (player.direction == direction_upleft) { moveX = -(player.moveSpeed); moveY = 0; Gdx.app.log("Movement", String.valueOf("upleft")); } else if (player.direction == direction_up) { moveX = -(player.moveSpeed); moveY = player.moveSpeed / 2; Gdx.app.log("Movement", String.valueOf("up")); } else if (player.direction == direction_upright) { moveX = 0; moveY = player.moveSpeed; Gdx.app.log("Movement", String.valueOf("upright")); } else if (player.direction == direction_right) { moveX = player.moveSpeed; moveY = player.moveSpeed / 2; Gdx.app.log("Movement", String.valueOf("right")); } else if (player.direction == direction_downright) { moveX = player.moveSpeed; moveY = 0; Gdx.app.log("Movement", String.valueOf("downright")); } else if (player.direction == direction_down) { moveX = player.moveSpeed; moveY = -(player.moveSpeed / 2); Gdx.app.log("Movement", String.valueOf("down")); } else if (player.direction == direction_downleft) { moveX = 0; moveY = -(player.moveSpeed); Gdx.app.log("Movement", String.valueOf("downleft")); } //Player.moveSpeed is 1 //tileObjects.x is drawn in the center of the screen (400px,240px) // the sprite width is 64, height is 128 testX = moveX * 10; testY = moveY * 10; testX += tileObjects.get(player.zIndex).x + tileObjects.get(player.zIndex).sprite.getWidth() / 2; testY += tileObjects.get(player.zIndex).y + tileObjects.get(player.zIndex).sprite.getHeight() / 2; moveX += tileObjects.get(player.zIndex).x + tileObjects.get(player.zIndex).sprite.getWidth() / 2; moveY += tileObjects.get(player.zIndex).y + tileObjects.get(player.zIndex).sprite.getHeight() / 2; pos = ScreentoTile(new Vector2(moveX,moveY)); Vector2 pos2 = ScreentoTile(new Vector2(testX,testY)); if (!levelTiles[(int) pos2.x][(int) pos2.y].collides) { Vector2 newPlayerPos = ScreentoTile(new Vector2(moveX,moveY)); CenterOnCoord(moveX,moveY); player.tileX = (int)newPlayerPos.x; player.tileY = (int)newPlayerPos.y; } } } When the player is moving to the left (downleft-ish from the viewers point of view), my Pos2 X values decrease as expected but pos2 isnt checking ahead on the x tiles, it is checking ahead on the Y tiles(as if we were moving DOWN, not left), and vice versa, if the player moves down, it will check ahead on the X values (as if we are moving LEFT, instead of DOWN). instead of the Y values. I understand this is probably the most confusing and horribly written post ever, but I'm confused myself so I'm having a hard time explaining it to others lol. if you need more information please ask!! I'm so frustrated after over 12 hours of working on it I'm about to give up.

    Read the article

  • When does "proper" programming no longer matter?

    - by Kai Qing
    I've been a full time programmer for about 8 years now. Web based mostly, ranging in weird jobs for clients. Never anything I "want" to do. So my experience is limited to what I've been contracted to do, having no real incentive to master anything in particular. So here's my scenario and ultimately what I wonder about... I've been building an android game in my spare time. It's using the libgdx library so quite a bit of the heavy lifting is done for me. I don't read much of the docs cause unless it's in tutorial format I will just not care, and ultimately most of my questions have already been asked on stackoverflow. I get along fine and my game works as expected... Suspiciously well, even. So much so that I wonder why one should bother to be "proper" when coding if the end result is ultimately the same. To be more specific, I used a hashtable because I wanted something close to an associative array. Human readable key values. In other places to achieve similar things, I use a vector. I know libgdx has vector2 and vector3 classes, but I've never used them. When I come across weird problems and search stackoverflow for help, I see a lot of people just reaming the questions that use a certain datatype when another one is technically "proper." Like using an ArrayList because it does not require defined bounds versus re-defining an int[] with new known boundaries. Or even something trivial like this: for(int i = 0; i < items.length; i ++) { // do something } I know it evaluates item.length on every iteration. I just don't care. I know items will never be more than 15 to 20 items. So why bother caring if I evaluate items.length on every iteration? So I wonder - why does everyone get all up in arms over this? Who cares if I use a less efficient datatype to get the job done? I ran some tests to see how the app performs using the lazy, get it done fast and don't look back method I just described versus the proper, follow the tutorial and use the exact data types suggested by the community. The results: Same thing. Average 45 fps. I opened every app on the phone and galaxy tab. Same deal. No difference. My game is pretty graphic intensive. It's not like it's just a simple thing. I expected it to perform kind of badly since I don't care to optimize image assets or... well, you probably get the idea. I'm making the game for fun. As a joke, really. But in doing so I'm working outside the normal scope of my job, which is to always follow the rules and do it the right way. So to say, I am without bounds here and this has caused me to wonder why I ever really care to be "proper" So I guess my question to you is this: Is there a threshold when it no longer matters to be proper? Is there a lasting, longer term consequence to the lazy, get it done and don't look back route? Is it ok to say - "so long as it gets the job done, I don't care?" Disclaimer: When I program my game, I am almost always drunk. I do it to remember why I got into this stuff to begin with because the monotony of client based web work will make you hate being a programmer. I'm having a blast and my game is not crashing, tests well, performs well, looks good on all devices so far and has no noticeable negative impact on any of my testing devices. I expected failure because I was being so drunkenly careless with my code, but to my surprise, it had no noticeable impact. I am now starting to question the need to be careful. Help me regain the ability to care! ... or explain why it's not a bad thing to not care. Secondary disclaimer: I am aware of the benefits of maintainability. For myself and others. Agreed. But it's not like someone happening across my inefficient int[] loop won't know what it does. As an experienced programmer those kinds of things are just clear on sight. I document the complex stuff for myself knowing I was drunk and will probably need a reminder. Those notes would clarify any confusion for someone who might ever gaze upon my ridiculous game - though the reality is that either I maintain it myself or it fades into time. I'm ok with that. But if it doesn't slow the device down, or crash, then crossing the t's and dotting the i's might actually require more time than it's worth.

    Read the article

  • Defaulting the HLSL Vertex and Pixel Shader Levels to Feature Level 9_1 in VS 2012

    - by Michael B. McLaughlin
    I love Visual Studio 2012. But this is not a post about that. This is a post about tweaking one particular parameter that I’ve found a bit annoying. Disclaimer: You will be modifying important MSBuild files. If you screw up you will break your build tools. And maybe your computer will catch fire. I’m not responsible. No warranties or guaranties of any sort. This info is provided “as is”. By default, if you add a new vertex shader or pixel shader item to a project, it will be set to build with shader profile 4.0_level_9_3. If you need 9_3 functionality, this is all well and good. But (especially for Windows Store apps) you really want to target the lowest shader profile possible so that your game will run on as many computers as possible. So it’s a good idea to default to 9_1. To do this you could add in new HLSL files via “Add->New Item->Visual C++->HLSL->______ Shader File (.hlsl)” and then edit the shader files’ properties to set them manually to use 9_1 via “Properties->HLSL Compiler->General->Shader Model”. This is fine unless you forget to do this once and then submit your game with 9_3 shaders instead of 9_1 shaders to the Windows Store or to some other game store. Then you’d wind up with either rejection or angry “this doesn’t work on my computer! ripoff!” messages. There’s another option though. In “Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplates\VC\HLSL\1033\VertexShader” (note the path might vary slightly for you if you are using a 32-bit system or have a non-ENU version of Visual Studio 2012) you will find a “VertexShader.vstemplate” file. If you open this file in a text editor (e.g. Notepad++), then inside the CustomParameters tag within the TemplateContent tag you should see a CustomParameter tag for the ShaderType, i.e.: <CustomParameter Name="$ShaderType$" Value="Vertex"/> On a new line, we are going to add another CustomParameter tag to the CustomParameters tag. It will look like this: <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/> such that we now have:     <CustomParameters>       <CustomParameter Name="$ShaderType$" Value="Vertex"/>       <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/>     </CustomParameters> You can then save the file (you will need to be an Administrator or have Administrator access). Back in the 1033 directory (or whatever the number is for your language), go into the “PixelShader” directory. Edit the “PixelShader.vstemplate” file and make the same change (note that this time $ShaderType$ is “Pixel” not “Vertex”; you shouldn’t be changing that line anyway, but if you were to just copy and replace the above four lines then you will wind up creating pixel shaders that the HLSL compiler would try to compile as vertex shaders, with all sort of weird errors as a result). Once you’ve added the $ShaderModel$ line to “PixelShader.vstemplate” and have saved it, everything should be done. Since Feature Level 9_1 and 9_3 don’t support any of the other shader types, those are set to default to their appropriate minimums already (Compute and Geometry are set to “4.0” and Domain and Hull are set to “5.0”, which are their respective minimums (though not all 4.0 cards support Compute shaders; they were an optional feature added with DirectX 10.1 and only became required for DirectX 11 hardware). In case you are wondering where these magic values come from, you can find them all in the “fxc.xml” file in the “\Program Files (x86)\MSBuild\Microsoft.CPP\v4.0\V110\1033” directory (or whatever your language number is; 1033 is ENU and various other product languages have their own respective numbers (see: http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx ) such that Japanese is 1041 (for example), though for all I know MSBuild tasks might be 1033 for everyone). If, like me, you installed VS 2012 to a drive other than the C:\ drive, you will find the vstemplate files in the drive to which you installed VS 2012 (D:\ in my case) but you will find the fxc.xml file on the C:\ drive. You should not edit fxc.xml. You will almost definitely break things by doing that; it’s just something you can look through to see all the other options that the FXC task takes such that you could, if needed, add further CustomParameter tags if you wanted to default to other supported options. I haven’t tried any others though so I don’t have any advice on how to set them.

    Read the article

  • XNA - Inconsistent accessibility: parameter type is less accessible than method

    - by DijkeMark
    I have a level class in which I make a new turret. I give the turret the level class as parameter. So far so good. Then in the Update function of the Turret I call a function Shoot(), which has that level parameter it got at the moment I created it. But from that moment it gives the following error: Inconsistent accessibility: parameter type 'Space_Game.Level' is less accessible than method 'Space_Game.GameObject.Shoot(Space_Game.Level, string)' All I know it has something to do with not thr right protection level or something like that. The level class: public Level(Game game, Viewport viewport) { _game = game; _viewport = viewport; _turret = new Turret(_game, "blue", this); _turret.SetPosition((_viewport.Width / 2).ToString(), (_viewport.Height / 2).ToString()); } The Turret Class: public Turret(Game game, String team, Level level) :base(game) { _team = team; _level = level; switch (_team) { case "blue": _texture = LoadResources._blue_turret.Texture; _rows = LoadResources._blue_turret.Rows; _columns = LoadResources._blue_turret.Columns; _maxFrameCounter = 10; break; default: break; } _frameCounter = 0; _currentFrame = 0; _currentFrameMultiplier = 1; } public override void Update() { base.Update(); SetRotation(); Shoot(_level, "turret"); } The Shoot Function (Which is in GameObject class. The Turret Class inherited the GameObject Class. (Am I saying that right?)): protected void Shoot(Level level, String type) { MouseState mouse = Mouse.GetState(); if (mouse.LeftButton == ButtonState.Pressed) { switch (_team) { case "blue": switch (type) { case "turret": TurretBullet _turretBullet = new TurretBullet(_game, _team); level.AddProjectile(_turretBullet); break; default: break; } break; default: break; } } } Thanks in Advance, Mark Dijkema

    Read the article

  • Improving Click and Drag with C++

    - by Josh
    I'm currently using SFML 2.0 to develop a game in C++. I have a game sprite class that has a click and drag method. The method works, but there is a slight problem. If the mouse moves too fast, the object the user selected can't keep up and is left behind in the spot where the mouse left its bounds. I will share the class definition and the given function implementation. Definition: class codePeg { protected: FloatRect bounds; CircleShape circle; int xPos, yPos, xDiff, yDiff, once; int xBase, yBase; Vector2i mousePos; Vector2f circlePos; public: void init(RenderWindow& Window); void draw(RenderWindow& Window); void drag(RenderWindow& Window); void setPegPosition(int x, int y); void setPegColor(Color pegColor); void mouseOver(RenderWindow& Window); friend int isPegSelected(void); }; Implementation of the "drag" function: void codePeg::drag(RenderWindow& Window) { mousePos = Mouse::getPosition(Window); circlePos = circle.getPosition(); if(Mouse::isButtonPressed(Mouse::Left)) { if(mousePos.x > xPos && mousePos.y > yPos && mousePos.x - bounds.width < xPos && mousePos.y - bounds.height < yPos) { if(once) { xDiff = mousePos.x - circlePos.x; yDiff = mousePos.y - circlePos.y; once = 0; } xPos = mousePos.x - xDiff; yPos = mousePos.y - yDiff; circle.setPosition(xPos, yPos); } } else { once = 1; xPos = xBase; yPos = yBase; xDiff = 0; yDiff = 0; circle.setPosition(xBase, yBase); } Window.draw(circle); } Like I said, the function works, but to me, the code is very ugly and I think it could be improved and could be more efficient. The only thing I can think of as to why the object cannot keep up with the mouse is that there are too many function calls and/or checks. The user does not really have to mouse the mouse "fast" for it to happen, I would say at an average pace the object is left behind. How can I improve the code so that the object remains with the mouse when it is selected? Any help improving this code or giving advice is greatly appreciated.

    Read the article

  • Shuffle tiles position in the beginning of the game XNA Csharp

    - by GalneGunnar
    Im trying to create a puzzlegame where you move tiles to certain positions to make a whole image. I need help with randomizing the tiles startposition so that they don't create the whole image at the beginning. There is also something wrong with my offset, that's why it's set to (0,0). I know my code is not good, but Im just starting to learn :] Thanks in advance My Game1 class: { public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D PictureTexture; Texture2D FrameTexture; // Offset för bildgraff Vector2 Offset = new Vector2(0,0); //skapar en array som ska hålla delar av den stora bilden Square[,] squareArray = new Square[4, 4]; // Random randomeraBilder = new Random(); //Width och Height för bilden int pictureHeight = 95; int pictureWidth = 144; Random randomera = new Random(); int index = 0; MouseState oldMouseState; int WindowHeight; int WindowWidth; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; //scalar Window till 800x 600y graphics.PreferredBackBufferWidth = 800; graphics.PreferredBackBufferHeight = 600; graphics.ApplyChanges(); } protected override void Initialize() { IsMouseVisible = true; base.Initialize(); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); PictureTexture = Content.Load<Texture2D>(@"Images/bildgraff"); FrameTexture = Content.Load<Texture2D>(@"Images/framer"); //Laddar in varje liten bild av den stora bilden i en array for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { Vector2 position = new Vector2(x * pictureWidth, y * pictureHeight); position = position + Offset; Rectangle square = new Rectangle(x * pictureWidth, y * pictureHeight, pictureWidth, pictureHeight); Square frame = new Square(position, PictureTexture, square, Offset, index); squareArray[x, y] = frame; index++; } } } protected override void UnloadContent() { } protected override void Update(GameTime gameTime) { if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); MouseState ms = Mouse.GetState(); if (oldMouseState.LeftButton == ButtonState.Pressed && ms.LeftButton == ButtonState.Released) { // ta reda på vilken position vi har tryckt på int col = ms.X / pictureWidth; int row = ms.Y / pictureHeight; for (int x = 0; x < squareArray.GetLength(0); x++) { for (int y = 0; y < squareArray.GetLength(1); y++) { // kollar om rutan är tom och så att indexet inte går utanför för "col" och "row" if (squareArray[x, y].index == 0 && col >= 0 && row >= 0 && col <= 3 && row <= 3) { if (squareArray[x, y].index == 0 * col) { //kollar om rutan brevid mouseclick är tom if (col > 0 && squareArray[col - 1, row].index == 0 || row > 0 && squareArray[col, row - 1].index == 0 || col < 3 && squareArray[col + 1, row].index == 0 || row < 3 && squareArray[col, row + 1].index == 0) { Square sqaure = squareArray[col, row]; Square hal = squareArray[x, y]; squareArray[x, y] = sqaure; squareArray[col, row] = hal; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { Vector2 goalPosition = new Vector2(x * pictureWidth, y * pictureHeight); squareArray[x, y].Swap(goalPosition); } } } } } } } } //if (oldMouseState.RightButton == ButtonState.Pressed && ms.RightButton == ButtonState.Released) //{ // for (int x = 0; x < 4; x++) // { // for (int y = 0; y < 4; y++) // { // } // } //} oldMouseState = ms; base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); WindowHeight = Window.ClientBounds.Height; WindowWidth = Window.ClientBounds.Width; Rectangle screenPosition = new Rectangle(0,0, WindowWidth, WindowHeight); spriteBatch.Begin(); spriteBatch.Draw(FrameTexture, screenPosition, Color.White); //Ritar ut alla brickorna förutom den som har index 0 for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { if (squareArray[x, y].index != 0) { squareArray[x, y].Draw(spriteBatch); } } } spriteBatch.End(); base.Draw(gameTime); } } } My square class: class Square { public Vector2 position; public Texture2D grafTexture; public Rectangle square; public Vector2 offset; public int index; public Square(Vector2 position, Texture2D grafTexture, Rectangle square, Vector2 offset, int index) { this.position = position; this.grafTexture = grafTexture; this.square = square; this.offset = offset; this.index = index; } public void Draw(SpriteBatch spritebatch) { spritebatch.Draw(grafTexture, position, square, Color.White); } public void RandomPosition() { } public void Swap(Vector2 Goal ) { if (Goal.X > position.X) { position.X = position.X + 144; } else if (Goal.X < position.X) { position.X = position.X - 144; } else if (Goal.Y < position.Y) { position.Y = position.Y - 95; } else if (Goal.Y > position.Y) { position.Y = position.Y + 95; } } } }

    Read the article

  • Game Over function is not working Starling

    - by aNgeLyN omar
    I've been following a tutorial over the web but it somehow did not show something about creating a game over function. I am new to the Starling framework and Actionscript so I'm kind of still trying to find a way to make it work. Here's the complete snippet of the code. package screens { import flash.geom.Rectangle; import flash.utils.getTimer; import events.NavigationEvent; import objects.GameBackground; import objects.Hero; import objects.Item; import objects.Obstacle; import starling.display.Button; import starling.display.Image; import starling.display.Sprite; import starling.events.Event; import starling.events.Touch; import starling.events.TouchEvent; import starling.text.TextField; import starling.utils.deg2rad; public class InGame extends Sprite { private var screenInGame:InGame; private var screenWelcome:Welcome; private var startButton:Button; private var playAgain:Button; private var bg:GameBackground; private var hero:Hero; private var timePrevious:Number; private var timeCurrent:Number; private var elapsed:Number; private var gameState:String; private var playerSpeed:Number = 0; private var hitObstacle:Number = 0; private const MIN_SPEED:Number = 650; private var scoreDistance:int; private var obstacleGapCount:int; private var gameArea:Rectangle; private var touch:Touch; private var touchX:Number; private var touchY:Number; private var obstaclesToAnimate:Vector.<Obstacle>; private var itemsToAnimate:Vector.<Item>; private var scoreText:TextField; private var remainingLives:TextField; private var gameOverText:TextField; private var iconSmall:Image; static private var lives:Number = 2; public function InGame() { super(); this.addEventListener(starling.events.Event.ADDED_TO_STAGE, onAddedToStage); } private function onAddedToStage(event:Event):void { this.removeEventListener(Event.ADDED_TO_STAGE, onAddedToStage); drawGame(); scoreText = new TextField(300, 100, "Score: 0", "MyFontName", 35, 0xD9D919, true); remainingLives = new TextField(600, 100, "Lives: " + lives +" X ", "MyFontName", 35, 0xD9D919, true); iconSmall = new Image(Assets.getAtlas().getTexture("darnahead1")); iconSmall.x = 360; iconSmall.y = 40; this.addChild(iconSmall); this.addChild(scoreText); this.addChild(remainingLives); } private function drawGame():void { bg = new GameBackground(); this.addChild(bg); hero = new Hero(); hero.x = stage.stageHeight / 2; hero.y = stage.stageWidth / 2; this.addChild(hero); startButton = new Button(Assets.getAtlas().getTexture("startButton")); startButton.x = stage.stageWidth * 0.5 - startButton.width * 0.5; startButton.y = stage.stageHeight * 0.5 - startButton.height * 0.5; this.addChild(startButton); gameArea = new Rectangle(0, 100, stage.stageWidth, stage.stageHeight - 250); } public function disposeTemporarily():void { this.visible = false; } public function initialize():void { this.visible = true; this.addEventListener(Event.ENTER_FRAME, checkElapsed); hero.x = -stage.stageWidth; hero.y = stage.stageHeight * 0.5; gameState ="idle"; playerSpeed = 0; hitObstacle = 0; bg.speed = 0; scoreDistance = 0; obstacleGapCount = 0; obstaclesToAnimate = new Vector.<Obstacle>(); itemsToAnimate = new Vector.<Item>(); startButton.addEventListener(Event.TRIGGERED, onStartButtonClick); //var mainStage:InGame =InGame.current.nativeStage; //mainStage.dispatchEvent(new Event(Event.COMPLETE)); //playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onStartButtonClick(event:Event):void { startButton.visible = false; startButton.removeEventListener(Event.TRIGGERED, onStartButtonClick); launchHero(); } private function launchHero():void { this.addEventListener(TouchEvent.TOUCH, onTouch); this.addEventListener(Event.ENTER_FRAME, onGameTick); } private function onTouch(event:TouchEvent):void { touch = event.getTouch(stage); touchX = touch.globalX; touchY = touch.globalY; } private function onGameTick(event:Event):void { switch(gameState) { case "idle": if(hero.x < stage.stageWidth * 0.5 * 0.5) { hero.x += ((stage.stageWidth * 0.5 * 0.5 + 10) - hero.x) * 0.05; hero.y = stage.stageHeight * 0.5; playerSpeed += (MIN_SPEED - playerSpeed) * 0.05; bg.speed = playerSpeed * elapsed; } else { gameState = "flying"; } break; case "flying": if(hitObstacle <= 0) { hero.y -= (hero.y - touchY) * 0.1; if(-(hero.y - touchY) < 150 && -(hero.y - touchY) > -150) { hero.rotation = deg2rad(-(hero.y - touchY) * 0.2); } if(hero.y > gameArea.bottom - hero.height * 0.5) { hero.y = gameArea.bottom - hero.height * 0.5; hero.rotation = deg2rad(0); } if(hero.y < gameArea.top + hero.height * 0.5) { hero.y = gameArea.top + hero.height * 0.5; hero.rotation = deg2rad(0); } } else { hitObstacle-- cameraShake(); } playerSpeed -= (playerSpeed - MIN_SPEED) * 0.01; bg.speed = playerSpeed * elapsed; scoreDistance += (playerSpeed * elapsed) * 0.1; scoreText.text = "Score: " + scoreDistance; initObstacle(); animateObstacles(); createEggItems(); animateItems(); remainingLives.text = "Lives: "+lives + " X "; if(lives == 0) { gameState = "over"; } break; case "over": gameOver(); break; } } private function gameOver():void { gameOverText = new TextField(800, 400, "Hero WAS KILLED!!!", "MyFontName", 50, 0xD9D919, true); scoreText = new TextField(800, 600, "Score: "+scoreDistance, "MyFontName", 30, 0xFFFFFF, true); this.addChild(scoreText); this.addChild(gameOverText); playAgain = new Button(Assets.getAtlas().getTexture("button_tryAgain")); playAgain.x = stage.stageWidth * 0.5 - startButton.width * 0.5; playAgain.y = stage.stageHeight * 0.75 - startButton.height * 0.75; this.addChild(playAgain); playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onRetry(event:Event):void { playAgain.visible = false; gameOverText.visible = false; scoreText.visible = false; var btnClicked:Button = event.target as Button; if((btnClicked as Button) == playAgain) { this.dispatchEvent(new NavigationEvent(NavigationEvent.CHANGE_SCREEN, {id: "playnow"}, true)); } disposeTemporarily(); } private function animateItems():void { var itemToTrack:Item; for(var i:uint = 0; i < itemsToAnimate.length; i++) { itemToTrack = itemsToAnimate[i]; itemToTrack.x -= playerSpeed * elapsed; if(itemToTrack.bounds.intersects(hero.bounds)) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } if(itemToTrack.x < -50) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } } } private function createEggItems():void { if(Math.random() > 0.95){ var itemToTrack:Item = new Item(Math.ceil(Math.random() * 10)); itemToTrack.x = stage.stageWidth + 50; itemToTrack.y = int(Math.random() * (gameArea.bottom - gameArea.top)) + gameArea.top; this.addChild(itemToTrack); itemsToAnimate.push(itemToTrack); } } private function cameraShake():void { if(hitObstacle > 0) { this.x = Math.random() * hitObstacle; this.y = Math.random() * hitObstacle; } else if(x != 0) { this.x = 0; this.y = 0; lives--; } } private function initObstacle():void { if(obstacleGapCount < 1200) { obstacleGapCount += playerSpeed * elapsed; } else if(obstacleGapCount !=0) { obstacleGapCount = 0; createObstacle(Math.ceil(Math.random() * 5), Math.random() * 1000 + 1000); } } private function animateObstacles():void { var obstacleToTrack:Obstacle; for(var i:uint = 0; i<obstaclesToAnimate.length; i++) { obstacleToTrack = obstaclesToAnimate[i]; if(obstacleToTrack.alreadyHit == false && obstacleToTrack.bounds.intersects(hero.bounds)) { obstacleToTrack.alreadyHit = true; obstacleToTrack.rotation = deg2rad(70); hitObstacle = 30; playerSpeed *= 0.5; } if(obstacleToTrack.distance > 0) { obstacleToTrack.distance -= playerSpeed * elapsed; } else { if(obstacleToTrack.watchOut) { obstacleToTrack.watchOut = false; } obstacleToTrack.x -= (playerSpeed + obstacleToTrack.speed) * elapsed; } if(obstacleToTrack.x < -obstacleToTrack.width || gameState == "over") { obstaclesToAnimate.splice(i, 1); this.removeChild(obstacleToTrack); } } } private function checkElapsed(event:Event):void { timePrevious = timeCurrent; timeCurrent = getTimer(); elapsed = (timeCurrent - timePrevious) * 0.001; } private function createObstacle(type:Number, distance:Number):void{ var obstacle:Obstacle = new Obstacle(type, distance, true, 300); obstacle.x = stage.stageWidth; this.addChild(obstacle); if(type >= 4) { if(Math.random() > 0.5) { obstacle.y = gameArea.top; obstacle.position = "top" } else { obstacle.y = gameArea.bottom - obstacle.height; obstacle.position = "bottom"; } } else { obstacle.y = int(Math.random() * (gameArea.bottom - obstacle.height - gameArea.top)) + gameArea.top; obstacle.position = "middle"; } obstaclesToAnimate.push(obstacle); } } }

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Class-Level Model Validation with EF Code First and ASP.NET MVC 3

    - by ScottGu
    Earlier this week the data team released the CTP5 build of the new Entity Framework Code-First library.  In my blog post a few days ago I talked about a few of the improvements introduced with the new CTP5 build.  Automatic support for enforcing DataAnnotation validation attributes on models was one of the improvements I discussed.  It provides a pretty easy way to enable property-level validation logic within your model layer. You can apply validation attributes like [Required], [Range], and [RegularExpression] – all of which are built-into .NET 4 – to your model classes in order to enforce that the model properties are valid before they are persisted to a database.  You can also create your own custom validation attributes (like this cool [CreditCard] validator) and have them be automatically enforced by EF Code First as well.  This provides a really easy way to validate property values on your models.  I showed some code samples of this in action in my previous post. Class-Level Model Validation using IValidatableObject DataAnnotation attributes provides an easy way to validate individual property values on your model classes.  Several people have asked - “Does EF Code First also support a way to implement class-level validation methods on model objects, for validation rules than need to span multiple property values?”  It does – and one easy way you can enable this is by implementing the IValidatableObject interface on your model classes. IValidatableObject.Validate() Method Below is an example of using the IValidatableObject interface (which is built-into .NET 4 within the System.ComponentModel.DataAnnotations namespace) to implement two custom validation rules on a Product model class.  The two rules ensure that: New units can’t be ordered if the Product is in a discontinued state New units can’t be ordered if there are already more than 100 units in stock We will enforce these business rules by implementing the IValidatableObject interface on our Product class, and by implementing its Validate() method like so: The IValidatableObject.Validate() method can apply validation rules that span across multiple properties, and can yield back multiple validation errors. Each ValidationResult returned can supply both an error message as well as an optional list of property names that caused the violation (which is useful when displaying error messages within UI). Automatic Validation Enforcement EF Code-First (starting with CTP5) now automatically invokes the Validate() method when a model object that implements the IValidatableObject interface is saved.  You do not need to write any code to cause this to happen – this support is now enabled by default. This new support means that the below code – which violates one of our above business rules – will automatically throw an exception (and abort the transaction) when we call the “SaveChanges()” method on our Northwind DbContext: In addition to reactively handling validation exceptions, EF Code First also allows you to proactively check for validation errors.  Starting with CTP5, you can call the “GetValidationErrors()” method on the DbContext base class to retrieve a list of validation errors within the model objects you are working with.  GetValidationErrors() will return a list of all validation errors – regardless of whether they are generated via DataAnnotation attributes or by an IValidatableObject.Validate() implementation.  Below is an example of proactively using the GetValidationErrors() method to check (and handle) errors before trying to call SaveChanges(): ASP.NET MVC 3 and IValidatableObject ASP.NET MVC 2 included support for automatically honoring and enforcing DataAnnotation attributes on model objects that are used with ASP.NET MVC’s model binding infrastructure.  ASP.NET MVC 3 goes further and also honors the IValidatableObject interface.  This combined support for model validation makes it easy to display appropriate error messages within forms when validation errors occur.  To see this in action, let’s consider a simple Create form that allows users to create a new Product: We can implement the above Create functionality using a ProductsController class that has two “Create” action methods like below: The first Create() method implements a version of the /Products/Create URL that handles HTTP-GET requests - and displays the HTML form to fill-out.  The second Create() method implements a version of the /Products/Create URL that handles HTTP-POST requests - and which takes the posted form data, ensures that is is valid, and if it is valid saves it in the database.  If there are validation issues it redisplays the form with the posted values.  The razor view template of our “Create” view (which renders the form) looks like below: One of the nice things about the above Controller + View implementation is that we did not write any validation logic within it.  The validation logic and business rules are instead implemented entirely within our model layer, and the ProductsController simply checks whether it is valid (by calling the ModelState.IsValid helper method) to determine whether to try and save the changes or redisplay the form with errors. The Html.ValidationMessageFor() helper method calls within our view simply display the error messages our Product model’s DataAnnotations and IValidatableObject.Validate() method returned.  We can see the above scenario in action by filling out invalid data within the form and attempting to submit it: Notice above how when we hit the “Create” button we got an error message.  This was because we ticked the “Discontinued” checkbox while also entering a value for the UnitsOnOrder (and so violated one of our business rules).  You might ask – how did ASP.NET MVC know to highlight and display the error message next to the UnitsOnOrder textbox?  It did this because ASP.NET MVC 3 now honors the IValidatableObject interface when performing model binding, and will retrieve the error messages from validation failures with it. The business rule within our Product model class indicated that the “UnitsOnOrder” property should be highlighted when the business rule we hit was violated: Our Html.ValidationMessageFor() helper method knew to display the business rule error message (next to the UnitsOnOrder edit box) because of the above property name hint we supplied: Keeping things DRY ASP.NET MVC and EF Code First enables you to keep your validation and business rules in one place (within your model layer), and avoid having it creep into your Controllers and Views.  Keeping the validation logic in the model layer helps ensure that you do not duplicate validation/business logic as you add more Controllers and Views to your application.  It allows you to quickly change your business rules/validation logic in one single place (within your model layer) – and have all controllers/views across your application immediately reflect it.  This help keep your application code clean and easily maintainable, and makes it much easier to evolve and update your application in the future. Summary EF Code First (starting with CTP5) now has built-in support for both DataAnnotations and the IValidatableObject interface.  This allows you to easily add validation and business rules to your models, and have EF automatically ensure that they are enforced anytime someone tries to persist changes of them to a database.  ASP.NET MVC 3 also now supports both DataAnnotations and IValidatableObject as well, which makes it even easier to use them with your EF Code First model layer – and then have the controllers/views within your web layer automatically honor and support them as well.  This makes it easy to build clean and highly maintainable applications. You don’t have to use DataAnnotations or IValidatableObject to perform your validation/business logic.  You can always roll your own custom validation architecture and/or use other more advanced validation frameworks/patterns if you want.  But for a lot of applications this built-in support will probably be sufficient – and provide a highly productive way to build solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • How do I make good guy attacks only hit bad guys and vice versa?

    - by tieTYT
    My game has many different type of good guys and many different type of bad guys. They will all be firing projectiles at each other but I don't want any accidental collateral damage to occur for either alignment. So bad guys should not be able to hit/damage other bad guys and good guys should not be able to hit/damage other good guys. The way I'm thinking of solving this is by making it so that the Unit instance (this is javascript, btw), has an alignment property that can be either good or bad. And I'll only let collision happen if the class Attack boolean didAttackCollideWithTarget(target) return attack.source.alignment != target.alignment and collisionDetected(attack.source, target) This is pseudo-code, of course. But I'm asking this question because I get the sense that there might be a much more elegant way to design this besides adding yet another property to my Unit class.

    Read the article

  • Random Between: using random with the instance_create function in GML

    - by CLockeWork
    Hopefully this should be a simple one; I want to restrict the points that instances enter the screen from so they don't come in at the edges. In Game Maker I'm using the following code instance_create(random(room_width), random(-100) - 50, obj_enemy1); to create the instance off screen (create(x, y, ...)) At the moment I'm just using the room_width to define the max width for the random on x, but ideally I want to find a way of defining a max AND min width for the random. I can't figure out how to restrict the range on the x axis to between say 100 and 350. Any help would be appreciated. Cheers

    Read the article

  • RevoluteJoint Stop Rotating when Some Physics Body Collide in Andengine + Box2d?

    - by Nikhil Lamba
    I am making a Game from andengine + box2d in Which i am using RevoluteJoint in that case i am facing some problem that when physics body or Sprite Collide with this Revolute joint body then Revolute body stop rotating then after some time it start rotating I am using below code for this : this.mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(movingFace, movingBody, true, true)); final RevoluteJointDef revoluteJointDef = new RevoluteJointDef(); revoluteJointDef.initialize(anchorBody, movingBody, anchorBody.getWorldCenter()); revoluteJointDef.enableMotor = true; revoluteJointDef.motorSpeed = 100; revoluteJointDef.maxMotorTorque = 200; this.mPhysicsWorld.createJoint(revoluteJointDef); EDIT Here is a screenshot:

    Read the article

  • Time based movement Vs Frame rate based movement?

    - by sil3nt
    Hello there, I'm new to Game programmming and SDL, and I have been following Lazyfoo's SDL tutorials. My question is related to time based motion and frame rate based motion, basically which is better or appropriate depending on situations?. Could you give me an example where each of these methods are used?. Another question I have is that, in lazyfoo's two Motion tutorials (FPS based and time based) The time based method showed a much smoother animation while the Frame rate based one was a little hiccupy, meaning you could clearly see the gap between the previous location of the dot and its current position when you compare the two programs. As beginner which method should I stick to?(all I want is smooth animations).

    Read the article

  • LWJGL Voxel game, glDrawArrays

    - by user22015
    I've been learning about 3D for a couple days now. I managed to create a chunk (8x8x8). Add optimization so it only renders the active and visible blocks. Then I added so it only draws the faces which don't have a neighbor. Next what I found from online research was that it is better to use glDrawArrays to increase performance. So I restarted my little project. Render an entire chunck, add optimization so it only renders active and visible blocks. But now I want to add so it only draws the visible faces while using glDrawArrays. This is giving me some trouble with calling glDrawArrays because I'm passing a wrong count parameter. > # A fatal error has been detected by the Java Runtime Environment: > # > # EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x0000000006e31a03, pid=1032, tid=3184 > # Stack: [0x00000000023a0000,0x00000000024a0000], sp=0x000000000249ef70, free space=1019k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) C [ig4icd64.dll+0xa1a03] Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.GL11.nglDrawArrays(IIIJ)V+0 j org.lwjgl.opengl.GL11.glDrawArrays(III)V+20 j com.vox.block.Chunk.render()V+410 j com.vox.ChunkManager.render()V+30 j com.vox.Game.render()V+11 j com.vox.GameHandler.render()V+12 j com.vox.GameHandler.gameLoop()V+15 j com.vox.Main.main([Ljava/lang/StringV+13 v ~StubRoutines::call_stub public class Chunk { public final static int[] DIM = { 8, 8, 8}; public final static int CHUNK_SIZE = (DIM[0] * DIM[1] * DIM[2]); Block[][][] blocks; private int index; private int vBOVertexHandle; private int vBOColorHandle; public Chunk(int index) { this.index = index; vBOColorHandle = GL15.glGenBuffers(); vBOVertexHandle = GL15.glGenBuffers(); blocks = new Block[DIM[0]][DIM[1]][DIM[2]]; for(int x = 0; x < DIM[0]; x++){ for(int y = 0; y < DIM[1]; y++){ for(int z = 0; z < DIM[2]; z++){ blocks[x][y][z] = new Block(); } } } } public void render(){ Block curr; FloatBuffer vertexPositionData2 = BufferUtils.createFloatBuffer(CHUNK_SIZE * 6 * 12); FloatBuffer vertexColorData2 = BufferUtils.createFloatBuffer(CHUNK_SIZE * 6 * 12); int counter = 0; for(int x = 0; x < DIM[0]; x++){ for(int y = 0; y < DIM[1]; y++){ for(int z = 0; z < DIM[2]; z++){ curr = blocks[x][y][z]; boolean[] neightbours = validateNeightbours(x, y, z); if(curr.isActive() && !neightbours[6]) { float[] arr = curr.createCube((index*DIM[0]*Block.BLOCK_SIZE*2) + x*2, y*2, z*2, neightbours); counter += arr.length; vertexPositionData2.put(arr); vertexColorData2.put(createCubeVertexCol(curr.getCubeColor())); } } } } vertexPositionData2.flip(); vertexPositionData2.flip(); FloatBuffer vertexPositionData = BufferUtils.createFloatBuffer(vertexColorData2.position()); FloatBuffer vertexColorData = BufferUtils.createFloatBuffer(vertexColorData2.position()); for(int i = 0; i < vertexPositionData2.position(); i++) vertexPositionData.put(vertexPositionData2.get(i)); for(int i = 0; i < vertexColorData2.position(); i++) vertexColorData.put(vertexColorData2.get(i)); vertexColorData.flip(); vertexPositionData.flip(); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vBOVertexHandle); GL15.glBufferData(GL15.GL_ARRAY_BUFFER, vertexPositionData, GL15.GL_STATIC_DRAW); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vBOColorHandle); GL15.glBufferData(GL15.GL_ARRAY_BUFFER, vertexColorData, GL15.GL_STATIC_DRAW); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0); GL11.glPushMatrix(); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vBOVertexHandle); GL11.glVertexPointer(3, GL11.GL_FLOAT, 0, 0L); GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vBOColorHandle); GL11.glColorPointer(3, GL11.GL_FLOAT, 0, 0L); System.out.println("Counter " + counter); GL11.glDrawArrays(GL11.GL_LINE_LOOP, 0, counter); GL11.glPopMatrix(); //blocks[r.nextInt(DIM[0])][2][r.nextInt(DIM[2])].setActive(false); } //Random r = new Random(); private float[] createCubeVertexCol(float[] CubeColorArray) { float[] cubeColors = new float[CubeColorArray.length * 4 * 6]; for (int i = 0; i < cubeColors.length; i++) { cubeColors[i] = CubeColorArray[i % CubeColorArray.length]; } return cubeColors; } private boolean[] validateNeightbours(int x, int y, int z) { boolean[] bools = new boolean[7]; bools[6] = true; bools[6] = bools[6] && (bools[0] = y > 0 && y < DIM[1]-1 && blocks[x][y+1][z].isActive());//top bools[6] = bools[6] && (bools[1] = y > 0 && y < DIM[1]-1 && blocks[x][y-1][z].isActive());//bottom bools[6] = bools[6] && (bools[2] = z > 0 && z < DIM[2]-1 && blocks[x][y][z+1].isActive());//front bools[6] = bools[6] && (bools[3] = z > 0 && z < DIM[2]-1 && blocks[x][y][z-1].isActive());//back bools[6] = bools[6] && (bools[4] = x > 0 && x < DIM[0]-1 && blocks[x+1][y][z].isActive());//left bools[6] = bools[6] && (bools[5] = x > 0 && x < DIM[0]-1 && blocks[x-1][y][z].isActive());//right return bools; } } public class Block { public static final float BLOCK_SIZE = 1f; public enum BlockType { Default(0), Grass(1), Dirt(2), Water(3), Stone(4), Wood(5), Sand(6), LAVA(7); int BlockID; BlockType(int i) { BlockID=i; } } private boolean active; private BlockType type; public Block() { this(BlockType.Default); } public Block(BlockType type){ active = true; this.type = type; } public float[] getCubeColor() { switch (type.BlockID) { case 1: return new float[] { 1, 1, 0 }; case 2: return new float[] { 1, 0.5f, 0 }; case 3: return new float[] { 0, 0f, 1f }; default: return new float[] {0.5f, 0.5f, 1f}; } } public float[] createCube(float x, float y, float z, boolean[] neightbours){ int counter = 0; for(boolean b : neightbours) if(!b) counter++; float[] array = new float[counter*12]; int offset = 0; if(!neightbours[0]){//top array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; } if(!neightbours[1]){//bottom array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; } if(!neightbours[2]){//front array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; } if(!neightbours[3]){//back array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; } if(!neightbours[4]){//left array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; } if(!neightbours[5]){//right array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = x*BLOCK_SIZE + BLOCK_SIZE; array[offset++] = y*BLOCK_SIZE - BLOCK_SIZE; array[offset++] = z*BLOCK_SIZE - BLOCK_SIZE; } return Arrays.copyOf(array, offset); } public boolean isActive() { return active; } public void setActive(boolean active) { this.active = active; } public BlockType getType() { return type; } public void setType(BlockType type) { this.type = type; } } I highlighted the code I'm concerned about in this following screenshot: - http://imageshack.us/a/img820/7606/18626782.png - (Not allowed to upload images yet) I know the code is a mess but I'm just testing stuff so I wasn't really thinking about it.

    Read the article

  • Experience formula with javascript

    - by StealingMana
    I'm having trouble working out a formula using this experience curve to get the total exp after each level. I bet its easy and im just over thinking it. maxlvl = 10; increment = 28; baseexp = 100; function calc(){ for (i = 0;i<(maxlvl*increment);i+=increment){ expperlvl = baseexp + i; document.writeln(expperlvl); } } I figured it out. maxlvl=6; base=200; increment=56; function total(){ totalxp= (base*(maxlvl-1))+(increment*(maxlvl-2)*(maxlvl-1)/2); document.write(totalxp); }

    Read the article

  • What is the best practice to move sprites using mouse order in Tile games?

    - by Robin-Hood
    I am trying to make my first Tile-game using XNA. I have no problem drawing the map layers using TiledLib from codeplex, but, now I want to give sprite an (order) to move to a specific position on map, by selecting the sprite (left mouse click) and then right mouse click somewhere on the map to specify the target position. I don’t know what is the best practice to move sprite this way, considering that there may be collision objects in the direct path. what is the best practice to do this? Is there any demo covering this issue? thanks. BTW: I couldn’t upload snapshot because of my low score :(

    Read the article

  • Desktop Fun: Big Game Cats Wallpaper Collection Series 2

    - by Asian Angel
    Two years ago we shared a wonderful collection of big game cats wallpapers with you and today we are back with more cattitude goodness for you. Fill your desktop with these sleek and graceful friends from the animal kingdom with the second in our series of Big Game Cats Wallpaper collections. How To Create a Customized Windows 7 Installation Disc With Integrated Updates How to Get Pro Features in Windows Home Versions with Third Party Tools HTG Explains: Is ReadyBoost Worth Using?

    Read the article

  • Master database Compatibility level after an In-place Upgrade

    - by Jonathan Kehayias
    Yesterday a forums member asked why sys.dm_exec_sql_text() wouldn’t work on one instance of SQL where he was a sysadmin while the same code worked correctly on another instance of SQL.  The initial thought was that it was some kind of permissions issue.  Ken Simmons ( blog / twitter ) pointed out that the compatibility level of the database would affect the ability to use this DMF and that running it from a database at 80 compatibility would fail.  It turns out the person was running...(read more)

    Read the article

  • The Ultimate Claymation Chess Game [Video]

    - by Asian Angel
    Watch as these game pieces morph into creatures such as a Pegasi, Unicorn, Shark, Cobra, and more in their battle for final victory. Every game of chess should be this fun! scacchi clay stop motion – chess clay stop motion [via Geeks are Sexy] How to Enable Google Chrome’s Secret Gold IconHTG Explains: What’s the Difference Between the Windows 7 HomeGroups and XP-style Networking?Internet Explorer 9 Released: Here’s What You Need To Know

    Read the article

  • SDL to SFML simple question

    - by ultifinitus
    Hey! I've been working on a game in c++ for about a week and a half, and I've been using SDL. However, my current engine only needs the following from whatever library I use: enable double buffering load an image from path into something that I can apply to the screen apply an image to the screen with a certain x,y enable transparency on an image (possibly) image clipping, for sprite sheets. I am fairly sure that SFML has all of this functionality, I'm just not positive. Will someone confirm my suspicions? Also I have one or two questions regarding SFML itself. Do I have to do anything to enable hardware accelerated rendering? How quick is SFML at blending alpha values? (sorry for the less than intelligent question!)

    Read the article

  • How to design a replay system

    - by daddz
    So how would I design a replay system? You may know it from certain games like Warcraft 3 or Starcraft where you can watch the game again after it has been played already. You end up with a relatively small replay file. So my questions are: How to save the data? (custom format?) (small filesize) What shall be saved? How to make it generic so it can be used in other games to record a time period (and not a complete match for example)? Make it possible to forward and rewind (WC3 couldn't rewind as far as I remember)

    Read the article

  • Cyclic Dependencies.

    - by PhilCK
    Are cyclic dependencies a common thing in games dev? I ask as I keep getting into situation where I'm using and have been told more than once that they should be avoided. I am wondering if this is just a what people say as a general rule of thumb in the software development business. and that the nature of game programming produces such dependencies. // Foo #include <Bar.hpp> class Foo { bar& m_bar; }; and // Bar class Foo; class Bar { Foo* m_foo; }; I do this alot in Ruby, but dynamic languages are more forgiving in this instance, where as static ones, not so much.

    Read the article

  • Stairway to PowerPivot and DAX - Level 2: The DAX COUNTROWS() and FILTER() Functions

    Bill Pearson, business intelligence architect and author, exposes the DAX COUNTROWS() and FILTER() functions, while generally exploring, comparing and contrasting the nature and operation of calculated columns and calculated measures, in the second Level of our Stairway to PowerPivot and DAX series. 12 essential tools for database professionalsThe SQL Developer Bundle contains 12 tools designed with the SQL Server developer and DBA in mind. Try it now.

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >