Search Results

Search found 35343 results on 1414 pages for 'development tools'.

Page 529/1414 | < Previous Page | 525 526 527 528 529 530 531 532 533 534 535 536  | Next Page >

  • Unexpected results for projection on to plane

    - by ravenspoint
    I want to use this projection matrix: GLfloat shadow[] = { -1,0,0,0, 1,0,-1,1, 0,0,-1,0, 0,0,0,-1 }; It should cast object shadows onto the y = 0 plane from a point light at 1,1,-1. I create a rectangle in the x = 0.5 plane glBegin( GL_QUADS ); glVertex3f( 0.5,0.2,-0.5); glVertex3f( 0.5,0.2,-1.5); glVertex3f( 0.5,0.5,-1.5); glVertex3f( 0.5,0.5,-0.5); glEnd(); Now if I manually multiply these vertices with the matrix, I get. glBegin( GL_QUADS ); glVertex3f( 0.375,0,-0.375); glVertex3f( 0.375,0,-1.625); glVertex3f( 0,0,-2); glVertex3f( 0,0,0); glEnd(); Which produces a reasonable display ( camera at 0,5,0 looking down y axis ) So rather than do the calculation manually, I should be able to use the opengl model transormation. I write this code: glMatrixMode (GL_MODELVIEW); GLfloat shadow[] = { -1,0,0,0, 1,0,-1,1, 0,0,-1,0, 0,0,0,-1 }; glLoadMatrixf( shadow ); glBegin( GL_QUADS ); glVertex3f( 0.5,0.2,-0.5); glVertex3f( 0.5,0.2,-1.5); glVertex3f( 0.5,0.5,-1.5); glVertex3f( 0.5,0.5,-0.5); glEnd(); But this produces a blank screen! What am I doing wrong? Is there some debug mode where I can print out the transformed vertices, so I can see where they are ending up? Note: People have suggested that using glMultMatrixf() might make a difference. It doesn't. Replacing glLoadMatrixf( shadow ); with glLoadIdentity(); glMultMatrixf( shadow ); gives the identical result ( of course! )

    Read the article

  • Regulating how much to draw based on how much was drawn last frame.

    - by Mike Howard
    I have a 3D game world on an iPhone (limited graphics speed), and I'm already regulating whether I draw each shape on the screen based on it's size and distance from the camera. Something like... if (how_big_it_looks_from_the_camera > constant) then draw What I want to do now is also take into account how many shapes are being drawn, so that in busier areas of the game world I can draw less than I otherwise would. I tried to do this by dividing how_big_it_looks by the number of shapes that were drawn last frame (well, the square root of this but I'm simplifying - the problem is the same). if (how_big_it_looks / shapes_drawn > constant2) then draw But the check happens at the level of objects which represent many drawn shapes, and if an object containing many shapes is switched on, it increases shapes_drawn lots and switches itself back off the next frame. It flickers on and off. I tried keeping a kind of weighted average of previous values, by each frame doing something like shapes_drawn_recently = 0.9 * shapes_drawn_recently + 0.1 * shapes_just_drawn, but of course it only slows the flickering down because of the nature of the feedback loop. Is there a good way of solving this? My project is in Objective-C, but a general algorithm or pseudo-code is good too. Thanks.

    Read the article

  • Scrolling a WriteableBitmap

    - by Skoder
    I need to simulate my background scrolling but I want to avoid moving my actual image control. Instead, I'd like to use a WriteableBitmap and use a blitting method. What would be the way to simulate an image scrolling upwards? I've tried various things buy I can't seem to get my head around the logic: //X pos, Y pos, width, height Rect src = new Rect(0, scrollSpeed , 480, height); Rect dest = new Rect(0, 700 - scrollSpeed , 480, height); //destination rect, source WriteableBitmap, source Rect, blend mode wb.Blit(destRect, wbSource, srcRect, BlendMode.None); scrollSpeed += 5; if (scrollSpeed > 700) scrollSpeed = 0; If height is 10, the image is quite fuzzy and moreso if the height is 1. If the height is a taller, the image is clearer, but it only seems to do a one to one copy. How can I 'scroll' the image so that it looks like it's moving up in a continuous loop? (The height of the screen is 700).

    Read the article

  • 2D Grid based game - how should I draw grid lines?

    - by Adam K Dean
    I'm playing around with a 2D grid based game idea, and I am using sprites for the grid cells. Let's say there is a 10 x 10 grid and each cell is 48x48, which will have sprites drawn there. That is fine. But in design mode, I'd like to have a grid overlay the screen. I can do this either with sprites (2x600 pixel image etc) or with primitives, but which is best? Should I really be switching between sprites and 3d/2d rendering? Like so: Thanks!

    Read the article

  • how to give action to the CCArray which contain bubbles(sprites)

    - by prakash s
    I am making bubbles shooter game in cocos2d I have taken one array in that i have inserted number of different color bubbles and i showing on my game scene also , but if give some move action to that array ,it moving down but it displaying all the bubbles at one position and automatically destroying , what is the main reason behind this please help me here is my code: -(void)addTarget { CGSize winSize = [[CCDirector sharedDirector] winSize]; //CCSprite *target = [CCSprite spriteWithFile:@"3.png" rect:CGRectMake(0, 0, 256, 256)]; NSMutableArray * movableSprites = [[NSMutableArray alloc] init]; NSArray *images = [NSArray arrayWithObjects:@"1.png", @"2.png", @"3.png", @"4.png",@"5.png",@"1.png",@"5.png", @"3.png", nil]; for(int i = 0; i < images.count; ++i) { NSString *image = [images objectAtIndex:i]; // generate random number based on size of array (array size is larger than 10) CCSprite*target = [CCSprite spriteWithFile:image]; float offsetFraction = ((float)(i+1))/(images.count+1); //target.position = ccp(winSize.width*offsetFraction, winSize.height/2); target.position = ccp(350*offsetFraction, 460); // [[CCActionManager sharedManager ] pauseAllActionsForTarget:target ] ; [self addChild:target]; [movableSprites addObject:target]; //[target runAction:[CCMoveTo actionWithDuration:20.0 position:ccp(0,0)]]; id actionMove = [CCMoveTo actionWithDuration:10 position:ccp(winSize.width/2,winSize. height/2)]; id actionMoveDone = [CCCallFuncN actionWithTarget:self selector:@selector(spriteMoveFinished:)]; [target runAction:[CCSequence actions:actionMove, actionMoveDone, nil]]; } } after the move at certain position i want to display all the bubbles in centre of my window

    Read the article

  • How to monetize and/or protect framework rights?

    - by Arthur Wulf White
    I made a game engine/framerwork for ActionScript 3 that allows very efficient and flexible level design for Platformers, Tower Defense game, RPG's, RTS and racing games. The algorithms I used are new and are not available in any other level editor I've seen. What are the best ways to benefit myself and others with my new framework? It is written for ActionScript 3 so unless I translate it to C# I'm guessing it will be decompiled and used by others. I want to have some lisence, allowing me to share the framework and still benefit from it. Any advice would be appreciated. This issue has been on my mind a lot this year. I am hoping to find a solution that will bring me some relief.

    Read the article

  • Smooth vector based jump

    - by Esa
    I started working on Wolfire's mathematics tutorials. I got the jumping working well using a step by step system, where you press a button and the cube moves to the next point on the jumping curve. Then I tried making the jumping happen during a set time period e.g the jump starts and lands within 1.5 seconds. I tried the same system I used for the step by step implementation, but it happens instantly. After some googling I found that Time.deltatime should be used, but I could not figure how. Below is my current jumping code, which makes the jump happen instantly. while (transform.position.y > 0) { modifiedJumperVelocity -= jumperDrag; transform.position += new Vector3(modifiedJumperVelocity.x, modifiedJumperVelocity.y, 0); } Where modifiedJumperVelocity is starting vector minus the jumper drag. JumperDrag is the value that is substracted from the modifiedJumperVelocity during each step of the jump. Below is an image of the jumping curve:

    Read the article

  • How to manage drawing loop when changing render targets

    - by George Duckett
    I'm managing my game state by having a base GameScreen class with a Draw method. I then have (basically) a stack of GameScreens that I render. I render the bottom one first, as screens above might not completely cover the ones below. I now have a problem where one GameScreen changes render targets while doing its rendering. Anything the previous screens have drawn to the backbuffer is lost (as XNA emulates what happens on the xbox). I don't want to just set the backbuffer to preserve its contents as I want this to work on the xbox as well as PC. How should I manage this problem? A few ideas I've had: Render every GameScreen to its own render target, then render them all to the backbuffer. Create some kind of RenderAction queue where a game screen (and anything else I guess) could queue something to be rendered to the back buffer. They'd render whatever they wanted to any render target as normal, but if they wanted to render to the backbuffer they'd stick that in a queue which would get processed once all rendertarget rendering was done. Abstract away from render targets and backbuffers and have some way of representing the way graphics flows and transforms between render targets and have something manage/work out the correct rendering order (and render targets) given what rendering process needs as input and what it produces as output. I think each of my ideas have pros and cons and there are probably several other ways of approaching this general problem so I'm interested in finding out what solutions are out there.

    Read the article

  • How could you model "scent trails" in a game?

    - by Sebastien Diot
    Say you want to create a 3D game, and have either players, or mobiles, be able to tract other entity by following their scent trails. Is there any known data-structure that matches this use case? If you have only few individuals going about, you can probably do something like a map of 3D coord to entity ID, but real scent works differently, because it fades over time, but slowly. And most of the time, you can only know approximately what went there, and approximately how many things of that type went there. And the approximation becomes worst with time, until it's gone. I imagine it's kind of like starting with an exact number, and slowly loosing the least significant digits, until you loose the most significant digit too. But that doesn't really help me, because entity IDs aren't normally encoded to contain the entity type, in addition to it's individual ID.

    Read the article

  • Black Screen: How to set Projection/View Matrix

    - by Lisa
    I have a Windows Phone 8 C#/XAML with DirectX component project. I'm rendering some particles, but each particle is a rectangle versus a square (as I've set the vertices to be positions equally offset from each other). I used an Identity matrix in the view and projection matrix. I decided to add the windows aspect ratio to prevent the rectangles. But now I get a black screen. None of the particles are rendered now. I don't know what's wrong with my matrices. Can anyone see the problem? These are the default matrices in Microsoft's project example. View Matrix: XMVECTOR eye = XMVectorSet(0.0f, 0.7f, 1.5f, 0.0f); XMVECTOR at = XMVectorSet(0.0f, -0.1f, 0.0f, 0.0f); XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); XMStoreFloat4x4(&m_constantBufferData.view, XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up))); Projection Matrix: void CubeRenderer::CreateWindowSizeDependentResources() { Direct3DBase::CreateWindowSizeDependentResources(); float aspectRatio = m_windowBounds.Width / m_windowBounds.Height; float fovAngleY = 70.0f * XM_PI / 180.0f; if (aspectRatio < 1.0f) { fovAngleY /= aspectRatio; } XMStoreFloat4x4(&m_constantBufferData.projection, XMMatrixTranspose(XMMatrixPerspectiveFovRH(fovAngleY, aspectRatio, 0.01f, 100.0f))); } I've tried modifying them to use cocos2dx's WP8 example. XMMATRIX identityMatrix = XMMatrixIdentity(); float fovy = 60.0f; float aspect = m_windowBounds.Width / m_windowBounds.Height; float zNear = 0.1f; float zFar = 100.0f; float xmin, xmax, ymin, ymax; ymax = zNear * tanf(fovy * XM_PI / 360); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; XMMATRIX tmpMatrix = XMMatrixPerspectiveOffCenterRH(xmin, xmax, ymin, ymax, zNear, zFar); XMMATRIX projectionMatrix = XMMatrixMultiply(tmpMatrix, identityMatrix); // View Matrix float fEyeX = m_windowBounds.Width * 0.5f; float fEyeY = m_windowBounds.Height * 0.5f; float fEyeZ = m_windowBounds.Height / 1.1566f; float fLookAtX = m_windowBounds.Width * 0.5f; float fLookAtY = m_windowBounds.Height * 0.5f; float fLookAtZ = 0.0f; float fUpX = 0.0f; float fUpY = 1.0f; float fUpZ = 0.0f; XMMATRIX tmpMatrix2 = XMMatrixLookAtRH(XMVectorSet(fEyeX,fEyeY,fEyeZ,0.f), XMVectorSet(fLookAtX,fLookAtY,fLookAtZ,0.f), XMVectorSet(fUpX,fUpY,fUpZ,0.f)); XMMATRIX viewMatrix = XMMatrixMultiply(tmpMatrix2, identityMatrix); XMStoreFloat4x4(&m_constantBufferData.view, viewMatrix); Vertex Shader cbuffer ModelViewProjectionConstantBuffer : register(b0) { //matrix model; matrix view; matrix projection; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; PixelInputType main(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; //===================================== // TODO: ADDED for testing input.position.z = 0.0f; //===================================== // Calculate the position of the vertex against the world, view, and projection matrices. //output.position = mul(input.position, model); output.position = mul(input.position, view); output.position = mul(output.position, projection); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Store the particle color for the pixel shader. output.color = input.color; return output; } Before I render the shader, I set the view/projection matrices into the constant buffer void ParticleRenderer::SetShaderParameters() { ViewProjectionConstantBuffer* dataPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; DX::ThrowIfFailed(m_d3dContext->Map(m_constantBuffer.Get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource)); dataPtr = (ViewProjectionConstantBuffer*)mappedResource.pData; dataPtr->view = m_constantBufferData.view; dataPtr->projection = m_constantBufferData.projection; m_d3dContext->Unmap(m_constantBuffer.Get(), 0); // Now set the constant buffer in the vertex shader with the updated values. m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf() ); // Set shader texture resource in the pixel shader. m_d3dContext->PSSetShaderResources(0, 1, &m_textureView); } Nothing, black screen... I tried so many different look at, eye, and up vectors. I tried transposing the matrices. I've set the particle center position to always be (0, 0, 0), I tried different positions too, just to make sure they're not being rendered offscreen.

    Read the article

  • Detecting extremely fast joystick button presses?

    - by DBRalir
    Is it usually possible for the player to press and release a button within a single frame, so that the game engine doesn't have time to detect it? How do programmers usually handle this situation? Is it even necessary to handle it? Specifically, I am asking about GLFW's joystick input capabilities. I am currently using GLFW to make a game, and I've noticed that keyboard and mouse have callback functions, while joysticks do not. Also, it does not appear to be possible to enable "sticky keys" for a joystick. (I have only recently started using GLFW, so please correct me if I am wrong, as having either of those would solve the problem.)

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Logging library for (c++) games

    - by Klaim
    I know a lot of logging libraries but didn't test a lot of them. (GoogleLog, Pantheios, the coming boost::log library...) In games, especially in remote multiplayer and multithreaded games, logging is vital to debugging, even if you remove all logs in the end. Let's say I'm making a PC game (not console) that needs logs (multiplayer and multithreaded and/or multiprocess) and I have good reasons for looking for a library for logging (like, I don't have time or I'm not confident in my ability to write one correctly for my case). Assuming that I need : performance ease of use (allow streaming or formating or something like that) reliable (don't leak or crash!) cross-platform (at least Windows, MacOSX, Linux/Ubuntu) Wich logging library would you recommand? Currently, I think that boost::log is the most flexible one (you can even log to remotely!), but have not good performance. Pantheios is often cited but I don't have comparison points on performance and usage. I've used my own lib for a long time but I know it don't manage multithreading so it's a big problem, even if it's fast enough. Google Log seems interesting, I just need to test it but if you already have compared those libs and more, your advice might be of good use. Games are often performance demanding while complex to debug so it would be good to know logging libraries that, in our specific case, have clear advantages.

    Read the article

  • LIBGDX "parsing error emitter" with 2 or more emitters [on hold]

    - by flow969
    I have a problem with the use of particle effect of LIBGDX with 2 or more emitters. After using ParticleEditor to create my .p file, I use it in my code BUT...when I use only 1 emitter it's fine but with more than 1, not fine ! :( Here is my error code in java console : Exception in thread "LWJGL Application" java.lang.RuntimeException: Error parsing emitter: - Delay - at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:910) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.<init>(ParticleEmitter.java:95) at com.badlogic.gdx.graphics.g2d.ParticleEffect.loadEmitters(ParticleEffect.java:154) at com.badlogic.gdx.graphics.g2d.ParticleEffect.load(ParticleEffect.java:138) at com.fasgame.fishtrip.android.screens.GameScreen.show(GameScreen.java:313) at com.badlogic.gdx.Game.setScreen(Game.java:61) at com.fasgame.fishtrip.android.screens.MainMenuScreen.render(MainMenuScreen.java:71) at com.badlogic.gdx.Game.render(Game.java:46) at com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop(LwjglApplication.java:206) at com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run(LwjglApplication.java:114) Caused by: java.lang.NumberFormatException: For input string: "- Count -" at sun.misc.FloatingDecimal.readJavaFormatString(Unknown Source) at sun.misc.FloatingDecimal.parseFloat(Unknown Source) at java.lang.Float.parseFloat(Unknown Source) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.readFloat(ParticleEmitter.java:929) at com.badlogic.gdx.graphics.g2d.ParticleEmitter$RangedNumericValue.load(ParticleEmitter.java:1062) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:866) ... 9 more And here is my particle effect .p file : Blanc - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.50980395 colors1: 0.7647059 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.36301368 timeline2: 0.6164383 timeline3: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png Bleu - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7254902 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 6 scaling0: 0.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 scaling4: 1.0 scaling5: 0.0 timelineCount: 6 timeline0: 0.0 timeline1: 0.047945205 timeline2: 0.34246576 timeline3: 0.6712329 timeline4: 0.94520545 timeline5: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png BleuFonce - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7294118 colors2: 1.0 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 0.0 scaling2: 0.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.001 timeline2: 0.5753425 timeline3: 0.79452056 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png For the "- Image Path -" missing it's normal if I let them in it doesn't work even with only 1 emitter PS : I've already updated my lib to the last release

    Read the article

  • How can i get latency when using Game Center?

    - by Freddy
    I'm pretty new to network programming. Basically I'm using game center for making a relatively simple iPhone game using Game-center p2p. However i'm now working on a algorithm to improve the multiplayer performance. But, I need to know how long it took for a package to travel from one device to the another device (latency) for the algorithm to work good. As for now, I have solved the problem by sending a double with time interval since 1970 in the package and then I compare it with the time at the other device. However I have heard that the NSDate methods is connected to the internet, which also will cause latency so the time interval would not be perfectly correct. What is the ideal way to check for how long it take for a package to be sent?

    Read the article

  • Zelda-style Top-down RPG. Storing data for each tile type

    - by Delerat
    I'm creating a Zelda-style RPG using Tiled, C#, and MonoGame. When my code parses the .tmx file, it will get a number to associate with each tile type based off of their position in the tile sheet. If I ever need to change my sprite sheet, this number will change for many of the tiles. How can I guarantee that when I parse my .tmx file, I will be able to know exactly what tile type I'm getting so that I can associate the proper data with it(transparency, animated, collision, etc.)?

    Read the article

  • 2d Ice movement

    - by Jeremy Clarkson
    I am building an top-down 2d RPG like zelda. I have been trying to implement ice sliding. I have a tile with the slide property. I thought it would be easy to get working. I figured that I would read the slide property, and move the character forward until the slide property no longer exists. So I tried a loop but all it did was stop at the first tile in an infinite loop. I then took the loop out and tried taking direct control of the character to move him along the slide path but I couldn't get it to move. Is there an easy way to do an ice sliding tile based movement in libgdx. I looked for a tutorial but none exist.

    Read the article

  • Particle and Physics problem.

    - by Quincy
    This was originally a forum post so I hope you guys don't mind it being 2 questions in one. I am making a game and I got some basic physics implemented. I have 2 problems, 1 with particles being drawn in the wrong place and one with going through walls while jumping in corners. Skip over to about 15 sec video showing the 2 problems : http://youtube.com/watch?v=Tm9nfWsWfiM So the problem with the particles seems to be coming from the removal, as soon as I remove that piece of code it instantly works, but there shouldn't be a problem since they shouldn't even draw when their energy gets to 0 (and then they get removed) So my first question is, how are these particles getting warped all over the screen ? Relevant code : Particle class : class Particle { //Physics public Vector2 position = new Vector2(0,0); public float direction = 180; public float speed = 100; public float energy = 1; protected float startEnergy = 1; //Visual public Sprite sprite; public float rotation = 0; public float scale = 1; public byte alpha = 255; public BlendMode blendMode { get { return sprite.BlendMode; } set { sprite.BlendMode = value; } } public Particle() { } public virtual void Think(float frameTime) { if (energy - frameTime < 0) energy = 0; else energy -= frameTime; position += new Vector2((float)Math.Cos(MathHelper.DegToRad(direction)), (float)Math.Sin(MathHelper.DegToRad(direction))) * speed * frameTime; alpha = (byte)(255 * energy / startEnergy); sprite.Rotation = rotation; sprite.Position = position; sprite.Color = new Color(sprite.Color.R, sprite.Color.G, sprite.Color.B, alpha); } public virtual void Draw(float frameTime) { if (energy > 0) { World.camera.DrawSprite(sprite); } } // Basic particle implementation class BasicSprite : Particle { public BasicSprite(Sprite _sprite) { sprite = _sprite; } } Emitter : class Emitter { protected static Random rand = new Random(); protected List<Particle> particles = new List<Particle>(); public BaseEntity target = null; public Vector2 position = new Vector2(0, 0); public bool Active = true; public float timeAlive = 0; public int particleCount = 0; public int ParticlesPerSeccond { get { return (int)(1 / particleSpawnTime); } set { particleSpawnTime = 1 / (float)value; } } public float dieTime = float.MaxValue; float particleSpawnTime = 0.05f; float spawnTime = 0; public Emitter() { } public virtual void Think(float frametime) { spawnTime += frametime; if (dieTime != float.MaxValue) { timeAlive += frametime; if (timeAlive >= dieTime) Active = false; } if (Active) { if (target != null) position = target.Position; while (spawnTime > particleSpawnTime) { spawnTime -= particleSpawnTime; AddParticle(); particleCount++; } } for (int i = 0; i < particles.Count; i++) { particles[i].Think(frametime); if (particles[i].energy <= 0) { particles.Remove(particles[i]); // As soon as this is removed, it works particleCount--; } } } public virtual void AddParticle() { } public virtual void Draw(float frametime) { foreach (Particle particle in particles) { particle.Draw(frametime); } } } class BloodEmitter : Emitter { Image image; public BloodEmitter() { image = new Image(@"Content/Particles/TinyCircle.png"); image.CreateMaskFromColor(new Color(255, 0, 255, 255)); this.dieTime = 0.5f; this.ParticlesPerSeccond = 100; } public override void AddParticle() { Sprite sprite = new Sprite(image); sprite.Color = new Color((byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255)); BasicSprite particle = new BasicSprite(sprite); particle.direction = (float)rand.NextDouble() * 360; particle.position = position; particle.blendMode = BlendMode.Alpha; particles.Add(particle); } } The seccond problem is the physics problem, for some reason I can get through the right bottom corner while jumping. I think this is coming from me switching animations but I thought I made it compensate for that. Relevant code : PhysicsEntity : class PhysicsEntity : BaseEntity { // Horizontal movement constants protected const float maxHorizontalSpeed = 1000; protected const float horizontalAcceleration = 15; protected const float horizontalDragAir = 0.95f; protected const float horizontalDragGround = 0.95f; // Vertical movement constants protected const float maxVerticalSpeed = 1000; protected const float verticalAcceleration = 20; // Everything needed for movement and correct animations protected float movement = 0; protected bool onGround = false; protected Vector2 Velocity = new Vector2(0, 0); protected float maxSpeed = 0; float lastThink = 0; float thinkTime = 1f/60f; public PhysicsEntity(Vector2 position, Sprite sprite) : base(position, sprite) { } public override void Draw(float frameTime) { base.Draw(frameTime); } public override void Think(float frameTime) { CalculateMovement(frameTime); base.Think(frameTime); } protected void CalculateMovement(float frameTime) { lastThink += frameTime; while (lastThink > thinkTime) { onGround = false; Velocity.X = MathHelper.Clamp(Velocity.X + horizontalAcceleration * movement, -maxHorizontalSpeed, maxHorizontalSpeed); if (onGround) Velocity.X *= horizontalDragGround; else Velocity.X *= horizontalDragAir; if (maxSpeed < Velocity.X) maxSpeed = Velocity.X; Velocity.Y = MathHelper.Clamp(Velocity.Y + verticalAcceleration, -maxVerticalSpeed, maxVerticalSpeed); lastThink -= thinkTime; DoCollisions(thinkTime); DoAnimations(thinkTime); } } public virtual void DoAnimations(float frameTime) { } public void DoCollisions(float frameTime) { Position.Y += Velocity.Y * frameTime; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } Position.X += Velocity.X * frameTime; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } public void DoCollisions(Vector2 difference) { CollisionRectangle.Y = Position.Y - difference.Y; CollisionRectangle.Height += difference.Y; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } CollisionRectangle.X = Position.X - difference.X; CollisionRectangle.Width += difference.X; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } Vector2 GetTileCollision() { int topLeftTileX = (int)(CollisionRectangle.TopLeft.X / World.tileEngine.TileWidth); int topLeftTileY = (int)(CollisionRectangle.TopLeft.Y / World.tileEngine.TileHeight); int BottomRightTileX = (int)(CollisionRectangle.DownRight.X / World.tileEngine.TileWidth); int BottomRightTileY = (int)(CollisionRectangle.DownRight.Y / World.tileEngine.TileHeight); if (CollisionRectangle.DownRight.Y % World.tileEngine.TileHeight == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileY -= 1; if (CollisionRectangle.DownRight.X % World.tileEngine.TileWidth == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileX -= 1; for (int i = topLeftTileX; i <= BottomRightTileX; i++) { for (int j = topLeftTileY; j <= BottomRightTileY; j++) { if (World.tileEngine.TileIsSolid(i, j)) { return new Vector2(i, j); } } } return new Vector2(-1, -1); } } Player : enum State { Standing, Running, Jumping, Falling, Sliding, WallSlide } class Player : PhysicsEntity { private State state { get { return currentState; } set { if (currentState != value) { currentState = value; animationChanged = true; } } } private State currentState = State.Standing; private BasicEmitter basicEmitter = new BasicEmitter(); public bool flipped; public bool animationChanged = false; protected const float jumpPower = 600; AnimationManager animationManager; Rectangle DrawRectangle; public override Rectangle CollisionRectangle { get { return new Rectangle( Position.X - DrawRectangle.Width / 2f, Position.Y - DrawRectangle.Height / 2f, DrawRectangle.Width, DrawRectangle.Height ); } } public Player(Vector2 position, Sprite sprite) : base(position, sprite) { // Only posted the relevant bit DrawRectangle = animationManager.currentAnimation.drawingRectangle; } public override void Draw(float frameTime) { World.camera.DrawSprite( Sprite, Position + new Vector2(DrawRectangle.X, DrawRectangle.Y), animationManager.currentAnimation.drawingRectangle ); } public override void Think(float frameTime) { //I only posted the relevant stuff if (animationChanged) { // if the animation has changed make sure we compensate for the change in with and height animationChanged = false; DoCollisions(animationManager.getSizeDifference()); } DoCustomMovement(); base.Think(frameTime); if (!onGround && Velocity.Y > 0) { state = State.Falling; } } void DoCustomMovement() { if (onGround) { if (World.renderWindow.Input.IsKeyDown(KeyCode.W)) { Velocity.Y = -jumpPower; state = State.Jumping; } } } public override void DoAnimations(float frameTime) { string stateName = Enum.GetName(typeof(State), state); if (!animationManager.currentAnimationIs(stateName)) { animationManager.PlayAnimation(stateName); } animationManager.Think(frameTime); DrawRectangle = animationManager.currentAnimation.drawingRectangle; Sprite.Center = new Vector2( DrawRectangle.X + DrawRectangle.Width / 2, DrawRectangle.Y + DrawRectangle.Height / 2 ); Sprite.FlipX(flipped); } So why am I warping through walls ? I have given this some thought but I just can't seem to find out why this is happening. Full source if needed : source : http://www.mediafire.com/?rc7ddo09gnr68zd (download link)

    Read the article

  • HTML5 Canvas Game Timer

    - by zghyh
    How to create good timer for HTML5 Canvas games? I am using RequestAnimationFrame( http://paulirish.com/2011/requestanimationframe-for-smart-animating/ ) But object's move too fast. Something like my code is: http://pastebin.com/bSHCTMmq But if I press UP_ARROW player don't move one pixel, but move 5, 8, or 10 or more or less pixels. How to do if I press UP_ARROW player move 1 pixel? Thanks for help.

    Read the article

  • 3D Model not translating correctly (visually)

    - by ChocoMan
    In my first image, my model displays correctly: But when I move the model's position along the Z-axis (forward) I get this, yet the Y-axis doesnt change. An if I keep going, the model disappears into the ground: Any suggestions as to how I can get the model to translate properly visually? Here is how Im calling the model and the terrain in draw(): cameraPosition = new Vector3(camX, camY, camZ); // Copy any parent transforms. Matrix[] transforms = new Matrix[mShockwave.Bones.Count]; mShockwave.CopyAbsoluteBoneTransformsTo(transforms); Matrix[] ttransforms = new Matrix[terrain.Bones.Count]; terrain.CopyAbsoluteBoneTransformsTo(ttransforms); // Draw the model. A model can have multiple meshes, so loop. foreach (ModelMesh mesh in mShockwave.Meshes) { // This is where the mesh orientation is set, as well // as our camera and projection. foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = transforms[mesh.ParentBone.Index] * Matrix.CreateRotationY(modelRotation) * Matrix.CreateTranslation(modelPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, modelPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); mesh.Draw(); } //Terrain test foreach (ModelMesh meshT in terrain.Meshes) { foreach (BasicEffect effect in meshT.Effects) { effect.EnableDefaultLighting(); effect.PreferPerPixelLighting = true; effect.World = ttransforms[meshT.ParentBone.Index] * Matrix.CreateRotationY(0) * Matrix.CreateTranslation(terrainPosition); // Looking at the model (picture shouldnt change other than rotation) effect.View = Matrix.CreateLookAt(cameraPosition, terrainPosition, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView( MathHelper.ToRadians(45.0f), aspectRatio, 1.0f, 10000.0f); effect.TextureEnabled = true; } // Draw the mesh, using the effects set above. prepare3d(); meshT.Draw(); DrawText(); } base.Draw(gameTime); } Im suspecting that there may be something wrong with how I'm handling my camera. The model rotates fine on its Y-axis.

    Read the article

  • PokeMMO. How they do it?

    - by RufioLJ
    Well PokeMMO is a JAVA game project which basically is the original FireRed title for the GBA made online. They know this type of projects don't last long because of the copyrighted material used, but they somehow made their client extract resources from ROMS. So they don't offer any copyrighted material on their download. I wonder what technique they could be using for this? All I know is that they use LWJGL.

    Read the article

  • Game Code Design for Rendering

    - by kuroutadori
    I first created a game on the iPhone and I'm now porting it to Android. I wrote most of the code in C++, but when it came to porting it wasn't so easy. The Android way is to have two threads, one for rendering and one for updating. This due to some devices blocking when updating the hardware. My problem is that I am coming from the iPhone. When I transition, say from the Menu to the Game, I would stop the Animation (Rendering) and load up the next Manager (the Menu has a Manager and so has the Game). I could implement the same thing on Android, but I have noticed on game ports like Quake, don't do this - as far as I can tell. I have learnt that I cannot just dynamically add another Renderer class the the tree because I will probably get a dequeuing buffer error - which I believe to be a problem with the OpenGL ES side. So how is it done?

    Read the article

  • 3D zooming technique to maintain the relative position of an object on screen

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the view of the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed. I projected the 3D pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly? If some of you want to explain the math in detail, be my guest, I can understand these things well.

    Read the article

  • isometric background that covers the viewport [on hold]

    - by Richard
    The background image should cover the viewport. The technique I use now is a loop with an innerloop that draws diamond shaped images on a canvas element, but it looks like a rotated square. This is a nice example: ,that covers the whole viewport. I have heard something about clickthrough maps, but what more ways are there that are most efficient with mobile devices and javascript? Any advice in grid design out there?.

    Read the article

  • Manipulating Perlin Noise

    - by Numeri
    I've been learning about Procedurally Generated Content lately (in particular, Perlin noise). Perlin noise works great for making things like landscapes, height maps, and stuff like that. But now I am trying to generate structures more like mountain ranges (in 2D, as 3D would be way over my head right now) or underground veins of ores. I can't manage to manipulate Perlin Noise to do this. Making a cut off point (i.e. using only the tops of the 'mountains' of a heightmap) wouldn't work, because I would get lumps of mountains/veins. Any suggestions? Thanks, Numeri

    Read the article

< Previous Page | 525 526 527 528 529 530 531 532 533 534 535 536  | Next Page >