Search Results

Search found 28031 results on 1122 pages for 'personal development'.

Page 478/1122 | < Previous Page | 474 475 476 477 478 479 480 481 482 483 484 485  | Next Page >

  • In concept how is Animation done?

    - by sharethis
    The first approaches in animation for my game relied mostly on sine and cosine functions with the time as parameter. As a jump a perfect sine function is acceptable but for motions of arms, weapons or face it would look quite unnatural. Moreover patching every animation out of sine and cosine is stretched to its limits soon. I head of skeletons and rigging already. Although I could not implement skeletal animations I can't imagine that quite natural animations in major games are made of static predefined motion states. So how in general is animation done today?

    Read the article

  • Which will be faster? Switching shaders or ignore that some cases don't need full code?

    - by PolGraphic
    I have two types of 2d objects: In first case (for about 70% of objects), I need that code in the shader: float2 texCoord = input.TexCoord + textureCoord.xy But in the second case I have to use: float2 texCoord = fmod(input.TexCoord, texCoordM.xy - textureCoord.xy) + textureCoord.xy I can use second code also for first case, but it will be a little slower (fmod is useless here, input.TexCoord will be always lower than textureCoord.xy - textureCoord.xy for sure). My question is, which way will be faster: Making two independent shaders for both types of rectangles, group rectangles by types and switch shaders during rendering. Make one shader and use some if statement. Make one shader and ignore that sometimes (70% of cases) I don't need to use fmod.

    Read the article

  • Event Driven Behavior Tree: deterministic traversal order with parallel

    - by Heisenbug
    I've studied several articles and listen some talks about behavior trees (mostly the resources available on AIGameDev by Alex J. Champandard). I'm particularly interested on event driven behavior trees, but I have still some doubts on how to implement them correctly using a scheduler. Just a quick recap: Standard Behavior Tree Each execution tick the tree is traversed from the root in depth-first order The execution order is implicitly expressed by the tree structure. So in the case of behaviors parented to a parallel node, even if both children are executed during the same traversing, the first leaf is always evaluated first. Event Driven BT During the first traversal the nodes (tasks) are enqueued using a scheduler which is responsible for updating only running ones every update The first traversal implicitly produce a depth-first ordered queue in the scheduler Non leaf nodes stays suspended mostly of the time. When a leaf node terminate(either with success or fail status) the parent (observer) is waked up allowing the tree traversing to continue and new tasks will be enqueued in the scheduler Without parallel nodes in the tree there will be up to 1 task running in the scheduler Without parallel nodes, the tasks in the queue(excluding dynamic priority implementation) will be always ordered in a depth-first order (is this right?) Now, from what is my understanding of a possible implementation, there are 2 requirements I think must be respected(I'm not sure though): Now, some requirements I think needs to be guaranteed by a correct implementation are: The result of the traversing should be independent from which implementation strategy is used. The traversing result must be deterministic. I'm struggling trying to guarantee both in the case of parallel nodes. Here's an example: Parallel_1 -->Sequence_1 ---->leaf_A ---->leaf_B -->leaf_C Considering a FIFO policy of the scheduler, before leaf_A node terminates the tasks in the scheduler are: P1(suspended),S1(suspended),leaf_A(running),leaf_C(running) When leaf_A terminate leaf_B will be scheduled (at the end of the queue), so the queue will become: P1(suspended),S1(suspended),leaf_C(running),leaf_B(running) In this case leaf_B will be executed after leaf_C at every update, meanwhile with a non event-driven traversing from the root node, the leaf_B will always be evaluated before leaf_A. So I have a couple of question: do I have understand correctly how event driven BT work? How can I guarantee the depth first order is respected with such an implementation? is this a common issue or am I missing something?

    Read the article

  • Implementing `fling` logic without pan gesture recognizers

    - by KDiTraglia
    So I am trying to port over a simple game that I originally wrote to iphone into cocos2d-x. I've hit a minor bump however in implementing simple 'fling' logic I had in the iphone version that is difficult to port over to the c++. In iOS I could get the velocity of a pan gesture very easily: CGPoint velocity = [recognizer velocityInView:recognizer.view]; However now I basically only know where the touch began, where the touch ended, and all the touches that are logged in between. For now I logged all the pts onto a stack then pulled the last point and the 6th to last point (seemed to work the best), find the difference between those pts multiply by a constant and use that as the velocity. It works relatively well, but I'm wondering if anyone else has any better algorithms, when given a bunch of touch pts, to figure out a new speed upon releasing an object that feels natural (Note speed in my game is just a constant x and y, there's no drag or spin or anything tricky like that). Bonus points if anyone has figured out how to get pan gestures into the newest version (3.0 alpha) of cocos2d-x without losing ability to build cross platform.

    Read the article

  • Why does my code dividing a 2D array into chunks fail?

    - by Borog
    I have a 2D-Array representing my world. I want to divide this huge thing into smaller chunks to make collision detection easier. I have a Chunk class that consists only of another 2D Array with a specific width and height and I want to iterate through the world, create new Chunks and add them to a list (or maybe a Map with Coordinates as the key; we'll see about that). world = new World(8192, 1024); Integer[][] chunkArray; for(int a = 0; a < map.getHeight() / Chunk.chunkHeight; a++) { for(int b = 0; b < map.getWidth() / Chunk.chunkWidth; b++) { Chunk chunk = new Chunk(); chunkArray = new Integer[Chunk.chunkWidth][Chunk.chunkHeight]; for(int x = Chunk.chunkHeight*a; x < Chunk.chunkHeight*(a+1); x++) { for(int y = Chunk.chunkWidth*b; y < Chunk.chunkWidth*(b+1); y++) { // Yes, the tileMap actually is [height][width] I'll have // to fix that somewhere down the line -.- chunkArray[y][x] = map.getTileMap()[x*a][y*b]; // TODO:Attach to chunk } } chunkList.add(chunk); } } System.out.println(chunkList.size()); The two outer loops get a new chunk in a specific row and column. I do that by dividing the overall size of the map by the chunkSize. The inner loops then fill a new chunkArray and attach it to the chunk. But somehow my maths is broken here. Let's assume the chunkHeight = chunkWidth = 64. For the first Array I want to start at [0][0] and go until [63][63]. For the next I want to start at [64][64] and go until [127][127] and so on. But I get an out of bounds exception and can't figure out why. Any help appreciated! Actually I think I know where the problem lies: chunkArray[y][x] can't work, because y goes from 0-63 just in the first iteration. Afterwards it goes from 64-127, so sure it is out of bounds. Still no nice solution though :/ EDIT: if(y < Chunk.chunkWidth && x < Chunk.chunkHeight) chunkArray[y][x] = map.getTileMap()[y][x]; This works for the first iteration... now I need to get the commonly accepted formula.

    Read the article

  • andEngine dynamic sprites

    - by Blucreation
    Ive just started with andEngine the past week and i only started learning java/android 3 weeks. I can use a for loop to add multiple sprites to the screen but when i try to check collisions on them it only does it to one and not the rest. I want to be able to add a specific number for sprites made from the same texture to the scene, add collision detection to them and also make them slide across the screen (im making a game where you avoid the obstacles). My simple code: private void createobstacle(float pX, float pY) { obstacle = new AnimatedSprite(pX, pY, this.mObjTextureRegion.deepCopy(), getVertexBufferObjectManager()); obstacle.setScale(MathUtils.random(0.5f, 3f)); scene.attachChild(obstacle); } private void createobstacle(int num) { for(int i=0; i<=num; i++ ) { final float xPos = MathUtils.random(30.0f, (CAMERA_WIDTH - 30.0f)); final float yPos = MathUtils.random(30.0f, (CAMERA_HEIGHT - 30.0f)); createobstacle(xPos, yPos); } } Ive read about arrays but i cannot find any tutorials about anything im stuck with. Any help would be great!

    Read the article

  • Java Animation Memory Overload [on hold]

    - by user2425429
    I need a way to reduce the memory usage of these programs while keeping the functionality. Every time I add 50 milliseconds or so to the set&display loop in AnimationTest1, it throws an out of memory error. Here is the code I have now: import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Executor; import java.util.concurrent.Executors; import javax.swing.ImageIcon; public class AnimationTest1 { public static void main(String args[]) { AnimationTest1 test = new AnimationTest1(); test.run(); } private static final DisplayMode POSSIBLE_MODES[] = { new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(640, 480, 16, 0) }; private static final long DEMO_TIME = 4000; private ScreenManager screen; private Image bgImage; private Animation anim; public void loadImages() { // create animation List<Polygon> polygons=new ArrayList(); int[] x=new int[]{20,4,4,20,40,56,56,40}; int[] y=new int[]{20,32,40,44,44,40,32,20}; polygons.add(new Polygon(x,y,8)); anim = new Animation(); //# of frames long startTime = System.currentTimeMillis(); long currTimer = startTime; long elapsedTime = 0; boolean animated = false; Graphics2D g = screen.getGraphics(); int width=200; int height=200; //set&display loop while (currTimer - startTime < DEMO_TIME*2) { //draw the polygons if(!animated){ for(int j=0; j<polygons.size();j++){ for(int pos=0; pos<polygons.get(j).npoints; pos++){ polygons.get(j).xpoints[pos]+=1; } } anim.setNewPolyFrame(polygons , width , height , 64); } else{ // update animation anim.update(elapsedTime); draw(g); g.dispose(); screen.update(); try{ Thread.sleep(20); } catch(InterruptedException ie){} } if(currTimer - startTime == DEMO_TIME) animated=true; elapsedTime = System.currentTimeMillis() - currTimer; currTimer += elapsedTime; } } public void run() { screen = new ScreenManager(); try { DisplayMode displayMode = screen.findFirstCompatibleMode(POSSIBLE_MODES); screen.setFullScreen(displayMode); loadImages(); } finally { screen.restoreScreen(); } } public void draw(Graphics g) { // draw background g.drawImage(bgImage, 0, 0, null); // draw image g.drawImage(anim.getImage(), 0, 0, null); } } ScreenManager: import java.awt.Color; import java.awt.DisplayMode; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.GraphicsEnvironment; import java.awt.Toolkit; import java.awt.Window; import java.awt.event.KeyListener; import java.awt.event.MouseListener; import java.awt.image.BufferStrategy; import java.awt.image.BufferedImage; import javax.swing.JFrame; import javax.swing.JPanel; public class ScreenManager extends JPanel { private GraphicsDevice device; /** Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment=GraphicsEnvironment.getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); setBackground(Color.white); } /** Returns a list of compatible display modes for the default device on the system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** Returns the first compatible mode in a list of modes. Returns null if no modes are compatible. */ public DisplayMode findFirstCompatibleMode( DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** Determines if two display modes "match". Two display modes match if they have the same resolution, bit depth, and refresh rate. The bit depth is ignored if one of the modes has a bit depth of DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** Enters full screen mode and changes the display mode. If the specified display mode is null or not compatible with this device, or if the display mode cannot be changed on this system, the current display mode is used. <p> The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { JFrame frame = new JFrame(); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(true); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } } frame.createBufferStrategy(2); Graphics g=frame.getGraphics(); g.setColor(Color.white); g.drawRect(0, 0, frame.WIDTH, frame.HEIGHT); frame.paintAll(g); g.setColor(Color.black); g.dispose(); } /** Gets the graphics context for the display. The ScreenManager uses double buffering, so applications must call update() to show any graphics drawn. <p> The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D)strategy.getDrawGraphics(); } else { return null; } } /** Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) Toolkit.getDefaultToolkit().sync(); } /** Returns the window currently used in full screen mode. Returns null if the device is not in full screen mode. */ public Window getFullScreenWindow() { return device.getFullScreenWindow(); } /** Returns the width of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** Returns the height of the window currently used in full screen mode. Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparency) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparency); } return null; } } Animation: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Polygon; import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List; /** The Animation class manages a series of images (frames) and the amount of time to display each frame. */ public class Animation { private ArrayList frames; private int currFrameIndex; private long animTime; private long totalDuration; /** Creates a new, empty Animation. */ public Animation() { frames = new ArrayList(); totalDuration = 0; start(); } /** Adds an image to the animation with the specified duration (time to display the image). */ public synchronized void addFrame(BufferedImage image, long duration){ ScreenManager s = new ScreenManager(); totalDuration += duration; frames.add(new AnimFrame(image, totalDuration)); } /** Starts the animation over from the beginning. */ public synchronized void start() { animTime = 0; currFrameIndex = 0; } /** Updates the animation's current image (frame), if necessary. */ public synchronized void update(long elapsedTime) { if (frames.size() >= 1) { animTime += elapsedTime; /*if (animTime >= totalDuration) { animTime = animTime % totalDuration; currFrameIndex = 0; }*/ while (animTime > getFrame(0).endTime) { frames.remove(0); } } } /** Gets the Animation's current image. Returns null if this animation has no images. */ public synchronized Image getImage() { if (frames.size() > 0&&!(currFrameIndex>=frames.size())) { return getFrame(currFrameIndex).image; } else{ System.out.println("There are no frames!"); System.exit(0); } return null; } private AnimFrame getFrame(int i) { return (AnimFrame)frames.get(i); } private class AnimFrame { Image image; long endTime; public AnimFrame(Image image, long endTime) { this.image = image; this.endTime = endTime; } } public void setNewPolyFrame(List<Polygon> polys,int imagewidth,int imageheight,int time){ BufferedImage image=new BufferedImage(imagewidth, imageheight, 1); Graphics g=image.getGraphics(); for(int i=0;i<polys.size();i++){ g.drawPolygon(polys.get(i)); } addFrame(image,time); g.dispose(); } }

    Read the article

  • Outline Shader Effect for Orthogonal Geometry in XNA

    - by Griffin
    I just recently started learning the art of shading, but I can't give an outline width to 2D, concave geometry when restrained to a single vertex/pixel shader technique (thanks to XNA). the shape I need to give an outline to has smooth, per-vertex coloring, as well as opacity. The outline, which has smooth, per-vertex coloring, variable width, and opacity cannot interfere with the original shape's colors. A pixel depth border detection algorithm won't work because pixel depth isn't a 3.0 semantic. expanding geometry / redrawing won't work because it interferes with the original shape's colors. I'm wondering if I can do something with the stencil/depth buffer outside of the shader functions since I have access to that through the graphics device. But I don't believe I'm able to manipulate actual values. How might I do this?

    Read the article

  • How do you get the total asset size (or total resource size) in an Android game?

    - by tom_mai78101
    In an Android Java project, there are two folders, asset and res. To me, I usually put some stuffs, like PNG files, sound files, etc. in either one of the two folder. When resources are increasingly becoming more and more in those folders, the time it takes to load them will increase. Therefore, a loading screen is a must in these situation. The total size is to be used in a loading screen, so that I can guess the average time it takes to load each resources, from 0 bytes to its individual resource file size. I only know that by adding all individual sizes in a respective order, I will then obtain the total asset or res folder size, simply by adding them up. So, when it comes to getting the total file size from either folder, how do you obtain their individual resource/object sizes, respectively? Thanks in advance.

    Read the article

  • Techniques for separating game model from presentation

    - by liortal
    I am creating a simple 2D game using XNA. The elements that make up the game world are what i refer to as the "model". For instance, in a board game, i would have a GameBoard class that stores information about the board. This information could be things such as: Location Size Details about cells on the board (occupied/not occupied) etc This object should either know how to draw itself, or describe how to draw itself to some other entity (renderer) in order to be displayed. I believe that since the board only contains the data+logic for things regarding it or cells on it, it should not provide the logic of how to draw things (separation of concerns). How can i achieve a good partitioning and easily allow some other entity to draw it properly? My motivations for doing so are: Allow multiple "implementations" of presentation for a single game entity Easier porting to other environments where the presentation code is not available (for example - porting my code to Unity or other game technology that does not rely on XNA).

    Read the article

  • Calculate velocity of a bullet ricocheting on a circle

    - by SteveL
    I made a picture to demostrate what I need,basecaly I have a bullet with velocity and I want it to bounce with the correct angle after it hits a circle Solved(look the accepted answer for explain): Vector.vector.set(bullet.vel); //->v Vector.vector2.setDirection(pos, bullet.pos); //->n normal from center of circle to bullet float dot=Vector.vector.dot(Vector.vector2); //->dot product Vector.vector2.mul(dot).mul(2); Vector.vector.sub(Vector.vector2); Vector.vector.y=-Vector.vector.y; //->for some reason i had to invert the y bullet.vel.set(Vector.vector);

    Read the article

  • OpenGL ES 2 jittery camera movement

    - by user16547
    First of all, I am aware that there's no camera in OpenGL (ES 2), but from my understanding proper manipulation of the projection matrix can simulate the concept of a camera. What I'm trying to do is make my camera follow my character. My game is 2D, btw. I think the principle is the following (take Super Mario Bros or Doodle Jump as reference - actually I'm trying to replicate the mechanics of the latter): when the caracter goes beyond the center of the screen (in the positive axis/direction), update the camera to be centred on the character. Else keep the camera still. I did accomplish that, however the camera movement is noticeably jittery and I ran out of ideas how to make it smoother. First of all, my game loop (following this article): private int TICKS_PER_SECOND = 30; private int SKIP_TICKS = 1000 / TICKS_PER_SECOND; private int MAX_FRAMESKIP = 5; @Override public void run() { loops = 0; if(firstLoop) { nextGameTick = SystemClock.elapsedRealtime(); firstLoop = false; } while(SystemClock.elapsedRealtime() > nextGameTick && loops < MAX_FRAMESKIP) { step(); nextGameTick += SKIP_TICKS; loops++; } interpolation = ( SystemClock.elapsedRealtime() + SKIP_TICKS - nextGameTick ) / (float)SKIP_TICKS; draw(); } And the following code deals with moving the camera. I was unsure whether to place it in step() or draw(), but it doesn't make a difference to my problem at the moment, as I tried both and neither seemed to fix it. center just represents the y coordinate of the centre of the screen at any time. Initially it is 0. The camera object is my own custom "camera" which basically is a class that just manipulates the view and projection matrices. if(character.getVerticalSpeed() >= 0) { //only update camera if going up float[] projectionMatrix = camera.getProjectionMatrix(); if( character.getY() > center) { center += character.getVerticalSpeed(); cameraBottom = center + camera.getBottom(); cameraTop = center + camera.getTop(); Matrix.orthoM(projectionMatrix, 0, camera.getLeft(), camera.getRight(), center + camera.getBottom(), center + camera.getTop(), camera.getNear(), camera.getFar()); } } Any thought about what I should try or what I am doing wrong? Update 1: I think I updated every value you can see on screen to check whether the jittery movement is affected by that, but nothing changed, so something must be fundamentally flawed with my approach/calculations.

    Read the article

  • Creating an interactive grid for a puzzle game

    - by Noupoi
    I am trying to make a slitherlink game, and am not too sure how to approach creating the game, more specifically the grid structure on which the puzzle will be played on. This is what a empty and completed slitherlink grid would look like: The numbers in the squares are sort of clues and the areas between the dots need to be clickable: I would like to create the game in VB .NET. What data structures should I try to use, and would it be beneficial using any frameworks such as XNA?

    Read the article

  • What are the pro/cons of Unity3D as a choice to make games?

    - by jokoon
    We are doing our school project with Unity3d, since they were using Shiva the previous year (which seems horrible to me), and I wanted to know your point of view for this tool. Pros: multi platform, I even heard Google is going to implement it in Chrome everything you need is here scripting languages makes it a good choice for people who are not programming gurus Cons: multiplayer ? proprietary, you are totally dependent of unity and its limit and can't extend it it's less "making a game from scratch" C++ would have been a cool thing I really think this kind of tool is interesting, but is it worth it to use at school for a project that involves more than 3 programming persons ? What do we really learn in term of programming from using this kind of tool (I'm ok with python and js, but I hate C#) ? We could have use Ogre instead, even if we were learning direct x starting january...

    Read the article

  • how can i get rotation vector from matrix4x4 in xna?

    - by mr.Smyle
    i want to get rotation vector from matrix to realize some parent-children system for models. Matrix bonePos = link.Bone.Transform * World; Matrix m = Matrix.CreateTranslation(link.Offset) * Matrix.CreateScale(link.gameObj.Scale.X, link.gameObj.Scale.Y, link.gameObj.Scale.Z) * Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(link.gameObj.Rotation.Y), MathHelper.ToRadians(link.gameObj.Rotation.X), MathHelper.ToRadians(link.gameObj.Rotation.Z)) //need rotation vector from bone matrix here (now it's global model rotation vector) * Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(Rotation.Y), MathHelper.ToRadians(Rotation.X), MathHelper.ToRadians(Rotation.Z)) * Matrix.CreateTranslation(bonePos.Translation); link.gameObj.World = m; where : link - struct with children model settings, like position, rotation etc. And link.Bone - Parent Bone

    Read the article

  • Blending transition in cocos2d

    - by fiddler
    In my cocos2d-iphone game, I have 2 backgrounds (CCnodes), each containing a quite complex hierarchy of sprites. I would like to make a smooth transition between them: initially, only the first background is visible at the end, only the second one is visible Is there a good way to set the opacity of a full hierarchy of sprites ? I tried to recursively set the opacity of all the contained sprites. It kinda works except that: i guess it's not very efficient i would like the opacity of overlapping sprites to be 'merged' (as if the background was one single big sprite)

    Read the article

  • Architecture of an action multiplayer game from scratch

    - by lcf
    Not sure whether it's a good place to ask (do point me to a better one if it's not), but since what we're developing is a game - here it goes. So this is a "real-time" action multiplayer game. I have familiarized myself with concepts like lag compensation, view interpolation, input prediction and pretty much everything that I need for this. I have also prepared a set of prototypes to confirm that I understood everything correctly. My question is about the situation when game engine must be rewind to the past to find out whether there was a "hit" (sometimes it may involve the whole 'recomputation' of the world from that moment in the past up to the present moment. I already have a piece of code that does it, but it's not as neat as I need it to be. The domain logic of the app (the physics of the game) must be separated from the presentation (render) and infrastructure tools (e.g. the remote server interaction specifics). How do I organize all this? :) Is there any worthy implementation with open sources I can take a look at? What I'm thinking is something like this: -> Render / User Input -> Game Engine (this is the so called service layer) -> Processing User Commands & Remote Server -> Domain (Physics) How would you add into this scheme the concept of "ticks" or "interactions" with the possibility to rewind and recalculate "the game"? Remember, I cannot change the Domain/Physics but only the Game Engine. Should I store an array of "World's States"? Should they be just some representations of the world, optimized for this purpose somehow (how?) or should they be actual instances of the world (i.e. including behavior and all that). Has anybody had similar experience? (never worked on a game before if that matters)

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • How to avoid game objects accidentally deleting themselves in C++

    - by Tom Dalling
    Let's say my game has a monster that can kamikaze explode on the player. Let's pick a name for this monster at random: a Creeper. So, the Creeper class has a method that looks something like this: void Creeper::kamikaze() { EventSystem::postEvent(ENTITY_DEATH, this); Explosion* e = new Explosion; e->setLocation(this->location()); this->world->addEntity(e); } The events are not queued, they get dispatched immediately. This causes the Creeper object to get deleted somewhere inside the call to postEvent. Something like this: void World::handleEvent(int type, void* context) { if(type == ENTITY_DEATH){ Entity* ent = dynamic_cast<Entity*>(context); removeEntity(ent); delete ent; } } Because the Creeper object gets deleted while the kamikaze method is still running, it will crash when it tries to access this->location(). One solution is to queue the events into a buffer and dispatch them later. Is that the common solution in C++ games? It feels like a bit of a hack, but that might just be because of my experience with other languages with different memory management practices. In C++, is there a better general solution to this problem where an object accidentally deletes itself from inside one of its methods?

    Read the article

  • Optimized algorithm for line-sphere intersection in GLSL

    - by fernacolo
    Well, hello then! I need to find intersection between line and sphere in GLSL. Right now my solution is based on Paul Bourke's page and was ported to GLSL this way: // The line passes through p1 and p2: vec3 p1 = (...); vec3 p2 = (...); // Sphere center is p3, radius is r: vec3 p3 = (...); float r = ...; float x1 = p1.x; float y1 = p1.y; float z1 = p1.z; float x2 = p2.x; float y2 = p2.y; float z2 = p2.z; float x3 = p3.x; float y3 = p3.y; float z3 = p3.z; float dx = x2 - x1; float dy = y2 - y1; float dz = z2 - z1; float a = dx*dx + dy*dy + dz*dz; float b = 2.0 * (dx * (x1 - x3) + dy * (y1 - y3) + dz * (z1 - z3)); float c = x3*x3 + y3*y3 + z3*z3 + x1*x1 + y1*y1 + z1*z1 - 2.0 * (x3*x1 + y3*y1 + z3*z1) - r*r; float test = b*b - 4.0*a*c; if (test >= 0.0) { // Hit (according to Treebeard, "a fine hit"). float u = (-b - sqrt(test)) / (2.0 * a); vec3 hitp = p1 + u * (p2 - p1); // Now use hitp. } It works perfectly! But it seems slow... I'm new at GLSL. You can answer this questions in two ways: Tell me there is no solution, showing some proof or strong evidence. Tell me about GLSL features (vector APIs, primitive operations) that makes the above algorithm faster, showing some example. Thanks a lot!

    Read the article

  • Avoid double compression of resources

    - by user1095108
    I am using .pngs for my textures and am using a virtual file system in a .zip file for my game project. This means my textures are compressed and decompressed twice. What are the solutions to this double compression problem? One solution I've heard about is to use .tgas for textures, but it seems ages ago, since I've heard that. Another solution is to implement decompression on the GPU and, since that is fast, forget about the overhead.

    Read the article

  • How to use OpenGL functions from multiples thread?

    - by Robert
    I'm writing a small game using OpenGL. I'm implementing basic networking in this game and I'm facing a problem. I have a thread in my client socket class that check for available data, when there are data I raise an event like this : immutable int len = this.m_socket.receive(data); if(len > 0) { this.m_onDataEvent(data); } Then on my game class, I have a function that handle and parse data like this : switch(msgId) { case ProtocolID.CharacterData: // Load terrain with opengl, character model.... Im not able to call opengl functions because my opengl context is created from a different thread. But I really don't know how I can solve this problem, I tried Google but it's really hard to find a solution. I'm using D programming language if it can help.

    Read the article

  • Problems with SAT Collision Detection

    - by DJ AzKai
    I'm doing a project in one of my modules for college in C++ with SFML and I was hoping someone may be able to help me. I'm using a vector of squares and triangles and I am using the SAT collision detection method to see if objects collide and to make the objects respond to the collision appropriately using the MTV(minimum translation vector) Below is my code: //from the main method int main(){ // Create the main window sf::RenderWindow App(sf::VideoMode(800, 600, 32), "SFML OpenGL"); // Create a clock for measuring time elapsed sf::Clock Clock; srand(time(0)); //prepare OpenGL surface for HSR glClearDepth(1.f); glClearColor(0.3f, 0.3f, 0.3f, 0.f); //background colour glEnable(GL_DEPTH_TEST); glDepthMask(GL_TRUE); //// Setup a perspective projection & Camera position glMatrixMode(GL_PROJECTION); glLoadIdentity(); //set up a 3D Perspective View volume //gluPerspective(90.f, 1.f, 1.f, 300.0f);//fov, aspect, zNear, zFar //set up a orthographic projection same size as window //this mease the vertex coordinates are in pixel space glOrtho(0,800,0,600,0,1); // use pixel coordinates // Finally, display rendered frame on screen vector<BouncingThing*> triangles; for(int i = 0; i < 10; i++) { //instantiate each triangle; triangles.push_back(new BouncingTriangle(Vector2f(rand() % 700, rand() % 500), 3)); } vector<BouncingThing*> boxes; for(int i = 0; i < 10; i++) { //instantiate each box; boxes.push_back(new BouncingBox(Vector2f(rand() % 700, rand() % 500), 4)); } CollisionDetection * b = new CollisionDetection(); // Start game loop while (App.isOpen()) { // Process events sf::Event Event; while (App.pollEvent(Event)) { // Close window : exit if (Event.type == sf::Event::Closed) App.close(); // Escape key : exit if ((Event.type == sf::Event::KeyPressed) && (Event.key.code == sf::Keyboard::Escape)) App.close(); } //Prepare for drawing // Clear color and depth buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Apply some transformations glMatrixMode(GL_MODELVIEW); glLoadIdentity(); for(int i = 0; i < 10; i++) { triangles[i]->draw(); boxes[i]->draw(); triangles[i]->update(Vector2f(800,600)); boxes[i]->draw(); boxes[i]->update(Vector2f(800,600)); } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(boxes[i]))); } } for(int j = 0; j < 10; j++) { for(int i = 0; i < 10; i++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { triangles[j]->setCollision(b->CheckCollision(*(triangles[j]),*(triangles[i]))); } } for(int i = 0; i < triangles.size(); i++) { for(int j = i + 1; j < triangles.size(); j ++) { boxes[j]->setCollision(b->CheckCollision(*(boxes[j]),*(boxes[i]))); } } App.display(); } return EXIT_SUCCESS; } (ignore this line) //from the BouncingThing.cpp BouncingThing::BouncingThing(Vector2f position, int noSides) : pos(position), pi(3.14), radius(3.14), nSides(noSides) { collided = false; if(nSides ==3) { Vector2f vert1 = Vector2f(-12.0f,-12.0f); Vector2f vert2 = Vector2f(0.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); } else if(nSides == 4) { Vector2f vert1 = Vector2f(-12.0f,12.0f); Vector2f vert2 = Vector2f(12.0f, 12.0f); Vector2f vert3 = Vector2f(12.0f,-12.0f); Vector2f vert4 = Vector2f(-12.0f, -12.0f); verts.push_back(vert1); verts.push_back(vert2); verts.push_back(vert3); verts.push_back(vert4); } velocity.x = ((rand() % 5 + 1) / 3) + 1; velocity.y = ((rand() % 5 + 1) / 3 ) +1; } void BouncingThing::update(Vector2f screenSize) { Transform t; t.rotate(0); for(int i=0;i< verts.size(); i++) { verts[i]=t.transformPoint(verts[i]); } if(pos.x >= screenSize.x || pos.x <= 0) { velocity.x *= -1; } if(pos.y >= screenSize.y || pos.y <= 0) { velocity.y *= -1; } if(collided) { //velocity.x *= -1; //velocity.y *= -1; collided = false; } pos += velocity; } void BouncingThing::setCollision(bool x){ collided = x; } void BouncingThing::draw() { glBegin(GL_POLYGON); glColor3f(0,1,0); for(int i = 0; i < verts.size(); i++) { glVertex2f(pos.x + verts[i].x,pos.y + verts[i].y); } glEnd(); } vector<Vector2f> BouncingThing::getNormals() { vector<Vector2f> normalVerts; if(nSides == 3) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); Vector2f ac = Vector2f((verts[2].x + pos.x) - (verts[0].x + pos.x), (verts[2].y + pos.y) - (verts[0].y + pos.y)); ac = flip(ac); ac.x *= -1; normalVerts.push_back(ac); return normalVerts; } if(nSides ==4) { Vector2f ab = Vector2f((verts[1].x + pos.x) - (verts[0].x + pos.x), (verts[1].y + pos.y) - (verts[0].y + pos.y)); ab = flip(ab); ab.x *= -1; normalVerts.push_back(ab); Vector2f bc = Vector2f((verts[2].x + pos.x) - (verts[1].x + pos.x), (verts[2].y + pos.y) - (verts[1].y + pos.y)); bc = flip(bc); bc.x *= -1; normalVerts.push_back(bc); return normalVerts; } } Vector2f BouncingThing::flip(Vector2f v){ float vyTemp = v.x; float vxTemp = v.y * -1; return Vector2f(vxTemp, vyTemp); } (Ignore this line) CollisionDetection::CollisionDetection() { } vector<float> CollisionDetection::bubbleSort(vector<float> w) { int temp; bool finished = false; while (!finished) { finished = true; for (int i = 0; i < w.size()-1; i++) { if (w[i] > w[i+1]) { temp = w[i]; w[i] = w[i+1]; w[i+1] = temp; finished=false; } } } return w; } class Vector{ public: //static int dp_count; static float dot(sf::Vector2f a,sf::Vector2f b){ //dp_count++; return a.x*b.x+a.y*b.y; } static float length(sf::Vector2f a){ return sqrt(a.x*a.x+a.y*a.y); } static Vector2f add(Vector2f a, Vector2f b) { return Vector2f(a.x + b.y, a.y + b.y); } static sf::Vector2f getNormal(sf::Vector2f a,sf::Vector2f b){ sf::Vector2f n; n=a-b; n/=Vector::length(n);//normalise float x=n.x; n.x=n.y; n.y=-x; return n; } }; bool CollisionDetection::CheckCollision(BouncingThing & x, BouncingThing & y) { vector<Vector2f> xVerts = x.getVerts(); vector<Vector2f> yVerts = y.getVerts(); vector<Vector2f> xNormals = x.getNormals(); vector<Vector2f> yNormals = y.getNormals(); int size; vector<float> xRange; vector<float> yRange; for(int j = 0; j < xNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(xNormals[j], Vector2f(xVerts[i].x, xVerts[i].x))); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(xNormals[j], Vector2f(yVerts[i].x , yVerts[i].y))); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } float x3 = Min(xRange[0], yRange[0]); float y3 = Max(xRange[xRange.size() - 1], yRange[yRange.size() - 1]); float length = Max(x3, y3) - Min(x3, y3); } for(int j = 0; j < yNormals.size(); j++) { Vector p; for(int i = 0; i < xVerts.size(); i++) { xRange.push_back(p.dot(yNormals[j], xVerts[i])); } for(int i = 0; i < yVerts.size(); i++) { yRange.push_back(p.dot(yNormals[j], yVerts[i])); } yRange = bubbleSort(yRange); xRange = bubbleSort(xRange); if(xRange[xRange.size() - 1] < yRange[0] || yRange[yRange.size() - 1] < xRange[0]) { return false; } } return true; } float CollisionDetection::Min(float min, float max) { if(max < min) { min = max; } else return min; } float CollisionDetection::Max(float min, float max) { if(min > max) { max = min; } else return min; } On the screen the objects will freeze for a small amount of time before moving off again. However the problem is is that when this happens there are no collisions actually happening and I would really love to find out where the flaw is in the code. If you need any more information/code please don't hesitate to ask and I'll reply as soon as possible Regards, AzKai

    Read the article

  • Designing Videogame Character Parodies [duplicate]

    - by David Dimalanta
    This question already has an answer here: Is it legal to add a cameo appearance of a known video game character in my game? 2 answers Was it okay to make a playable character when making a videogame despite its resemblance? For example, I'm making a 3rd-person action-platform genre and I have to make a character design resembling like Megaman but not exactly the same as him since there is little alternate in color, details, and facial features.

    Read the article

  • How should I load level data in java?

    - by Matthew G.
    I'm setting up my engine for a certain action/arcade game to have a set of commands that would look something like this. Set landscape to grass Create rocks at ... Create player at X, Y Set goal to "Get to point X Y" Spawn enemy at X, Y I'd then have each object knowing what it has to do, and acting on its own. I've been thinking about how to store this data. External data files could be parsed by a level class, and certain objects can be spawned through that. I could also create a base level class and extend it for each level, but that'd create a large amount of classes. Another idea is to have one level parser class, but have a case for each level. This would be extremely silly and bulky, but I mention it because I found that I did this at 2 AM last night. I'm finally getting why I have to plan out my inheritances, though. RIP project. I might be completely missing another option.

    Read the article

< Previous Page | 474 475 476 477 478 479 480 481 482 483 484 485  | Next Page >