Search Results

Search found 438 results on 18 pages for 'plane'.

Page 7/18 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Microsoft Flight Simulator SDK Capabilities

    - by Roger
    Hello, I have not been able to find detailed documentation about the Microsoft Flight Simulator SDK, so I have a couple of questions regarding its capabilities. I am currently running FS2004(could buy FSX if needed) and would like to know if I could add moving or static boats through the SDK. Ideally, the boat's position would be controlled by an external program at runtime. Secondly, can i access the flight management system through the SDK? I would like to upload a custom flight path through an external program while the plane is flying. So why the plane would follow the original flight path I would like to be able to change it on the go. Thanks

    Read the article

  • How to compare a memory bits in C++?

    - by Trunet
    Hi, I need help with a memory bit comparison function. I bought a LED Matrix here with 4 x HT1632C chips and I'm using it on my arduino mega2560. There're no code available for this chipset(it's not the same as HT1632) and I'm writing on my own. I have a plot function that get x,y coordinates and a color and that pixel turn on. Only this is working perfectly. But I need more performance on my display so I tried to make a shadowRam variable that is a "copy" of my device memory. Before I plot anything on display it checks on shadowRam to see if it's really necessary to change that pixel. When I enabled this(getShadowRam) on plot function my display has some, just SOME(like 3 or 4 on entire display) ghost pixels(pixels that is not supposed to be turned on). If I just comment the prev_color if's on my plot function it works perfectly. Also, I'm cleaning my shadowRam array setting all matrix to zero. variables: #define BLACK 0 #define GREEN 1 #define RED 2 #define ORANGE 3 #define CHIP_MAX 8 byte shadowRam[63][CHIP_MAX-1] = {0}; getShadowRam function: byte HT1632C::getShadowRam(byte x, byte y) { byte addr, bitval, nChip; if (x>=32) { nChip = 3 + x/16 + (y>7?2:0); } else { nChip = 1 + x/16 + (y>7?2:0); } bitval = 8>>(y&3); x = x % 16; y = y % 8; addr = (x<<1) + (y>>2); if ((shadowRam[addr][nChip-1] & bitval) && (shadowRam[addr+32][nChip-1] & bitval)) { return ORANGE; } else if (shadowRam[addr][nChip-1] & bitval) { return GREEN; } else if (shadowRam[addr+32][nChip-1] & bitval) { return RED; } else { return BLACK; } } plot function: void HT1632C::plot (int x, int y, int color) { if (x<0 || x>X_MAX || y<0 || y>Y_MAX) return; if (color != BLACK && color != GREEN && color != RED && color != ORANGE) return; char addr, bitval; byte nChip; byte prev_color = HT1632C::getShadowRam(x,y); bitval = 8>>(y&3); if (x>=32) { nChip = 3 + x/16 + (y>7?2:0); } else { nChip = 1 + x/16 + (y>7?2:0); } x = x % 16; y = y % 8; addr = (x<<1) + (y>>2); switch(color) { case BLACK: if (prev_color != BLACK) { // compare with memory to only set if pixel is other color // clear the bit in both planes; shadowRam[addr][nChip-1] &= ~bitval; HT1632C::sendData(nChip, addr, shadowRam[addr][nChip-1]); shadowRam[addr+32][nChip-1] &= ~bitval; HT1632C::sendData(nChip, addr+32, shadowRam[addr+32][nChip-1]); } break; case GREEN: if (prev_color != GREEN) { // compare with memory to only set if pixel is other color // set the bit in the green plane and clear the bit in the red plane; shadowRam[addr][nChip-1] |= bitval; HT1632C::sendData(nChip, addr, shadowRam[addr][nChip-1]); shadowRam[addr+32][nChip-1] &= ~bitval; HT1632C::sendData(nChip, addr+32, shadowRam[addr+32][nChip-1]); } break; case RED: if (prev_color != RED) { // compare with memory to only set if pixel is other color // clear the bit in green plane and set the bit in the red plane; shadowRam[addr][nChip-1] &= ~bitval; HT1632C::sendData(nChip, addr, shadowRam[addr][nChip-1]); shadowRam[addr+32][nChip-1] |= bitval; HT1632C::sendData(nChip, addr+32, shadowRam[addr+32][nChip-1]); } break; case ORANGE: if (prev_color != ORANGE) { // compare with memory to only set if pixel is other color // set the bit in both the green and red planes; shadowRam[addr][nChip-1] |= bitval; HT1632C::sendData(nChip, addr, shadowRam[addr][nChip-1]); shadowRam[addr+32][nChip-1] |= bitval; HT1632C::sendData(nChip, addr+32, shadowRam[addr+32][nChip-1]); } break; } } If helps: The datasheet of board I'm using. On page 7 has the memory mapping I'm using. Also, I have a video of display working.

    Read the article

  • multidimensional vector rotation and angle computation -- how?

    - by macias
    Input: two multidimensional (for example dim=8) vectors a and b. I need to find out the "directed" angle (0-2*Pi, not 0-Pi) between those vectors a and b. And if they are not parallel I need to rotate vector b in plane a,b by "directed" angle L. If they are parallel, plane does not matter, but angle of rotation is still the same L. For 2d and 3d this is quite easy, but for more dimensions I am lost, I didn't find anything on google, and I prefer using some already proved&tested equations (avoiding errors introduced by my calculations :-D). Thank you in advance for tips, links, etc. Edit: dimension of the space is the same as dimension of the vectors.

    Read the article

  • Converting OpenGL co-ordinates to lower UIView (and UIImagePickerController)

    - by John Qualis
    Hi, I am new to OpenGL over iPhone. I am developing an iPhone app similar to a barcode reader but with an extra OpenGL layer. The bottommost layer is UIImagePickerController, then I use UIView on top and draw a rectangle at certain co-ordinates on the iphone screen. So far everything is OK. Then I am trying to draw an OpenGL 3-D model in that rectangle. I am able to load a 3-D model in the iPhone based on this code here - http://iphonedevelopment.blogspot.com/2008/12/start-of-wavefront-obj-file-loader.html I am not able to transform the co-ordinates of the rectangle into OpenGL co-ordinates. Appreciate any help. Do I need to use a matrix to translate the currentPosition of the 3-D model so it is drawn within myRect? The code is given below.. Appreciate any help/pointers in this regards. John -(void)setupView:(GLView*)view { const GLfloat zNear = 0.01, zFar = 1000.0, fieldOfView = 45.0; GLfloat size; glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect = view.bounds; glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glViewport(0, 0, rect.size.width, rect.size.height); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); NSString *path = [[NSBundle mainBundle] pathForResource:@"plane" ofType:@"obj"]; OpenGLWaveFrontObject *theObject = [[OpenGLWaveFrontObject alloc] initWithPath:path]; Vertex3D position; position.z = -8.0; position.y = 3.0; position.x = 2.0; theObject.currentPosition = position; self.plane = theObject; [theObject release]; } (void)drawView:(GLView*)view; { static GLfloat rotation = 0.0; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glColor4f(0.0, 0.5, 1.0, 1.0); // the coordinates of the rectangle are // myRect.x, myRect.y, myRect.width, myRect.height // Do I need to use a matrix to translate the currentPosition of the // 3-D model so it is drawn within myRect? //glOrthof(-160.0f, 160.0f, -240.0f, 240.0f, -1.0f, 1.0f); [plane drawSelf]; }

    Read the article

  • How to implement a syndication receiver? (multi-client / single server)

    - by LeonixSolutions
    I have to come up with a system architecture. A few hundred remote devices will be communicating over internet with a central server which will receive data and store it in a database. I could write my own TCP/IP based protocol use SOAP use AJAX use RSS anything else? This is currently seen as one way (telemetry, as opposed to SCADA). Would it make a difference if we make it bi-directional. There are no plans to do so, but Murphy's law makes me wary of a uni-directional solution (on the data plane; I imagine that the control plane is bi-directional in all solutions (?)). I hope that this is not too subjective. I would like a solution which is quick and easy to implement and for others to support and where the general "communications pipeline" from remote deceives to database server can be re-used as the core of future projects. I have a strong background in telecomms protocols, in C/C++ and PHP.

    Read the article

  • Converting OpenGL coordinates to lower UIView (and UIImagePickerController)

    - by John Qualis
    I am new to OpenGL on the iPhone. I am developing an iPhone app similar to a barcode reader but with an extra OpenGL layer. The bottommost layer is UIImagePickerController, then I use UIView on top and draw a rectangle at certain coordinates on the iPhone screen. So far everything is OK. Then I am trying to draw an OpenGL 3-D model in that rectangle. I am able to load a 3-D model in the iPhone based on this code here - http://iphonedevelopment.blogspot.com/2008/12/start-of-wavefront-obj-file-loader.html I am not able to transform the coordinates of the rectangle into OpenGL coordinates. Appreciate any help. Do I need to use a matrix to translate the currentPosition of the 3-D model so it is drawn within myRect? The code is given below. -(void)setupView:(GLView*)view { const GLfloat zNear = 0.01, zFar = 1000.0, fieldOfView = 45.0; GLfloat size; glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect = view.bounds; glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glViewport(0, 0, rect.size.width, rect.size.height); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); NSString *path = [[NSBundle mainBundle] pathForResource:@"plane" ofType:@"obj"]; OpenGLWaveFrontObject *theObject = [[OpenGLWaveFrontObject alloc] initWithPath:path]; Vertex3D position; position.z = -8.0; position.y = 3.0; position.x = 2.0; theObject.currentPosition = position; self.plane = theObject; [theObject release]; } - (void)drawView:(GLView*)view; { static GLfloat rotation = 0.0; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glColor4f(0.0, 0.5, 1.0, 1.0); // the coordinates of the rectangle are // myRect.x, myRect.y, myRect.width, myRect.height // Do I need to use a matrix to translate the currentPosition of the // 3-D model so it is drawn within myRect? //glOrthof(-160.0f, 160.0f, -240.0f, 240.0f, -1.0f, 1.0f); [plane drawSelf]; }

    Read the article

  • Creating a top-down spaceship

    - by Ali
    I'm creating a top-down 2D space game in LIBGDX for android. When spaceship is going forward it will look like this: when it goes upward I want to change it's direction with a nice animation so it seems like a real spaceship. A between frame would be like this: I have rendered the spaceship in different Z axis degrees from ship0 to ship90. Calculating rotation on XY plane wouldn't be so hard, but I don't know how to calculate the rotation on Z axis so I can choose the right sprite to use.

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • On Writing Blogs

    - by Tony Davis
    Why are so many blogs about IT so difficult to read? Over at SQLServerCentral.com, we do a special subscription-only newsletter called Database Weekly. Every other week, it is my turn to look through all the blogs, news and events that might be of relevance to people working with databases. We provide the title, with the link, and a short abstract of what you can expect to read. It is a popular service with close to a million subscribers. You might think that this is a happy and fascinating task. Sometimes, yes. If a blog comes to the point quickly, and says something both interesting and original, then it has our immediate attention. If it backs up what it says with supporting material, then it is more-or-less home and dry, featured in DBW's list. If it also takes trouble over the formatting and presentation, maybe with an illustration or two and any code well-formatted, then we are agog with joy and it is marked as a must-visit destination in our blog roll. More often, however, a task that should be fun becomes a routine chore, and the effort of trawling so many badly-written blogs is enough to make any conscientious Health & Safety officer whistle through their teeth at the risk to the editor's spiritual and psychological well-being. And yet, frustratingly, most blogs could be improved very easily. There is, I believe, a simple formula for a successful blog. First, choose a single topic that is reasonably fresh and interesting. Second, get to the point quickly; explain in the first paragraph exactly what the blog is about, and then stay on topic. In writing the first paragraph, you must picture yourself as a pilot, hearing the smooth roar of the engines as your plane gracefully takes air. Too often, however, the accompanying sound is that of the engine stuttering before the plane veers off the runway into a field, and a wheel falls off. The author meanders around the topic without getting to the point, and takes frequent off-radar diversions to talk about themselves, or the weather, or which friends have recently tagged them. This might work if you're J.D Salinger, or James Joyce, but it doesn't help a technical blog. Sometimes, the writing is so convoluted that we are entirely defeated in our quest to shoehorn its meaning into a simple summary sentence. Finally, write simply, in plain English, and in a conversational way such that you can read it out loud, and sound natural. That's it! If you could also avoid any references to The Matrix then this is a bonus but is purely personal preference. Cheers, Tony.

    Read the article

  • Isometric screen to 3D world coordinates efficiently

    - by Justin
    Been having a difficult time transforming 2D screen coordinates to 3D isometric space. This is the situation where I am working in 3D but I have an orthographic camera. Then my camera is positioned at (100, 200, 100), Where the xz plane is flat and y is up and down. I've been able to get a sort of working solution, but I feel like there must be a better way. Here's what I'm doing: With my camera at (0, 1, 0) I can translate my screen coordinates directly to 3D coordinates by doing: mouse2D.z = (( event.clientX / window.innerWidth ) * 2 - 1) * -(window.innerWidth /2); mouse2D.x = (( event.clientY / window.innerHeight) * 2 + 1) * -(window.innerHeight); mouse2D.y = 0; Everything okay so far. Now when I change my camera back to (100, 200, 100) my 3D space has been rotated 45 degrees around the y axis and then rotated about 54 degrees around a vector Q that runs along the xz plane at a 45 degree angle between the positive z axis and the negative x axis. So what I do to find the point is first rotate my point by 45 degrees using a matrix around the y axis. Now I'm close. So then I rotate my point around the vector Q. But my point is closer to the origin than it should be, since the Y value is not 0 anymore. What I want is that after the rotation my Y value is 0. So now I exchange my X and Z coordinates of my rotated vector with the X and Z coordinates of my non-rotated vector. So basically I have my old vector but it's y value is at an appropriate rotated amount. Now I use another matrix to rotate my point around the vector Q in the opposite direction, and I end up with the point where I clicked. Is there a better way? I feel like I must be missing something. Also my method isn't completely accurate. I feel like it's within 5-10 coordinates of where I click, maybe because of rounding from many calculations. Sorry for such a long question.

    Read the article

  • Surface of Revolution with 3D surface

    - by user5584
    I have to use this function to get a Surface of Revolution (homework). newVertex = (oldVertex.y, someFunc1(oldVertex.x, oldVertex.y), someFunc2(oldVertex.x, oldVertex.y)); As far as I know (FIXME) Surface of Revolution means rotations of a (2D)curve around an axis in 3D. But this vertex computing gives a 3D plane (FIXME again :D), so rotation of this isn't obvious. Am I misunderstanding something?

    Read the article

  • DNN World 2011

    - by bdukes
    We’re on the plane flying back to St. Louis from DNN World 2011 .  I gave a presentation titled DNN 6 UI/UX Patterns , discussing the form patterns introduced in the administrative modules in DNN 6 (the new look and feel that you immediately noticed after logging into your new DNN 6 site).  Many folks asked about seeing the examples that I presented, and they are available as a repository on github, at https://github.com/bdukes/DNN-World-Demos .  This includes a series of small, one...(read more)

    Read the article

  • How to implement efficient Fog of War?

    - by Cambrano
    I've asked a question how to implement Fog Of War(FOW) with shaders. Well I've got this working. I use the vertex color to identify the alpha of a single vertex. I guess the most of you know what the FOW of Age of Empires was like, anyway I'll shortly explain it: You have a map. Everything is unexplored(solid black / 100% transparency) at the beginning. When your NPC's / other game units explore the world (by moving around mostly) they unshadow the map. That means. Everything in a specific radius (viewrange) around a NPC is visible (0%transparency). Anything that is out of viewrange but already explored is visible but shadowed (50% transparency). So yeah, AoE had relatively huge maps. Requirements was something around 100mhz etc. So it should be relatively easy to implement something to solve this problem - actually. Okay. I'm currently adding planes above my world and set the color per vertex. Why do I use many planes ? Unity has a vertex limit of 65.000 per mesh. According to the size of my tiles and the size of my map I need more than one plane. So I actually need a lot of planes. This is obviously pita for my FPS. Well so my question is, what are simple (in sense of performance) techniques to implement a FOW shader? Okay some simplified code what I'm doin so far: // Setup for (int x = 0; x < (Map.Dimension/planeSize); x++) { for (int z = 0; z < (Map.Dimension/planeSize); z++) { CreateMeshAt(x*planeSize, 3, z*planeSize) } } // Explore (is called from NPCs when walking for example) for (int x = ((int) from.x - radius); x < from.x + radius; x ++) { for (int z = ((int) from.z - radius); z < from.z + radius; z ++) { if (from.Distance(x, 1, z) > radius) continue; _transparency[x/tileSize, z/tileSize] = 0.5f; } } // Update foreach(GameObject plane in planes){ foreach(Vector3 vertex in vertices){ Vector3 worldPos = GetWorldPos(vertex); vertex.Color = new Color(0,0,0, _transparency[worldPos.x/tileSize, worldPos.z/tileSize]); } } My shader just sets the transparency of the vertex now, which comes from the vertex color channel

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • GLSL: Strange light reflections [Solved]

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices?

    Read the article

  • Anonymous Indonésie et Australie bientôt en cyber guerre ? Le ton monte entre les membres du collectif

    Anonymous Indonésie et Australie bientôt en cyber guerre ? Le ton monte entre les membres du collectif Les révélations d'Edward Snowden sèment de plus en plus de trouble aux seins des coalitions. Après les Etats-Unis et ses alliés européens, c'est maintenant le collectif Anonymous qui se voit divisé. En effet la menace d'une cyber guerre plane entre les Anonymous d'Indonésie et ceux d'Australie. Le point de départ ? La NSA et l'ASD, son équivalent australien, auraient espionnés des membres...

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • How can I achieve a 3D-like effect with spritebatch's rotation and scale parameters

    - by Alic44
    I'm working on a 2d game with a top-down perspective similar to Secret of Mana and the 2D Final Fantasy games, with one big difference being that it's an action rpg using a 3-dimensional physics engine. I'm trying to draw an aimer graphic (basically an arrow) at my characters' feet when they're aiming a ranged weapon. At first I just converted the character's aim vector to radians and passed that into spritebatch, but there was a problem. The position of every object in my world is scaled for perspective when it's drawn to the screen. So if the physics engine coordinates are (1, 0, 1), the screen coords are actually (1, .707) -- the Y and Z axis are scaled by a perspective factor of .707 and then added together to get the screen coordinates. This meant that the direction the aimer graphic pointed (thanks to its rotation value passed into spritebatch) didn't match up with the direction the projectile actually traveled over time. Things looked fine when the characters fired left, right, up, or down, but if you fired on a diagonal the perspective of the physics engine didn't match with the simplistic way I was converting the character's aim direction to a screen rotation. Ok, fast forward to now: I've got the aimer's rotation matched up with the path the projectile will actually take, which I'm doing by decomposing a transform matrix which I build from two rotation matrices (one to represent the aimer's rotation, and one to represent the camera's 45 degree rotation on the x axis). My question is, is there a way to get not just rotation from a series of matrix transformations, but to also get a Vector2 scale which would give the aimer the appearance of being a 3d object, being warped by perspective? Orthographic perspective is what I'm going for, I think. So, the aimer arrow would get longer when facing sideways, and shorter when facing north and south because of the perspective. At the same time, it would get wider when facing north and south, and less wide when facing right or left. I'd like to avoid actually drawing the aimer texture in 3d because I'm still using spritebatch's layerdepth parameter at this point in my project, and I don't want to have to figure out how to draw a 3d object within the depth sorting system I already have. I can provide code and more details if this is too vague as a question... This is my first post on stack exchange. Thanks a lot for reading! Note: (I think) I realize it can't be a technically correct 3D perspective, because the spritebatch's vector2 scaling argument doesn't allow for an object to be skewed the way it actually should be. What I'm really interested in is, is there a good way to fake the effect, or should I just drop it and not scale at all? Edit to clarify without the help of a picture (apparently I can't post them yet): I want the aimer arrow to look like it has been painted on the ground at the character's feet, so it should appear to be drawn on the ground plane (in my case the XZ plane) which should be tilted at a 45 degree angle (around the X axis) from the viewing perspective. Alex

    Read the article

  • How do I do random isometric paths?

    - by user406470
    I'm working on an Isometric city generator, and I am looking for a little push in the right direction. I'm looking to randomly generate roads on a isometric plane. I have never done pathfinding before, and I've googled it and didn't find any articles relating to what I am trying to do. Basically, my program generates a random isometric city and, I am hoping to add roads to that. Any help is appreciated!

    Read the article

  • Oracle Virtualization Friday Spotlight - November 8, 2013

    - by Monica Kumar
    Hands-on Private Cloud Simulator In One Hour Submitted by: Doan Nguyen, Senior Principal Product Marketing Director My aeronautics instructor used to say, "you can’t appreciate flying until you take flight." To clarify, this is not about gearing up in a flying squirrel suit and hopping off a cliff (topic for another blog!) but rather about flying an airplane. The idea is to get hands-on with the controls at the cockpit and experience flight before you actually fly a real plane. After the initial 40 hours of flight time, the concept sank in and it really made sense.This concept is what inspired our technical experts to put together the hands-on lab for a private cloud deployment and management self-service model. Yes, we are comparing the lab to a flight simulator! Let’s look at the parallels: To get trained to fly, starting in the simulator gets you off the ground quicker. There is no need to have a real plane to begin with. In a hands-on lab, there is no need for a real server, with networking and real storage installed. All you need is your laptop The simulator is pre-configured, pre-flight check done. Similarly, in a hands-on lab, Oracle VM and Oracle Enterprise Manager are pre-configured and assembled using Oracle VM VirtualBox as the container. Software installations are not needed. After time spent training at the controls, you can really appreciate the practical experience of flying. Along the same lines, the hands-on lab is a guided learning path, without the encumbrances of hardware, software installation, so you can learn about cloud deployment and management.  However, unlike the simulator training, your time investment with the lab is only about an hour and not 40 hours! This hands-on lab takes you through private cloud deployment and management using Oracle VM and  Oracle Enterprise Manager Cloud Control 12c in an Infrastructure as a service IaaS model. You will first configure the IaaS cloud as the cloud administrator and then deploy guest virtual machines (VMs) as a self-service user. Then you are ready to take flight into the cloud! Why not step into the cockpit now!

    Read the article

  • XNA Rendering vertices that only appear within the cameras view

    - by user1157885
    I'm making a game in XNA and I recall hearing that professionally made games use a technique to only render the polygons that appear within the cameras projection. I've been trying to find something on this to do something similar in my game, could anyone point me in the right direction? Right now all I have is a plane/grid of vertices that you can set the X/Y on which is drawn using DrawUserIndexedPrimitives, but I plan to make a bunch of props as scenery items and I can imagine myself running into issues later on if I don't address this now. Thanks

    Read the article

  • How to get the blocks seen by the player?

    - by m4tx
    I'm writing a Minecraft-like game using Ogre engine and I have a problem. I must optimize my game, because when I try draw 10000 blocks, I have 2 FPS... So, I got the idea that blocks display of the plane and to hide the invisible blocks. But I have a problem - how do I know which blocks at a time are visible to the player? And - if you know of other optimization methods for such a game, write what and how to use them in Ogre.

    Read the article

  • How to get the blocks seen by the player?

    - by m4tx
    I'm writing a Minecraft-like game using Ogre engine and I have a problem. I must optimize my game, because when I try draw 10000 blocks, I have 2 FPS... So, I got the idea that blocks display of the plane and to hide the invisible blocks. But I have a problem - how do I know which blocks at a time are visible to the player? And - if you know of other optimization methods for such a game, write what and how to use them in Ogre.

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >