Search Results

Search found 32277 results on 1292 pages for 'module development'.

Page 506/1292 | < Previous Page | 502 503 504 505 506 507 508 509 510 511 512 513  | Next Page >

  • OnTriggerEnter not called

    - by Lautaro
    I am working on a fight game with 3D models but played like a 2D game. So the player characters have swords. The Player GameObject has several body parts that are colider triggers. The sword is a rigidbody colider. Ive had som problems with colisions not being detected. Ive added some Debug.Log and slowed downed the animations so what i can see is this: When players are close to each other the sword connects from a different angle. The OnTriggerStay is called several times BEFORE OnTriggerEnter is called if players are too close. Sometimes if too close the OnTriggerStay is called several times but the OnTriggerEnter is NEVER called. Any ideas on why this is?

    Read the article

  • How do I know if my game's average game session time is too small?

    - by you786
    My game has only one life, and the aim is to stay alive as long as possible to get as many points as possible (it's an endless runner). Using Google Analytics I found that players are staying alive for an average of 17 seconds. I could easily increase or decrease this by manipulating acceleration or starting speed. The question is, should I change it at all? Is there any research or general ideas on the best playing time for a game like this? I would also like to know about any research about how long an ideal mobile game session should last.

    Read the article

  • How can I solve the same problems a CB-architecture is trying to solve without using hacks? [on hold]

    - by Jefffrey
    A component based system's goal is to solve the problems that derives from inheritance: for example the fact that some parts of the code (that are called components) are reused by very different classes that, hypothetically, would lie in a very different branch of the inheritance tree. That's a very nice concept, but I've found out that CBS is often hard to accomplish without using ugly hacks. Implementations of this system are often far from clean. But I don't want to discuss this any further. My question is: how can I solve the same problems a CBS try to solve with a very clean interface? (possibly with examples, there are a lot of abstract talks about the "perfect" design already). Here's an example I was going for before realizing I was just reinventing inheritance again: class Human { public: Position position; Movement movement; Sprite sprite; // other human specific components }; class Zombie { Position position; Movement movement; Sprite sprite; // other zombie specific components }; After writing that I realized I needed an interface, otherwise I would have needed N containers for N different types of objects (or to use boost::variant to gather them all together). So I've thought of polymorphism (move what systems do in a CBS design into class specific functions): class Entity { public: virtual void on_event(Event) {} // not pure virtual on purpose virtual void on_update(World) {} virtual void on_draw(Window) {} }; class Human { private: Position position; Movement movement; Sprite sprite; public: virtual void on_event(Event) { ... } virtual void on_update(World) { ... } virtual void on_draw(Window) { ... } }; class Zombie { private: Position position; Movement movement; Sprite sprite; public: virtual void on_event(Event) { ... } virtual void on_update(World) { ... } virtual void on_draw(Window) { ... } }; Which was nice, except for the fact that now the outside world would not even be able to know where a Human is positioned (it does not have access to its position member). That would be useful to track the player position for collision detection or if on_update the Zombie would want to track down its nearest human to move towards him. So I added const Position& get_position() const; to both the Zombie and Human classes. And then I realized that both functionality were shared, so it should have gone to the common base class: Entity. Do you notice anything? Yes, with that methodology I would have a god Entity class full of common functionality (which is the thing I was trying to avoid in the first place).

    Read the article

  • How would I achieve diablo like 2D isometric projection?

    - by Darestium
    Good day, I am in the process of coming up with an idea for a game, and I would like it to be isometric like Diablo. The problem is I have no idea how it achieves the effect of height like in the following screenshot (on the columns): http://upload.wikimedia.org/wikipedia/en/thumb/2/20/Diabloscreen.jpg/350px-Diabloscreen.jpg but whatever the case, I'm sure it is going to be harder to achieve then creating a traditional isometric game, but any ideas regarding the topic would be greatly appreciated.

    Read the article

  • Worker roles in Windows Azure to host a multiplayer server

    - by MrWiggels
    I've been doing research on where to host a simple multi-player backend for a simple game I'm developing. So as a first choice I downloaded the Windows Azure SDK, which provides a nice and simple emulator environment where you can test out your application before uploading. I also download the Azure Social Game Toolkit (Visit), and followed as far as my understanding can take me. So, down to the main question. Is there anybody with experience developing Azure applications. I'm developing a Action RPG game, in a similar vein to Diablo III. I was thinking of putting up Matchmaking, Friends Lists, etc. Is there another way to connect to Azure services via something like UDP or TCP for sending packets or does everything have to go through HTTP requests? Is it even possible to use HTTP request/response for something like this? All game commands will be simple. Because the game server and the clients will be kept in-sync and will have deterministic actions, I'm just going to send actions like "Use Primary Skill" and "Use Secondary Skill". Any hints, ideas, light bulbs or a smack-in-the-face presentation will be much appreciated.

    Read the article

  • Pixel perfect collision with paths (Android)

    - by keysersoze
    Hi I'm writing a game and I'm trying to do some pixel perfect collisions with paths. The player's character has a bitmask which looks for example like this: Currenly my code that handles player's collision with path looks like this: private boolean isTerrainCollisionDetected() { if(collisionRegion.op(player.getBounds(), terrain.getBottomPathBounds(), Region.Op.INTERSECT) || collisionRegion.op(player.getBounds(), terrain.getTopPathBounds(), Region.Op.INTERSECT)) { collisionRegion.getBounds(collisionRect); for(int i = collisionRect.left; i < collisionRect.right; i++) { for(int j = collisionRect.top; j < collisionRect.bottom; j++) { if(player.getBitmask().getPixel(i - player.getX(), j - player.getY()) != Color.TRANSPARENT) { return true; } } } } return false; } The problem is that collisions aren't pixel perfect. It detects collisions in situations like this: The question is: what can I do to improve my collision detection?

    Read the article

  • OpenGL ES 2 on Android: native window

    - by ThreaderSlash
    According to OGLES specification, we have the following definition: EGLSurface eglCreateWindowSurface(EGLDisplay display, EGLConfig config, NativeWindowType native_window, EGLint const * attrib_list) More details, here: http://www.khronos.org/opengles/documentation/opengles1_0/html/eglCreateWindowSurface.html And also by definition: int32_t ANativeWindow_setBuffersGeometry(ANativeWindow* window, int32_t width, int32_t height, int32_t format); More details, here: http://mobilepearls.com/labs/native-android-api I am running Android Native App on OGLES 2 and debugging it in a Samsung Nexus device. For setting up the 3D scene graph environment, the following variables are defined: struct android_app { ... ANativeWindow* window; }; android_app* mApplication; ... mApplication=&pApplication; And to initialize the App, we run the commands in the code: ANativeWindow_setBuffersGeometry(mApplication->window, 0, 0, lFormat); mSurface = eglCreateWindowSurface(mDisplay, lConfig, mApplication->window, NULL); Funny to say is that, the command ANativeWindow_setBuffersGeometry behaves as expected and works fine according to its definition, accepting all the parameters sent to it. But the eglCreateWindowSurface does no accept the parameter mApplication-window, as it should accept according to its definition. Instead, it looks for the following input: EGLNativeWindowType hWnd; mSurface = eglCreateWindowSurface(mDisplay,lConfig,hWnd,NULL); As an alternative, I considered to use instead: NativeWindowType hWnd=android_createDisplaySurface(); But debugger says: Function 'android_createDisplaySurface' could not be resolved Is 'android_createDisplaySurface' compatible only for OGLES 1 and not for OGLES 2? Can someone tell if there is a way to convert mApplication-window? In a way that the data from the android_app get accepted to the window surface?

    Read the article

  • How to effectively gather info about how players play my HTML5 game?

    - by Bane
    I'm finishing another HTML5 game, and this time I'd like to do some spying business on the players... Mostly just basic stuff: when they are playing, for how long, what upgrades they are buying the most and so on. Now, my first idea was just to collect this information during the gameplay, and then have a Javascript function fire when they close the tab/browser, and said function would send it to my server via Socket.io. This, of course, wouldn't work, because anyone who takes a look at the code would realize it and could start sending a tonne of false info which would mess up my statistics. Questions: Is there a way to effectively do this? If yes, what kind of info should I be looking for, aside from stuff I already mentioned?

    Read the article

  • How to highlight non-rectangular hotspots?

    - by HuseyinUslu
    So my question is highly related to Creating non-rectangular hotspots and detecting clicks. Yet again, I've irregular hot-spots (think the game Risk). So basically, we can detect clicks on these hot-spots easily using color key mapping as discussed in above question which I don't have any problems implementing (which is also covered here in details). The problem is about highlighting these irreguar hotspots. So let me explain the question a bit more - the above color key mapping guide uses this as a world map: Then the author color-maps the imaginary countries: Now we can now detect the country the pointer is over. In the same article author mentions outlining countries on mouse-over. Though to get the effect, he creates unique border assets for each country - like: For the game I'm working on I'm using the same color-key mapping idea to detect hot-spots, but I didn't like the way of highlighting hot-spots. Coloring all the hot-spots is already a time-consuming job for me - as I have 25+ hot-spots for each map. Further, the need to have 25 unique border/highlight asset per hot-spot doesn't sound right. Anyone have a better idea/suggestion on highlighting these hot-spots?

    Read the article

  • 3D Graphics with XNA Game Studio 4.0 bug in light map?

    - by Eibis
    i'm following the tutorials on 3D Graphics with XNA Game Studio 4.0 and I came up with an horrible effect when I tried to implement the Light Map http://i.stack.imgur.com/BUWvU.jpg this effect shows up when I look towards the center of the house (and it moves with me). it has this shape because I'm using a sphere to represent light; using other light shapes gives different results. I'm using a class PreLightingRenderer: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using Dhpoware; using Microsoft.Xna.Framework.Content; namespace XNAFirstPersonCamera { public class PrelightingRenderer { // Normal, depth, and light map render targets RenderTarget2D depthTarg; RenderTarget2D normalTarg; RenderTarget2D lightTarg; // Depth/normal effect and light mapping effect Effect depthNormalEffect; Effect lightingEffect; // Point light (sphere) mesh Model lightMesh; // List of models, lights, and the camera public List<CModel> Models { get; set; } public List<PPPointLight> Lights { get; set; } public FirstPersonCamera Camera { get; set; } GraphicsDevice graphicsDevice; int viewWidth = 0, viewHeight = 0; public PrelightingRenderer(GraphicsDevice GraphicsDevice, ContentManager Content) { viewWidth = GraphicsDevice.Viewport.Width; viewHeight = GraphicsDevice.Viewport.Height; // Create the three render targets depthTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Single, DepthFormat.Depth24); normalTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); lightTarg = new RenderTarget2D(GraphicsDevice, viewWidth, viewHeight, false, SurfaceFormat.Color, DepthFormat.Depth24); // Load effects depthNormalEffect = Content.Load<Effect>(@"Effects\PPDepthNormal"); lightingEffect = Content.Load<Effect>(@"Effects\PPLight"); // Set effect parameters to light mapping effect lightingEffect.Parameters["viewportWidth"].SetValue(viewWidth); lightingEffect.Parameters["viewportHeight"].SetValue(viewHeight); // Load point light mesh and set light mapping effect to it lightMesh = Content.Load<Model>(@"Models\PPLightMesh"); lightMesh.Meshes[0].MeshParts[0].Effect = lightingEffect; this.graphicsDevice = GraphicsDevice; } public void Draw() { drawDepthNormalMap(); drawLightMap(); prepareMainPass(); } void drawDepthNormalMap() { // Set the render targets to 'slots' 1 and 2 graphicsDevice.SetRenderTargets(normalTarg, depthTarg); // Clear the render target to 1 (infinite depth) graphicsDevice.Clear(Color.White); // Draw each model with the PPDepthNormal effect foreach (CModel model in Models) { model.CacheEffects(); model.SetModelEffect(depthNormalEffect, false); model.Draw(Camera.ViewMatrix, Camera.ProjectionMatrix, Camera.Position); model.RestoreEffects(); } // Un-set the render targets graphicsDevice.SetRenderTargets(null); } void drawLightMap() { // Set the depth and normal map info to the effect lightingEffect.Parameters["DepthTexture"].SetValue(depthTarg); lightingEffect.Parameters["NormalTexture"].SetValue(normalTarg); // Calculate the view * projection matrix Matrix viewProjection = Camera.ViewMatrix * Camera.ProjectionMatrix; // Set the inverse of the view * projection matrix to the effect Matrix invViewProjection = Matrix.Invert(viewProjection); lightingEffect.Parameters["InvViewProjection"].SetValue(invViewProjection); // Set the render target to the graphics device graphicsDevice.SetRenderTarget(lightTarg); // Clear the render target to black (no light) graphicsDevice.Clear(Color.Black); // Set render states to additive (lights will add their influences) graphicsDevice.BlendState = BlendState.Additive; graphicsDevice.DepthStencilState = DepthStencilState.None; foreach (PPPointLight light in Lights) { // Set the light's parameters to the effect light.SetEffectParameters(lightingEffect); // Calculate the world * view * projection matrix and set it to // the effect Matrix wvp = (Matrix.CreateScale(light.Attenuation) * Matrix.CreateTranslation(light.Position)) * viewProjection; lightingEffect.Parameters["WorldViewProjection"].SetValue(wvp); // Determine the distance between the light and camera float dist = Vector3.Distance(Camera.Position, light.Position); // If the camera is inside the light-sphere, invert the cull mode // to draw the inside of the sphere instead of the outside if (dist < light.Attenuation) graphicsDevice.RasterizerState = RasterizerState.CullClockwise; // Draw the point-light-sphere lightMesh.Meshes[0].Draw(); // Revert the cull mode graphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; } // Revert the blending and depth render states graphicsDevice.BlendState = BlendState.Opaque; graphicsDevice.DepthStencilState = DepthStencilState.Default; // Un-set the render target graphicsDevice.SetRenderTarget(null); } void prepareMainPass() { foreach (CModel model in Models) foreach (ModelMesh mesh in model.Model.Meshes) foreach (ModelMeshPart part in mesh.MeshParts) { // Set the light map and viewport parameters to each model's effect if (part.Effect.Parameters["LightTexture"] != null) part.Effect.Parameters["LightTexture"].SetValue(lightTarg); if (part.Effect.Parameters["viewportWidth"] != null) part.Effect.Parameters["viewportWidth"].SetValue(viewWidth); if (part.Effect.Parameters["viewportHeight"] != null) part.Effect.Parameters["viewportHeight"].SetValue(viewHeight); } } } } that uses three effect: PPDepthNormal.fx float4x4 World; float4x4 View; float4x4 Projection; struct VertexShaderInput { float4 Position : POSITION0; float3 Normal : NORMAL0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 Depth : TEXCOORD0; float3 Normal : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 viewProjection = mul(View, Projection); float4x4 worldViewProjection = mul(World, viewProjection); output.Position = mul(input.Position, worldViewProjection); output.Normal = mul(input.Normal, World); // Position's z and w components correspond to the distance // from camera and distance of the far plane respectively output.Depth.xy = output.Position.zw; return output; } // We render to two targets simultaneously, so we can't // simply return a float4 from the pixel shader struct PixelShaderOutput { float4 Normal : COLOR0; float4 Depth : COLOR1; }; PixelShaderOutput PixelShaderFunction(VertexShaderOutput input) { PixelShaderOutput output; // Depth is stored as distance from camera / far plane distance // to get value between 0 and 1 output.Depth = input.Depth.x / input.Depth.y; // Normal map simply stores X, Y and Z components of normal // shifted from (-1 to 1) range to (0 to 1) range output.Normal.xyz = (normalize(input.Normal).xyz / 2) + .5; // Other components must be initialized to compile output.Depth.a = 1; output.Normal.a = 1; return output; } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPLight.fx float4x4 WorldViewProjection; float4x4 InvViewProjection; texture2D DepthTexture; texture2D NormalTexture; sampler2D depthSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; sampler2D normalSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 LightColor; float3 LightPosition; float LightAttenuation; // Include shared functions #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; }; struct VertexShaderOutput { float4 Position : POSITION0; float4 LightPosition : TEXCOORD0; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; output.Position = mul(input.Position, WorldViewProjection); output.LightPosition = output.Position; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Find the pixel coordinates of the input position in the depth // and normal textures float2 texCoord = postProjToScreen(input.LightPosition) + halfPixel(); // Extract the depth for this pixel from the depth map float4 depth = tex2D(depthSampler, texCoord); // Recreate the position with the UV coordinates and depth value float4 position; position.x = texCoord.x * 2 - 1; position.y = (1 - texCoord.y) * 2 - 1; position.z = depth.r; position.w = 1.0f; // Transform position from screen space to world space position = mul(position, InvViewProjection); position.xyz /= position.w; // Extract the normal from the normal map and move from // 0 to 1 range to -1 to 1 range float4 normal = (tex2D(normalSampler, texCoord) - .5) * 2; // Perform the lighting calculations for a point light float3 lightDirection = normalize(LightPosition - position); float lighting = clamp(dot(normal, lightDirection), 0, 1); // Attenuate the light to simulate a point light float d = distance(LightPosition, position); float att = 1 - pow(d / LightAttenuation, 6); return float4(LightColor * lighting * att, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } PPShared.vsi has some common functions: float viewportWidth; float viewportHeight; // Calculate the 2D screen position of a 3D position float2 postProjToScreen(float4 position) { float2 screenPos = position.xy / position.w; return 0.5f * (float2(screenPos.x, -screenPos.y) + 1); } // Calculate the size of one half of a pixel, to convert // between texels and pixels float2 halfPixel() { return 0.5f / float2(viewportWidth, viewportHeight); } and finally from the Game class I set up in LoadContent with: effect = Content.Load(@"Effects\PPModel"); models[0] = new CModel(Content.Load(@"Models\teapot"), new Vector3(-50, 80, 0), new Vector3(0, 0, 0), 1f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); house = new CModel(Content.Load(@"Models\house"), new Vector3(0, 0, 0), new Vector3((float)-Math.PI / 2, 0, 0), 35.0f, Content.Load(@"Textures\prova_texture_autocad"), GraphicsDevice); models[0].SetModelEffect(effect, true); house.SetModelEffect(effect, true); renderer = new PrelightingRenderer(GraphicsDevice, Content); renderer.Models = new List(); renderer.Models.Add(house); renderer.Models.Add(models[0]); renderer.Lights = new List() { new PPPointLight(new Vector3(0, 120, 0), Color.White * .85f, 2000) }; where PPModel.fx is: float4x4 World; float4x4 View; float4x4 Projection; texture2D BasicTexture; sampler2D basicTextureSampler = sampler_state { texture = ; addressU = wrap; addressV = wrap; minfilter = anisotropic; magfilter = anisotropic; mipfilter = linear; }; bool TextureEnabled = true; texture2D LightTexture; sampler2D lightSampler = sampler_state { texture = ; minfilter = point; magfilter = point; mipfilter = point; }; float3 AmbientColor = float3(0.15, 0.15, 0.15); float3 DiffuseColor; #include "PPShared.vsi" struct VertexShaderInput { float4 Position : POSITION0; float2 UV : TEXCOORD0; }; struct VertexShaderOutput { float4 Position : POSITION0; float2 UV : TEXCOORD0; float4 PositionCopy : TEXCOORD1; }; VertexShaderOutput VertexShaderFunction(VertexShaderInput input) { VertexShaderOutput output; float4x4 worldViewProjection = mul(World, mul(View, Projection)); output.Position = mul(input.Position, worldViewProjection); output.PositionCopy = output.Position; output.UV = input.UV; return output; } float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { // Sample model's texture float3 basicTexture = tex2D(basicTextureSampler, input.UV); if (!TextureEnabled) basicTexture = float4(1, 1, 1, 1); // Extract lighting value from light map float2 texCoord = postProjToScreen(input.PositionCopy) + halfPixel(); float3 light = tex2D(lightSampler, texCoord); light += AmbientColor; return float4(basicTexture * DiffuseColor * light, 1); } technique Technique1 { pass Pass1 { VertexShader = compile vs_1_1 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } I don't have any idea on what's wrong... googling the web I found that this tutorial may have some bug but I don't know if it's the LightModel fault (the sphere) or in a shader or in the class PrelightingRenderer. Any help is very appreciated, thank you for reading!

    Read the article

  • XNA 4.0 SpriteFont not displaying all Characters

    - by Iain Brown
    Am looking for a little help and trying to use SpriteFont in my XNA 4.0 game but the problem is am displaying to string "This is a test" but all that's displayed on the screen is "This is st" so the "a te" are missing from the screen. The space is there for the characters but the letters are not. The code am using is: spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend); spriteBatch.DrawString(font,"this is a test",new Vector2(692,372),Color.White); spriteBatch.Draw(texture,new Rectangle(0,0,100,100),Color.White); spriteBatch.End(); Any help with this would be great!

    Read the article

  • Multiple textures on a mesh created in blender and imported in xna

    - by alecnash
    I created a cube in blender which has multiple images applied to its faces. I am trying to import the model into xna and get the same results as shown when rendering the model in blender. I go through every mesh (for the cube its only one) and through every part but only the first image used in blender is displayed in every face. The code I am using to fetch the texture looks like that: foreach (ModelMesh m in model.Meshes) { foreach (Effect e in m.Effects) { foreach (var part in m.MeshParts) { e.CurrentTechnique = e.Techniques["Lambert"]; e.Parameters["view"].SetValue(camera.viewMatrix); e.Parameters["projection"].SetValue(camera.projectionMatrix); e.Parameters["colorMap"].SetValue(modelTextures[part.GetHashCode()]); } } m.Draw(); } Am I missing something?

    Read the article

  • (Abstract) Game engine design

    - by lukeluke
    I am writing a simple 2D game (for mobile platforms) for the first time. From an abstract point of view, i have the main player controlled by the human, the enemies, elments that will interact with the main player, other living elements that will be controlled by a simple AI (both enemies and non-enemies). The human player will be totally controlled by the player, the other actors will be controlled by AI. So i have a class CActor and a class CActorLogic to start with. I would define a CActor subclass CHero (the main player controlled with some input device). This class will probably implement some type of listener, in order to capture input events. The other players controlled by the AI will be probably a specific subclass of CActor (a subclass per-type, obviously). This seems to be reasonable. The CActor class should have a reference to a method of CActorLogic, that we will call something like CActorLogic::Advance() or similar. Actors should have a visual representation. I would introduce a CActorRepresentation class, with a method like Render() that will draw the actor (that is, the right frame of the right animation). Where to change the animation? Well, the actor logic method Advance() should take care of checking collisions and other things. I would like to discuss the design of a game engine (actors, entities, objects, messages, input handling, visualization of object states (that is, rendering, sound output and so on)) but not from a low level point of view, but from an high level point of view, like i have described above. My question is: is there any book/on line resource that will help me organize things (using an object oriented approach)? Thanks

    Read the article

  • In an Entity/Component system, can component data be implemented as a simple array of key-value pairs? [on hold]

    - by 010110110101
    I'm trying to wrap my head around how to organize components in an Entity Component Systems once everything in the current scene/level is loaded in memory. (I'm a hobbyist BTW) Some people seem to implement the Entity as an object that contains a list of of "Component" objects. Components contain data organized as an array of key-value pairs. Where the value is serialized "somehow". (pseudocode is loosely in C# for brevity) class Entity { Guid _id; List<Component> _components; } class Component { List<ComponentAttributeValue> _attributes; } class ComponentAttributeValue { string AttributeName; object AttributeValue; } Others describe Components as an in-memory "table". An entity acquires the component by having its key placed in a table. The attributes of the component-entity instance are like the columns in a table class Renderable_Component { List<RenderableComponentAttributeValue> _entities; } class RenderableComponentAttributeValue { Guid entityId; matrix4 transformation; // other stuff for rendering // everything is strongly typed } Others describe this actually as a table. (and such tables sound like an EAV database schema BTW) (and the value is serialized "somehow") Render_Component_Table ---------------- Entity Id Attribute Name Attribute Value and when brought into running code: class Entity { Guid _id; Dictionary<string, object> _attributes; } My specific question is: Given various components, (Renderable, Positionable, Explodeable, Hideable, etc) and given that each component has an attribute with a particular name, (TRANSLATION_MATRIX, PARTICLE_EMISSION_VELOCITY, CAN_HIDE, FAVORITE_COLOR, etc) should: an entity contain a list of components where each component, in turn, has their own array of named attributes with values serialized somehow or should components exist as in-memory tables of entity references and associated with each "row" there are "columns" representing the attribute with values that are specific to each entity instance and are strongly typed or all attributes be stored in an entity as a singular array of named attributes with values serialized somehow (could have name collisions) or something else???

    Read the article

  • Understanding math used to determine if vector is clockwise / counterclockwise from your vector

    - by MTLPhil
    I'm reading Programming Game AI by Example by Mat Buckland. In the Math & Physics primer chapter there's a listing of the declaration of a class used to represent 2D vectors. This class contains a method called Sign. It's implementation is as follows //------------------------ Sign ------------------------------------------ // // returns positive if v2 is clockwise of this vector, // minus if anticlockwise (Y axis pointing down, X axis to right) //------------------------------------------------------------------------ enum {clockwise = 1, anticlockwise = -1}; inline int Vector2D::Sign(const Vector2D& v2)const { if (y*v2.x > x*v2.y) { return anticlockwise; } else { return clockwise; } } Can someone explain the vector rules that make this hold true? What do the values of y*v2.x and x*v2.y that are being compared actually represent? I'd like to have a solid understanding of why this works rather than just accepting that it does without figuring it out. I feel like it's something really obvious that I'm just not catching on to. Thanks for your help.

    Read the article

  • Best way to detect if vec3 is between vec3(x) and vec3(y) in glsl

    - by elect
    As titled I am sampling from a texture and if the color is somehow gray [vec3(.8), vec3(.9)] and an uniform is 1 I need to substitute that color with another one I am not a glsl veteran but I am pretty sure there is a more elegant and compact (without mentioning faster) way than this: vec3 textureColor = texture(texture0, oUV); if(settings.w == 1 && textureColor.r > .8 && textureColor.r < .9 && textureColor.g > .8 && textureColor.g < .9 && textureColor.b > .8 && textureColor.b < .9)

    Read the article

  • How can I resolve component types in a way that supports adding new types relatively easily?

    - by John
    I am trying to build an Entity Component System for an interactive application developed using C++ and OpenGL. My question is quite simple. In my GameObject class I have a collection of Components. I can add and retrieve components. class GameObject: public Object { public: GameObject(std::string objectName); ~GameObject(void); Component * AddComponent(std::string name); Component * AddComponent(Component componentType); Component * GetComponent (std::string TypeName); Component * GetComponent (<Component Type Here>); private: std::map<std::string,Component*> m_components; }; I will have a collection of components that inherit from the base Components class. So if I have a meshRenderer component and would like to do the following GameObject * warship = new GameObject("myLovelyWarship"); MeshRenderer * meshRenderer = warship->AddComponent(MeshRenderer); or possibly MeshRenderer * meshRenderer = warship->AddComponent("MeshRenderer"); I could be make a Component Factory like this: class ComponentFactory { public: static Component * CreateComponent(const std::string &compTyp) { if(compTyp == "MeshRenderer") return new MeshRenderer; if(compTyp == "Collider") return new Collider; return NULL; } }; However, I feel like I should not have to keep updating the Component Factory every time I want to create a new custom Component but it is an option. Is there a more proper way to add and retrieve these components? Is standard templates another solution?

    Read the article

  • (libgdx) Button doesn't work

    - by StercoreCode
    At the game I choose StopScreen. At this screen displays button. But if I click it - it doesn't work. What I expect - when I press button it must restart game. At this stage must display at least a message that the button is pressed. I tried to create new and clear project. Main class implement ApplicationListener. I put the same code in the appropriate methods. And it's works! But if i create this button in my game - it doesn't work. When i play and go to the StopScreen, i saw button. But if i click, or touch, nothing happens. I think that the proplem at the InputListener, although i set the stage as InputProcessor. Gdx.input.setInputProcessor(stage); I also try to addListener for Button as ClickListener. But it gave no results. Or it maybe problem that i implements Screen method - not ApplicationListener or Game. But if StopScreen implement ApplicationListener, at the mainGame I can't to setScreen. Just interests question: why button displays but nothing happens to it? Here is the code of StopScreen if it helps find my mistake: public class StopScreen implements Screen{ private OrthographicCamera camera; private SpriteBatch batch; public Stage stage; //** stage holds the Button **// private BitmapFont font; //** same as that used in Tut 7 **// private TextureAtlas buttonsAtlas; //** image of buttons **// private Skin buttonSkin; //** images are used as skins of the button **// public TextButton button; //** the button - the only actor in program **// public StopScreen(CurrusGame currusGame) { camera = new OrthographicCamera(); camera.setToOrtho(false, 800, 480); batch = new SpriteBatch(); buttonsAtlas = new TextureAtlas("button.pack"); //** button atlas image **// buttonSkin = new Skin(); buttonSkin.addRegions(buttonsAtlas); //** skins for on and off **// font = AssetLoader.font; //** font **// stage = new Stage(); stage.clear(); Gdx.input.setInputProcessor(stage); TextButton.TextButtonStyle style = new TextButton.TextButtonStyle(); style.up = buttonSkin.getDrawable("ButtonOff"); style.down = buttonSkin.getDrawable("ButtonOn"); style.font = font; button = new TextButton("PRESS ME", style); //** Button text and style **// button.setPosition(100, 100); //** Button location **// button.setHeight(100); //** Button Height **// button.setWidth(100); //** Button Width **// button.addListener(new InputListener() { public boolean touchDown(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Pressed"); return true; } public void touchUp(InputEvent event, float x, float y, int pointer, int button) { Gdx.app.log("my app", "Released"); } }); stage.addActor(button); } @Override public void render(float delta) { Gdx.gl.glClearColor(0, 1, 0, 1); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); stage.act(); batch.setProjectionMatrix(camera.combined); batch.begin(); stage.draw(); batch.end(); }

    Read the article

  • How do I increase moving speed of body?

    - by Siddharth
    How to move ball speedily on the screen using box2d in libGDX? package com.badlogic.box2ddemo; import com.badlogic.gdx.ApplicationListener; import com.badlogic.gdx.Gdx; import com.badlogic.gdx.graphics.GL10; import com.badlogic.gdx.graphics.Texture; import com.badlogic.gdx.graphics.g2d.Sprite; import com.badlogic.gdx.graphics.g2d.SpriteBatch; import com.badlogic.gdx.graphics.g2d.TextureRegion; import com.badlogic.gdx.math.Matrix4; import com.badlogic.gdx.math.Vector2; import com.badlogic.gdx.physics.box2d.Body; import com.badlogic.gdx.physics.box2d.BodyDef; import com.badlogic.gdx.physics.box2d.BodyDef.BodyType; import com.badlogic.gdx.physics.box2d.Box2DDebugRenderer; import com.badlogic.gdx.physics.box2d.CircleShape; import com.badlogic.gdx.physics.box2d.Fixture; import com.badlogic.gdx.physics.box2d.FixtureDef; import com.badlogic.gdx.physics.box2d.PolygonShape; import com.badlogic.gdx.physics.box2d.World; public class Box2DDemo implements ApplicationListener { private SpriteBatch batch; private TextureRegion texture; private World world; private Body groundDownBody, groundUpBody, groundLeftBody, groundRightBody, ballBody; private BodyDef groundBodyDef1, groundBodyDef2, groundBodyDef3, groundBodyDef4, ballBodyDef; private PolygonShape groundDownPoly, groundUpPoly, groundLeftPoly, groundRightPoly; private CircleShape ballPoly; private Sprite sprite; private FixtureDef fixtureDef; private Vector2 ballPosition; private Box2DDebugRenderer renderer; Vector2 vector2; @Override public void create() { texture = new TextureRegion(new Texture( Gdx.files.internal("img/red_ring.png"))); sprite = new Sprite(texture); sprite.setOrigin(sprite.getWidth() / 2, sprite.getHeight() / 2); batch = new SpriteBatch(); world = new World(new Vector2(0.0f, 0.0f), false); groundBodyDef1 = new BodyDef(); groundBodyDef1.type = BodyType.StaticBody; groundBodyDef1.position.x = 0.0f; groundBodyDef1.position.y = 0.0f; groundDownBody = world.createBody(groundBodyDef1); groundBodyDef2 = new BodyDef(); groundBodyDef2.type = BodyType.StaticBody; groundBodyDef2.position.x = 0f; groundBodyDef2.position.y = Gdx.graphics.getHeight(); groundUpBody = world.createBody(groundBodyDef2); groundBodyDef3 = new BodyDef(); groundBodyDef3.type = BodyType.StaticBody; groundBodyDef3.position.x = 0f; groundBodyDef3.position.y = 0f; groundLeftBody = world.createBody(groundBodyDef3); groundBodyDef4 = new BodyDef(); groundBodyDef4.type = BodyType.StaticBody; groundBodyDef4.position.x = Gdx.graphics.getWidth(); groundBodyDef4.position.y = 0f; groundRightBody = world.createBody(groundBodyDef4); groundDownPoly = new PolygonShape(); groundDownPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.density = 0f; fixtureDef.restitution = 1f; fixtureDef.friction = 0f; fixtureDef.shape = groundDownPoly; fixtureDef.filter.groupIndex = 0; groundDownBody.createFixture(fixtureDef); groundUpPoly = new PolygonShape(); groundUpPoly.setAsBox(480.0f, 10f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundUpPoly; fixtureDef.filter.groupIndex = 0; groundUpBody.createFixture(fixtureDef); groundLeftPoly = new PolygonShape(); groundLeftPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundLeftPoly; fixtureDef.filter.groupIndex = 0; groundLeftBody.createFixture(fixtureDef); groundRightPoly = new PolygonShape(); groundRightPoly.setAsBox(10f, 320f); fixtureDef = new FixtureDef(); fixtureDef.friction = 0f; fixtureDef.restitution = 0f; fixtureDef.density = 0f; fixtureDef.shape = groundRightPoly; fixtureDef.filter.groupIndex = 0; groundRightBody.createFixture(fixtureDef); ballPoly = new CircleShape(); ballPoly.setRadius(16f); fixtureDef = new FixtureDef(); fixtureDef.shape = ballPoly; fixtureDef.density = 1f; fixtureDef.friction = 1f; fixtureDef.restitution = 1f; ballBodyDef = new BodyDef(); ballBodyDef.type = BodyType.DynamicBody; ballBodyDef.position.x = (int) 200; ballBodyDef.position.y = (int) 200; ballBody = world.createBody(ballBodyDef); ballBody.setLinearVelocity(200f, 200f); // ballBody.applyLinearImpulse(new Vector2(250f, 250f), // ballBody.getLocalCenter()); ballBody.createFixture(fixtureDef); renderer = new Box2DDebugRenderer(true, false, false); } @Override public void dispose() { ballPoly.dispose(); groundLeftPoly.dispose(); groundUpPoly.dispose(); groundDownPoly.dispose(); groundRightPoly.dispose(); world.destroyBody(ballBody); world.dispose(); } @Override public void pause() { } @Override public void render() { world.step(1f/30f, 3, 3); Gdx.gl.glClearColor(1f, 1f, 1f, 1f); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); batch.begin(); vector2 = ballBody.getLinearVelocity(); System.out.println("X=" + vector2.x + " Y=" + vector2.y); ballPosition = ballBody.getPosition(); renderer.render(world,batch.getProjectionMatrix()); // int preX = (int) (vector2.x / Math.abs(vector2.x)); // int preY = (int) (vector2.y / Math.abs(vector2.y)); // // if (Math.abs(vector2.x) == 0.0f) // ballBody1.setLinearVelocity(1.4142137f, vector2.y); // else if (Math.abs(vector2.x) < 1.4142137f) // ballBody1.setLinearVelocity(preX * 5, vector2.y); // // if (Math.abs(vector2.y) == 0.0f) // ballBody1.setLinearVelocity(vector2.x, 1.4142137f); // else if (Math.abs(vector2.y) < 1.4142137f) // ballBody1.setLinearVelocity(vector2.x, preY * 5); batch.draw(sprite, (ballPosition.x - (texture.getRegionWidth() / 2)), (ballPosition.y - (texture.getRegionHeight() / 2))); batch.end(); } @Override public void resize(int arg0, int arg1) { } @Override public void resume() { } } I implement above code but I can not achieve higher moving speed of the ball

    Read the article

  • Method for spawning enemies according to player score and game time

    - by Sun
    I'm making a top-down shooter and want to scale the difficulty of the game according to what the score is and how much time has Passed. Along with this, I want to spawn enemies in different patterns and increase the intervals at which these enemies are shown. I'm going for a similar effect to Geometry wars. However, I can think of a to do this other than have multiple if-else statments, e.g. : if (score > 1000) { //spawn x amount if enemies } else if (score > 10000) { //spawn x amount of enemy type 1 & 2 } else if (score > 15000) { //spawn x amount of enemy type 1 & 2 & 3 } else if (score > 25000) { //spawn x amount of enemy type 1 & 2 & 3 //create patterns with enemies } ...etc What would be a better method of spawning enemies as I have described?

    Read the article

  • How do I render only part of a texture to a point sprite in OpenGL ES for Android?

    - by nbolton
    Using the libgdx framework, I've figured out how to render a texture to a point sprite. The problem is, it renders the entire texture to the point sprite, where I only want a small part of it (since it's an isometric tile image). Here's a snippet from some demo code I wrote... create() { renderer = new ImmediateModeRenderer(); tiles = Gdx.graphics.newTexture( Gdx.files.internal("data/tiles2.png"), TextureFilter.MipMap, TextureFilter.Linear, TextureWrap.ClampToEdge, TextureWrap.ClampToEdge); Gdx.gl.glClearColor(0.6f, 0.7f, 0.9f, 1); Gdx.gl.glEnable(GL10.GL_TEXTURE_2D); Gdx.gl.glEnable(GL11.GL_POINT_SPRITE_OES); Gdx.gl11.glTexEnvi( GL11.GL_POINT_SPRITE_OES, GL11.GL_COORD_REPLACE_OES, GL11.GL_TRUE); Gdx.gl10.glPointSize(s); tiles.bind(); } render() { Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); renderer.begin(GL10.GL_POINTS); // render 3 point sprites at various 3d points renderer.vertex(-.1f, 0, -.1f); renderer.vertex(0, 0, 0); renderer.vertex(.1f, 0, .1f); // ... more vertices here if needed (one for each sprite) ... renderer.end(); }

    Read the article

  • How to link subprograms to a main program's game loop?

    - by Jim
    I recently discovered Crobot which is (briefly) a game where each player codes a virtual robot in a pseudo-C language. Each robot is then put in an arena where it fights against other robots. A robots' source code has this shape : /* Beginning file robot.r */ main() { while (1) { /* Do whatever you want */ ... move(); ... fire(); } } /* End file robot.r */ You can see that : The code is totally independent from any library/include Some predefined functions are available (move, fire, etc…) The program has its own game loop, and consequently is not called every frame My question is roughly : how does it work ? It seems that each robot's code is compiled by the main program and then used in a way I cannot understand. I thought it could yields a thread for each robot, but I have not any proof of this and it seems a bit complicated to achieve it. Any idea how it could work, someone ?

    Read the article

  • why is glVertexAttribDivisor crashing?

    - by 2am
    I am trying to render some trees with instancing. This is rather weird, but before sleeping yesterday night, I checked the code, and it was in a running state, when I got up this morning, it is crashing when I am calling glVertexAttribDivisor I haven't changed any code since yesterday. Here is how I am sending data to GPU for instancing. glGenBuffers(1, &iVBO); glBindBuffer(GL_ARRAY_BUFFER, iVBO); glBufferData(GL_ARRAY_BUFFER, (ml_instance->i_positions.size()*sizeof(glm::vec4)) , NULL, GL_STATIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (ml_instance->i_positions.size()*sizeof(glm::vec4)), &ml_instance->i_positions[0]); And then in vertex specification-- glBindBuffer(GL_ARRAY_BUFFER, iVBO); glVertexAttribPointer(i_positions, 4, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(i_positions); glVertexAttribDivisor(i_positions,1); // **THIS IS WHERE THE PROGRAM CRASHES** glDrawElementsInstanced(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0,TREES_INSTANCE_COUNT); I have checked ml_instance->i_positions, it has all the data that needs to render. I have checked the value of i_positions in vertex shader, it is the same as whatever I have defined there. I am little out of ideas here, everything looks pretty much fine. What am I missing?

    Read the article

  • OpenGLES GLSL Shader attributes always bound to 0

    - by codemonkey
    So I have a very simple vertex shader as follows #version 120 attribute vec3 position; attribute vec3 inColor; uniform mat4 mvp; varying vec3 fragColor; void main(void){ fragColor = inColor; gl_Position = mvp * vec4(position, 1.0); } Which I load, as well as the fragment shader: #version 120 varying vec3 fragColor; void main(void) { gl_FragColor = vec4(fragColor,1.0); } Which I then load, compile, and link to my shader program. I check for link status using glGetProgramiv(shaderProgram, GL_LINK_STATUS, &shaderSuccess); which returns GL_TRUE so I think its ok. However, when I query the active attributes and uniforms using #ifdef DEBUG int totalAttributes = -1; glGetProgramiv(shaderProgram, GL_ACTIVE_ATTRIBUTES, &totalAttributes); for(int i=0; i<totalAttributes; ++i) { int name_len=-1, num=-1; GLenum type = GL_ZERO; char name[100]; glGetActiveAttrib(shaderProgram, GLuint(i), sizeof(name)-1, &name_len, &num, &type, name ); name[name_len] = 0; GLuint location = glGetAttribLocation(shaderProgram, name); fprintf(stderr, "Attribute %s is bound at %d\n", name, location); } int totalUniforms = -1; glGetProgramiv(shaderProgram, GL_ACTIVE_UNIFORMS, &totalUniforms); for(int i=0; i<totalUniforms; ++i) { int name_len=-1, num=-1; GLenum type = GL_ZERO; char name[100]; glGetActiveUniform(shaderProgram, GLuint(i), sizeof(name)-1, &name_len, &num, &type, name ); name[name_len] = 0; GLuint location = glGetUniformLocation(shaderProgram, name); fprintf(stderr, "Uniform %s is bound at %d\n", name, location); } #endif I get: Attribute inColor is bound at 0 Attribute position is bound at 1 Uniform mvp is bound at 0 Which leads to failure when trying to use the shader to render the objects. I have tried switching the order of declaration of position & inColor, but still, only position is bound with the other two giving 0 Can someone please explain why this is happening? Thanks

    Read the article

  • What sort of leaderboard for my game?

    - by Martin
    I recently published a word game for Windows Phone and I am really happy to have some players. The game is entirely offline and at the end of a game, the player's score is published to a server. I'm collecting the scores to build a leaderboard. Right now, I don't believe that the leaderboard I offer to my users is appropriate. I essentially accumulate the score of all the games of a user for a given day and that becomes their score. So if Player 1 plays 3 games and gets 100, 150 and 200 points, its score for the day is 450 points. I would like to get your ideas and opinion. How do I keep my game challenging and engaging with a good leaderboard? Should I continue accumulating the score for a day? Should I just keep the best score? Thanks!

    Read the article

< Previous Page | 502 503 504 505 506 507 508 509 510 511 512 513  | Next Page >