Search Results

Search found 31839 results on 1274 pages for 'plugin development'.

Page 532/1274 | < Previous Page | 528 529 530 531 532 533 534 535 536 537 538 539  | Next Page >

  • RPG level-experience formula [closed]

    - by Comy
    I want to make an RPG game and I would like an advice on how should I create my level-experience formula. I saw this formula http://rsdo.net/rsdonline/guides/Experience%20formula.html#PHP and I created a formula myself and I want to ask you which would be better. RuneScape rates My rates Level 2 - 83 xp Level 2 - 35 Level 3 - 174 xp Level 3 - 84 Level 4 - 276 xp Level 4 - 150 Level 5 - 388 xp Level 5 - 238 Level 10 - 1,154 xp Level 10 - 1,087 Level 100 - 14,391,160 xp Level 100 - 311,017 As you can see at level 100 RuneScape's xp is very big and my level 100 is equal with RuneScape's Level 61. Is it better if the xp grows very fast at one point or depends on how I make my game?

    Read the article

  • Access Violation when trying to bind Vertex Object Array

    - by Paul
    I've just started digging into OpenGL and I've run into a problem trying to set a VOA. It's giving me a run-time error of : An unhandled exception of type 'System.AccessViolationException' At // Create and bind a VAO GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); I have searched the internet high and low for a solution and I haven't found one. The rest of my function looks like this: int main(array<System::String ^> ^args) { // Initialise GLFW if( !glfwInit() ) { fprintf( stderr, "Failed to initialize GLFW\n" ); return -1; } glfwOpenWindowHint(GLFW_FSAA_SAMPLES, 0); // 4x antialiasing glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 3); // We want OpenGL 3.3 glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 3); glfwOpenWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); //We don't want the old OpenGL // Open a window and create its OpenGL context if( !glfwOpenWindow( 800, 600, 0,0,0,0, 32,0, GLFW_WINDOW ) ) { fprintf( stderr, "Failed to open GLFW window\n" ); glfwTerminate(); return -1; } // Initialize GLEW if (glewInit() != GLEW_OK) { fprintf(stderr, "Failed to initialize GLEW\n"); return -1; } glfwSetWindowTitle( "Game Engine" ); // Create and bind a VAO GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); glfwEnable( GLFW_STICKY_KEYS );

    Read the article

  • How to teach game programming at school ?

    - by jokoon
    I'm in this private school right now, and apart from my progressive stoppage of anti-depressants, I'm having an hard time focusing on what the school wants me to do. The school has a professional contract for a game we have to do with Unity. I don't really learn anything new while using unity, so I don't like using it. We recently learned how to use DirectX, and we have to do some sort of Gradius-precursor clone (Parsec) with directX, in 3D: this annoys me, and I'm currently learning to use Ogre3D by myself by making some game. The teacher is an engineer, and all of us won't be engineers. How would you teach game programming ?

    Read the article

  • Efficiently representing a dynamic transform hierarchy

    - by Mattia
    I'm looking for a way to represent a dynamic transform hierarchy (i.e. one where nodes can be inserted and removed arbitrarily) that's a bit more efficient than using a standard tree of pointers . I saw the answers to this question ( Efficient structure for representing a transform hierarchy. ), but as far as I can determine the tree-as-array approach only works for static hierarchies or dynamic ones where nodes have a fixed number of children (both deal-breakers for me). I'm probably wrong about that but could anyone point out how? If I'm not wrong are there other alternatives that work for dynamic hierarchies?

    Read the article

  • Mandelbrot set not displaying properly

    - by brainydexter
    I am trying to render mandelbrot set using glsl. I'm not sure why its not rendering the correct shape. Does the mandelbrot calculation require values to be within a range for the (x,y) [ or (real, imag) ] ? Here is a screenshot: I render a quad as follows: float w2 = 6; float h2 = 5; glBegin(GL_QUADS); glVertex3f(-w2, h2, 0.0); glVertex3f(-w2, -h2, 0.0); glVertex3f(w2, -h2, 0.0); glVertex3f(w2, h2, 0.0); glEnd(); My vertex shader: varying vec3 Position; void main(void) { Position = gl_Vertex.xyz; gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } My fragment shader (where all the meat is): uniform float MAXITERATIONS; varying vec3 Position; void main (void) { float zoom = 1.0; float centerX = 0.0; float centerY = 0.0; float real = Position.x * zoom + centerX; float imag = Position.y * zoom + centerY; float r2 = 0.0; float iter; for(iter = 0.0; iter < MAXITERATIONS && r2 < 4.0; ++iter) { float tempreal = real; real = (tempreal * tempreal) + (imag * imag); imag = 2.0 * real * imag; r2 = (real * real) + (imag * imag); } vec3 color; if(r2 < 4.0) color = vec3(1.0); else color = vec3( iter / MAXITERATIONS ); gl_FragColor = vec4(color, 1.0); }

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • Can anyone recommend an AI sandbox?

    - by user19433
    I'm passionate person, who has been around AI from a long time [1] but never going in deep enough. Now it's time! I've been really looking for some way to concentrate on AI coding but couldn't succeeded to find an AI environment I can focus on. I just want to use an AI sandbox environment which would let me have tools like: visibility information character controller able to easily define a level, with obstacles of course physics collider management triggers management don't need to be a shiny, eye candy graphical render : this is about pathfinding, tactical reasoning, etc.. I have tried : Unreal Dev Kit : while the new release announce is about C++ coding, this is about external tools and will be released in 2013 Cry Engine : really interesting as AI is presents here but coding with it appears to be an hell: did I got it wrong ? Half Life source, C4, Torque, Dx Studio : either quite old, not very useful or costly these imply to dig in documentation (when provided) to code everything, graphics included. Unity 3D : the most promising platform. While you also need to create your own environment, there are lot of examples. The disadvantage is, in addition to spend time to have this env. working, is the languages choice : C#, Javascript or Boo. C# is not that hard, but this implies you'll allways have to convert papers (I love those from Lars Linden) books codes, or anything you can have in Aigamedev are most often in C++. This is extra work. I've look at "Simple Path", the very good Arong Greenberg work but no source provided and AngryAnt work. AI Sandbox : this seems to be exactly what as AI coder I want to use. I saw some preview but from 2009 we still don't know what it will be about precisely, will it be opensource or free (I strongly doubt), will I be able to buy it? will it really provide me tools I need to focus on AI ? That being said, what is the best environment to be able to focus on AI coding only, is it even possible?

    Read the article

  • Toon shader with Texture. Can this be optimized?

    - by Alex
    I am quite new to OpenGL, I have managed after long trial and error to integrate Nehe's Cel-Shading rendering with my Model loaders, and have them drawn using the Toon shade and outline AND their original texture at the same time. The result is actually a very nice Cel Shading effect of the model texture, but it is havling the speed of the program, it's quite very slow even with just 3 models on screen... Since the result was kind of hacked together, I am thinking that maybe I am performing some extra steps or extra rendering tasks that maybe are not needed, and are slowing down the game? Something unnecessary that maybe you guys could spot? Both MD2 and 3DS loader have an InitToon() function called upon creation to load the shader initToon(){ int i; // Looping Variable ( NEW ) char Line[255]; // Storage For 255 Characters ( NEW ) float shaderData[32][3]; // Storate For The 96 Shader Values ( NEW ) FILE *In = fopen ("Shader.txt", "r"); // Open The Shader File ( NEW ) if (In) // Check To See If The File Opened ( NEW ) { for (i = 0; i < 32; i++) // Loop Though The 32 Greyscale Values ( NEW ) { if (feof (In)) // Check For The End Of The File ( NEW ) break; fgets (Line, 255, In); // Get The Current Line ( NEW ) shaderData[i][0] = shaderData[i][1] = shaderData[i][2] = float(atof (Line)); // Copy Over The Value ( NEW ) } fclose (In); // Close The File ( NEW ) } else return false; // It Went Horribly Horribly Wrong ( NEW ) glGenTextures (1, &shaderTexture[0]); // Get A Free Texture ID ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind This Texture. From Now On It Will Be 1D ( NEW ) // For Crying Out Loud Don't Let OpenGL Use Bi/Trilinear Filtering! ( NEW ) glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage1D (GL_TEXTURE_1D, 0, GL_RGB, 32, 0, GL_RGB , GL_FLOAT, shaderData); // Upload ( NEW ) } This is the drawing for the animated MD2 model: void MD2Model::drawToon() { float outlineWidth = 3.0f; // Width Of The Lines ( NEW ) float outlineColor[3] = { 0.0f, 0.0f, 0.0f }; // Color Of The Lines ( NEW ) // ORIGINAL PART OF THE FUNCTION //Figure out the two frames between which we are interpolating int frameIndex1 = (int)(time * (endFrame - startFrame + 1)) + startFrame; if (frameIndex1 > endFrame) { frameIndex1 = startFrame; } int frameIndex2; if (frameIndex1 < endFrame) { frameIndex2 = frameIndex1 + 1; } else { frameIndex2 = startFrame; } MD2Frame* frame1 = frames + frameIndex1; MD2Frame* frame2 = frames + frameIndex2; //Figure out the fraction that we are between the two frames float frac = (time - (float)(frameIndex1 - startFrame) / (float)(endFrame - startFrame + 1)) * (endFrame - startFrame + 1); // I ADDED THESE FROM NEHE'S TUTORIAL FOR FIRST PASS (TOON SHADE) glHint (GL_LINE_SMOOTH_HINT, GL_NICEST); // Use The Good Calculations ( NEW ) glEnable (GL_LINE_SMOOTH); // Cel-Shading Code // glEnable (GL_TEXTURE_1D); // Enable 1D Texturing ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind Our Texture ( NEW ) glColor3f (1.0f, 1.0f, 1.0f); // Set The Color Of The Model ( NEW ) // ORIGINAL DRAWING CODE //Draw the model as an interpolation between the two frames glBegin(GL_TRIANGLES); for(int i = 0; i < numTriangles; i++) { MD2Triangle* triangle = triangles + i; for(int j = 0; j < 3; j++) { MD2Vertex* v1 = frame1->vertices + triangle->vertices[j]; MD2Vertex* v2 = frame2->vertices + triangle->vertices[j]; Vec3f pos = v1->pos * (1 - frac) + v2->pos * frac; Vec3f normal = v1->normal * (1 - frac) + v2->normal * frac; if (normal[0] == 0 && normal[1] == 0 && normal[2] == 0) { normal = Vec3f(0, 0, 1); } glNormal3f(normal[0], normal[1], normal[2]); MD2TexCoord* texCoord = texCoords + triangle->texCoords[j]; glTexCoord2f(texCoord->texCoordX, texCoord->texCoordY); glVertex3f(pos[0], pos[1], pos[2]); } } glEnd(); // ADDED THESE FROM NEHE'S FOR SECOND PASS (OUTLINE) glDisable (GL_TEXTURE_1D); // Disable 1D Textures ( NEW ) glEnable (GL_BLEND); // Enable Blending ( NEW ) glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); // Set The Blend Mode ( NEW ) glPolygonMode (GL_BACK, GL_LINE); // Draw Backfacing Polygons As Wireframes ( NEW ) glLineWidth (outlineWidth); // Set The Line Width ( NEW ) glCullFace (GL_FRONT); // Don't Draw Any Front-Facing Polygons ( NEW ) glDepthFunc (GL_LEQUAL); // Change The Depth Mode ( NEW ) glColor3fv (&outlineColor[0]); // Set The Outline Color ( NEW ) // HERE I AM PARSING THE VERTICES AGAIN (NOT IN THE ORIGINAL FUNCTION) FOR THE OUTLINE AS PER NEHE'S TUT glBegin (GL_TRIANGLES); // Tell OpenGL What We Want To Draw for(int i = 0; i < numTriangles; i++) { MD2Triangle* triangle = triangles + i; for(int j = 0; j < 3; j++) { MD2Vertex* v1 = frame1->vertices + triangle->vertices[j]; MD2Vertex* v2 = frame2->vertices + triangle->vertices[j]; Vec3f pos = v1->pos * (1 - frac) + v2->pos * frac; Vec3f normal = v1->normal * (1 - frac) + v2->normal * frac; if (normal[0] == 0 && normal[1] == 0 && normal[2] == 0) { normal = Vec3f(0, 0, 1); } glNormal3f(normal[0], normal[1], normal[2]); MD2TexCoord* texCoord = texCoords + triangle->texCoords[j]; glTexCoord2f(texCoord->texCoordX, texCoord->texCoordY); glVertex3f(pos[0], pos[1], pos[2]); } } glEnd (); // Tell OpenGL We've Finished glDepthFunc (GL_LESS); // Reset The Depth-Testing Mode ( NEW ) glCullFace (GL_BACK); // Reset The Face To Be Culled ( NEW ) glPolygonMode (GL_BACK, GL_FILL); // Reset Back-Facing Polygon Drawing Mode ( NEW ) glDisable (GL_BLEND); } Whereas this is the drawToon function in the 3DS loader void Model_3DS::drawToon() { float outlineWidth = 3.0f; // Width Of The Lines ( NEW ) float outlineColor[3] = { 0.0f, 0.0f, 0.0f }; // Color Of The Lines ( NEW ) //ORIGINAL CODE if (visible) { glPushMatrix(); // Move the model glTranslatef(pos.x, pos.y, pos.z); // Rotate the model glRotatef(rot.x, 1.0f, 0.0f, 0.0f); glRotatef(rot.y, 0.0f, 1.0f, 0.0f); glRotatef(rot.z, 0.0f, 0.0f, 1.0f); glScalef(scale, scale, scale); // Loop through the objects for (int i = 0; i < numObjects; i++) { // Enable texture coordiantes, normals, and vertices arrays if (Objects[i].textured) glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (lit) glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); // Point them to the objects arrays if (Objects[i].textured) glTexCoordPointer(2, GL_FLOAT, 0, Objects[i].TexCoords); if (lit) glNormalPointer(GL_FLOAT, 0, Objects[i].Normals); glVertexPointer(3, GL_FLOAT, 0, Objects[i].Vertexes); // Loop through the faces as sorted by material and draw them for (int j = 0; j < Objects[i].numMatFaces; j ++) { // Use the material's texture Materials[Objects[i].MatFaces[j].MatIndex].tex.Use(); // AFTER THE TEXTURE IS APPLIED I INSERT THE TOON FUNCTIONS HERE (FIRST PASS) glHint (GL_LINE_SMOOTH_HINT, GL_NICEST); // Use The Good Calculations ( NEW ) glEnable (GL_LINE_SMOOTH); // Cel-Shading Code // glEnable (GL_TEXTURE_1D); // Enable 1D Texturing ( NEW ) glBindTexture (GL_TEXTURE_1D, shaderTexture[0]); // Bind Our Texture ( NEW ) glColor3f (1.0f, 1.0f, 1.0f); // Set The Color Of The Model ( NEW ) glPushMatrix(); // Move the model glTranslatef(Objects[i].pos.x, Objects[i].pos.y, Objects[i].pos.z); // Rotate the model glRotatef(Objects[i].rot.z, 0.0f, 0.0f, 1.0f); glRotatef(Objects[i].rot.y, 0.0f, 1.0f, 0.0f); glRotatef(Objects[i].rot.x, 1.0f, 0.0f, 0.0f); // Draw the faces using an index to the vertex array glDrawElements(GL_TRIANGLES, Objects[i].MatFaces[j].numSubFaces, GL_UNSIGNED_SHORT, Objects[i].MatFaces[j].subFaces); glPopMatrix(); } glDisable (GL_TEXTURE_1D); // Disable 1D Textures ( NEW ) // THIS IS AN ADDED SECOND PASS AT THE VERTICES FOR THE OUTLINE glEnable (GL_BLEND); // Enable Blending ( NEW ) glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); // Set The Blend Mode ( NEW ) glPolygonMode (GL_BACK, GL_LINE); // Draw Backfacing Polygons As Wireframes ( NEW ) glLineWidth (outlineWidth); // Set The Line Width ( NEW ) glCullFace (GL_FRONT); // Don't Draw Any Front-Facing Polygons ( NEW ) glDepthFunc (GL_LEQUAL); // Change The Depth Mode ( NEW ) glColor3fv (&outlineColor[0]); // Set The Outline Color ( NEW ) for (int j = 0; j < Objects[i].numMatFaces; j ++) { glPushMatrix(); // Move the model glTranslatef(Objects[i].pos.x, Objects[i].pos.y, Objects[i].pos.z); // Rotate the model glRotatef(Objects[i].rot.z, 0.0f, 0.0f, 1.0f); glRotatef(Objects[i].rot.y, 0.0f, 1.0f, 0.0f); glRotatef(Objects[i].rot.x, 1.0f, 0.0f, 0.0f); // Draw the faces using an index to the vertex array glDrawElements(GL_TRIANGLES, Objects[i].MatFaces[j].numSubFaces, GL_UNSIGNED_SHORT, Objects[i].MatFaces[j].subFaces); glPopMatrix(); } glDepthFunc (GL_LESS); // Reset The Depth-Testing Mode ( NEW ) glCullFace (GL_BACK); // Reset The Face To Be Culled ( NEW ) glPolygonMode (GL_BACK, GL_FILL); // Reset Back-Facing Polygon Drawing Mode ( NEW ) glDisable (GL_BLEND); glPopMatrix(); } Finally this is the tex.Use() function that loads a BMP texture and somehow gets blended perfectly with the Toon shading void GLTexture::Use() { glEnable(GL_TEXTURE_2D); // Enable texture mapping glBindTexture(GL_TEXTURE_2D, texture[0]); // Bind the texture as the current one }

    Read the article

  • How to update entity states and animations in a component-based game

    - by mivic
    I'm trying to design a component-based entity system for learning purposes (and later use on some games) and I'm having some troubles when it comes to updating entity states. I don't want to have an update() method inside the Component to prevent dependencies between Components. What I currently have in mind is that components hold data and systems update components. So, if I have a simple 2D game with some entities (e.g. player, enemy1, enemy 2) that have Transform, Movement, State, Animation and Rendering components I think I should have: A MovementSystem that moves all the Movement components and updates the State components And a RenderSystem that updates the Animation components (the animation component should have one animation (i.e. a set of frames/textures) for each state and updating it means selecting the animation corresponding to the current state (e.g. jumping, moving_left, etc), and updating the frame index). Then, the RenderSystem updates the Render components with the texture corresponding to the current frame of each entity's Animation and renders everything on screen. I've seen some implementations like Artemis framework, but I don't know how to solve this situation: Let's say that my game has the following entities. Each entity have a set of states and one animation for each state: player: "idle", "moving_right", "jumping" enemy1: "moving_up", "moving_down" enemy2: "moving_left", "moving_right" What are the most accepted approaches in order to update the current state of each entity? The only thing that I can think of is having separate systems for each group of entities and separate State and Animation components so I would have PlayerState, PlayerAnimation, Enemy1State, Enemy1Animation... PlayerMovementSystem, PlayerRenderingSystem... but I think this is a bad solution and breaks the purpose of having a component-based system. As you can see, I'm quite lost here, so I'd very much appreciate any help.

    Read the article

  • How to play many sounds at once in OpenAL

    - by Krom
    Hello, I'm developing an RTS game and I would like to add sounds to it. My choice has landed on OpenAL. I have plenty of units which from time to time make sounds: fSound.Play(sfx_shoot, location). Sounds often repeat, e.g. when squad of archers shoots arrows, but they are not synced with each other. My questions are: What is the common design pattern to play multiple sounds in OpenAL, when some of them are duplicate? What are the hardware limitations on sounds count and tricks to overcome them?

    Read the article

  • Get Specific depth values in Kinect (XNA)

    - by N0xus
    I'm currently trying to make a hand / finger tracking with a kinect in XNA. For this, I need to be able to specify the depth range I want my program to render. I've looked about, and I cannot see how this is done. As far as I can tell, kinect's depth values only work with pre-set ranged found in the depthStream. What I would like to do is make it modular so that I can change the depth range my kinect renders. I know this has been down before but I can't find anything online that can show me how to do this. Could someone please help me out? I have made it possible to render the standard depth view with the kinect, and the method that I have made for converting the depth frame is as follows (I've a feeling its something in here I need to set) private byte[] ConvertDepthFrame(short[] depthFrame, DepthImageStream depthStream, int depthFrame32Length) { int tooNearDepth = depthStream.TooNearDepth; int tooFarDepth = depthStream.TooFarDepth; int unknownDepth = depthStream.UnknownDepth; byte[] depthFrame32 = new byte[depthFrame32Length]; for (int i16 = 0, i32 = 0; i16 < depthFrame.Length && i32 < depthFrame32.Length; i16++, i32 += 4) { int player = depthFrame[i16] & DepthImageFrame.PlayerIndexBitmask; int realDepth = depthFrame[i16] >> DepthImageFrame.PlayerIndexBitmaskWidth; // transform 13-bit depth information into an 8-bit intensity appropriate // for display (we disregard information in most significant bit) byte intensity = (byte)(~(realDepth >> 8)); if (player == 0 && realDepth == 00) { // white depthFrame32[i32 + RedIndex] = 255; depthFrame32[i32 + GreenIndex] = 255; depthFrame32[i32 + BlueIndex] = 255; } // omitted other if statements. Simple changed the color of the pixels if they went out of the pre=set depth values else { // tint the intensity by dividing by per-player values depthFrame32[i32 + RedIndex] = (byte)(intensity >> IntensityShiftByPlayerR[player]); depthFrame32[i32 + GreenIndex] = (byte)(intensity >> IntensityShiftByPlayerG[player]); depthFrame32[i32 + BlueIndex] = (byte)(intensity >> IntensityShiftByPlayerB[player]); } } return depthFrame32; } I have a strong hunch it's something I need to change in the int player and int realDepth values, but i can't be sure.

    Read the article

  • LIBGDX "parsing error emitter" with 2 or more emitters [on hold]

    - by flow969
    I have a problem with the use of particle effect of LIBGDX with 2 or more emitters. After using ParticleEditor to create my .p file, I use it in my code BUT...when I use only 1 emitter it's fine but with more than 1, not fine ! :( Here is my error code in java console : Exception in thread "LWJGL Application" java.lang.RuntimeException: Error parsing emitter: - Delay - at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:910) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.<init>(ParticleEmitter.java:95) at com.badlogic.gdx.graphics.g2d.ParticleEffect.loadEmitters(ParticleEffect.java:154) at com.badlogic.gdx.graphics.g2d.ParticleEffect.load(ParticleEffect.java:138) at com.fasgame.fishtrip.android.screens.GameScreen.show(GameScreen.java:313) at com.badlogic.gdx.Game.setScreen(Game.java:61) at com.fasgame.fishtrip.android.screens.MainMenuScreen.render(MainMenuScreen.java:71) at com.badlogic.gdx.Game.render(Game.java:46) at com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop(LwjglApplication.java:206) at com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run(LwjglApplication.java:114) Caused by: java.lang.NumberFormatException: For input string: "- Count -" at sun.misc.FloatingDecimal.readJavaFormatString(Unknown Source) at sun.misc.FloatingDecimal.parseFloat(Unknown Source) at java.lang.Float.parseFloat(Unknown Source) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.readFloat(ParticleEmitter.java:929) at com.badlogic.gdx.graphics.g2d.ParticleEmitter$RangedNumericValue.load(ParticleEmitter.java:1062) at com.badlogic.gdx.graphics.g2d.ParticleEmitter.load(ParticleEmitter.java:866) ... 9 more And here is my particle effect .p file : Blanc - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.50980395 colors1: 0.7647059 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.36301368 timeline2: 0.6164383 timeline3: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png Bleu - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7254902 colors2: 0.7921569 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 6 scaling0: 0.0 scaling1: 1.0 scaling2: 1.0 scaling3: 1.0 scaling4: 1.0 scaling5: 0.0 timelineCount: 6 timeline0: 0.0 timeline1: 0.047945205 timeline2: 0.34246576 timeline3: 0.6712329 timeline4: 0.94520545 timeline5: 1.0 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png BleuFonce - Delay - active: false - Duration - lowMin: 3000.0 lowMax: 3000.0 - Count - min: 0 max: 200 - Emission - lowMin: 0.0 lowMax: 0.0 highMin: 250.0 highMax: 250.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Life - lowMin: 500.0 lowMax: 500.0 highMin: 500.0 highMax: 500.0 relative: false scalingCount: 3 scaling0: 1.0 scaling1: 0.47058824 scaling2: 0.0 timelineCount: 3 timeline0: 0.0 timeline1: 0.51369864 timeline2: 1.0 - Life Offset - active: false - X Offset - active: false - Y Offset - active: false - Spawn Shape - shape: point - Spawn Width - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Spawn Height - lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Scale - lowMin: 0.0 lowMax: 0.0 highMin: 70.0 highMax: 70.0 relative: true scalingCount: 2 scaling0: 1.0 scaling1: 0.0 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Velocity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 30.0 highMax: 300.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Angle - active: true lowMin: 220.0 lowMax: 320.0 highMin: 220.0 highMax: 320.0 relative: false scalingCount: 2 scaling0: 0.0 scaling1: 0.98039216 timelineCount: 2 timeline0: 0.0 timeline1: 1.0 - Rotation - active: false - Wind - active: false - Gravity - active: true lowMin: 0.0 lowMax: 0.0 highMin: 0.0 highMax: 0.0 relative: false scalingCount: 1 scaling0: 1.0 timelineCount: 1 timeline0: 0.0 - Tint - colorsCount: 3 colors0: 0.0 colors1: 0.7294118 colors2: 1.0 timelineCount: 1 timeline0: 0.0 - Transparency - lowMin: 0.0 lowMax: 0.0 highMin: 1.0 highMax: 1.0 relative: false scalingCount: 4 scaling0: 1.0 scaling1: 0.0 scaling2: 0.0 scaling3: 1.0 timelineCount: 4 timeline0: 0.0 timeline1: 0.001 timeline2: 0.5753425 timeline3: 0.79452056 - Options - attached: false continuous: true aligned: false additive: true behind: false premultipliedAlpha: false pre_particle.png For the "- Image Path -" missing it's normal if I let them in it doesn't work even with only 1 emitter PS : I've already updated my lib to the last release

    Read the article

  • How to effectively gather info about how players play my HTML5 game?

    - by Bane
    I'm finishing another HTML5 game, and this time I'd like to do some spying business on the players... Mostly just basic stuff: when they are playing, for how long, what upgrades they are buying the most and so on. Now, my first idea was just to collect this information during the gameplay, and then have a Javascript function fire when they close the tab/browser, and said function would send it to my server via Socket.io. This, of course, wouldn't work, because anyone who takes a look at the code would realize it and could start sending a tonne of false info which would mess up my statistics. Questions: Is there a way to effectively do this? If yes, what kind of info should I be looking for, aside from stuff I already mentioned?

    Read the article

  • My frustum culling is culling from the wrong point

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] /= length; m_Planes[side][1] /= length; m_Planes[side][2] /= length; m_Planes[side][3] /= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } What am i doing wrong?

    Read the article

  • Hardware instancing for voxel engine

    - by Menno Gouw
    i just did the tutorial on Hardware Instancing from this source: http://www.float4x4.net/index.php/2011/07/hardware-instancing-for-pc-in-xna-4-with-textures/. Somewhere between 900.000 and 1.000.000 draw calls for the cube i get this error "XNA Framework HiDef profile supports a maximum VertexBuffer size of 67108863." while still running smoothly on 900k. That is slightly less then 100x100x100 which are a exactly a million. Now i have seen voxel engines with very "tiny" voxels, you easily get to 1.000.000 cubes in view with rough terrain and a decent far plane. Obviously i can optimize a lot in the geometry buffer method, like rendering only visible faces of a cube or using larger faces covering multiple cubes if the area is flat. But is a vertex buffer of roughly 67mb the max i can work with or can i create multiple?

    Read the article

  • Changing State in PlayerControler from PlayerInput

    - by Jeremy Talus
    In my player input I wanna change the the "State" of my player controller but I have some trouble to do it my player input is declared like that : class ResistancePlayerInput extends PlayerInput within ResistancePlayerController config(ResistancePlayerInput); and in my playerControler I have that : class ResistancePlayerController extends GamePlayerController; var name PreviousState; DefaultProperties { CameraClass = class 'ResistanceCamera' //Telling the player controller to use your custom camera script InputClass = class'ResistanceGame.ResistancePlayerInput' DefaultFOV = 90.f //Telling the player controller what the default field of view (FOV) should be } simulated event PostBeginPlay() { Super.PostBeginPlay(); } auto state Walking { event BeginState(name PreviousStateName) { Pawn.GroundSpeed = 200; `log("Player Walking"); } } state Running extends Walking { event BeginState(name PreviousStateName) { Pawn.GroundSpeed = 350; `log("Player Running"); } } state Sprinting extends Walking { event BeginState(name PreviousStateName) { Pawn.GroundSpeed = 800; `log("Player Sprinting"); } } I have tried to use PCOwner.GotoState(); and ResistancePlayerController(PCOwner).GotoState(); but won't work. I have also tried a simple GotoState, and nothing happen how can I call GotoState for the PC Class from my player input ?

    Read the article

  • Texture errors in CubeMap

    - by shade4159
    I am trying to apply this texture as a cubemap. This is my result: Clearly I am doing something with my texture coordinates, but I cannot for the life of me figure out what. I don't even see a pattern to the texture fragments. They just seem like a jumble of different faces. Can anyone shed some light on this? Vertex shader: #version 400 in vec4 vPosition; in vec3 inTexCoord; smooth out vec3 texCoord; uniform mat4 projMatrix; void main() { texCoord = inTexCoord; gl_Position = projMatrix * vPosition; } My fragment shader: #version 400 smooth in vec3 texCoord; out vec4 fColor; uniform samplerCube textures void main() { fColor = texture(textures,texCoord); } Vertices of cube: point4 worldVerts[8] = { vec4( 15, 15, 15, 1 ), vec4( -15, 15, 15, 1 ), vec4( -15, 15, -15, 1 ), vec4( 15, 15, -15, 1 ), vec4( -15, -15, 15, 1 ), vec4( 15, -15, 15, 1 ), vec4( 15, -15, -15, 1 ), vec4( -15, -15, -15, 1 ) }; Cube rendering: void worldCube(point4* verts, int& Index, point4* points, vec3* texVerts) { quadInv( verts[0], verts[1], verts[2], verts[3], 1, Index, points, texVerts); quadInv( verts[6], verts[3], verts[2], verts[7], 2, Index, points, texVerts); quadInv( verts[4], verts[5], verts[6], verts[7], 3, Index, points, texVerts); quadInv( verts[4], verts[1], verts[0], verts[5], 4, Index, points, texVerts); quadInv( verts[5], verts[0], verts[3], verts[6], 5, Index, points, texVerts); quadInv( verts[4], verts[7], verts[2], verts[1], 6, Index, points, texVerts); } Backface function (since this is the inside of the cube): void quadInv( const point4& a, const point4& b, const point4& c, const point4& d , int& Index, point4* points, vec3* texVerts) { quad( a, d, c, b, Index, points, texVerts, a.to_3(), b.to_3(), c.to_3(), d.to_3()); } And the quad drawing function: void quad( const point4& a, const point4& b, const point4& c, const point4& d, int& Index, point4* points, vec3* texVerts, const vec3& tex_a, const vec3& tex_b, const vec3& tex_c, const vec3& tex_d) { texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_b.normalized(); points[Index] = b; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_a.normalized(); points[Index] = a; Index++; texVerts[Index] = tex_c.normalized(); points[Index] = c; Index++; texVerts[Index] = tex_d.normalized(); points[Index] = d; Index++; } Edit: I forgot to mention, in the image, the camera is pointed directly at the back face of the cube. You can kind of see the diagonals leading out of the corners, if you squint.

    Read the article

  • Easiest turn-base games you can think of?

    - by Edgar Miranda
    I'm planning to get into the process of programming multiplayer turn-base games. I would like to start off by making some of the simplest (yet fun) multiplayer turn-base games out there. What are some that you can provide? For example... Tic-Tac-Toe Rock-Paper-Scissors Checkers Some not so easy games... 4 in a row chess poker In terms of "ease" of implementation I'm mainly looking at logic. For example, Rock-Paper-Scissors has very simple logic, while chess has logic that is more complicated. So far I have the following: Hexagon Heroes of Might and Magic Nine Men's Morris Connect 4 21 (card game) Pen the Pig (The Dot game) Memory Match

    Read the article

  • Black Screen: How to set Projection/View Matrix

    - by Lisa
    I have a Windows Phone 8 C#/XAML with DirectX component project. I'm rendering some particles, but each particle is a rectangle versus a square (as I've set the vertices to be positions equally offset from each other). I used an Identity matrix in the view and projection matrix. I decided to add the windows aspect ratio to prevent the rectangles. But now I get a black screen. None of the particles are rendered now. I don't know what's wrong with my matrices. Can anyone see the problem? These are the default matrices in Microsoft's project example. View Matrix: XMVECTOR eye = XMVectorSet(0.0f, 0.7f, 1.5f, 0.0f); XMVECTOR at = XMVectorSet(0.0f, -0.1f, 0.0f, 0.0f); XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f); XMStoreFloat4x4(&m_constantBufferData.view, XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up))); Projection Matrix: void CubeRenderer::CreateWindowSizeDependentResources() { Direct3DBase::CreateWindowSizeDependentResources(); float aspectRatio = m_windowBounds.Width / m_windowBounds.Height; float fovAngleY = 70.0f * XM_PI / 180.0f; if (aspectRatio < 1.0f) { fovAngleY /= aspectRatio; } XMStoreFloat4x4(&m_constantBufferData.projection, XMMatrixTranspose(XMMatrixPerspectiveFovRH(fovAngleY, aspectRatio, 0.01f, 100.0f))); } I've tried modifying them to use cocos2dx's WP8 example. XMMATRIX identityMatrix = XMMatrixIdentity(); float fovy = 60.0f; float aspect = m_windowBounds.Width / m_windowBounds.Height; float zNear = 0.1f; float zFar = 100.0f; float xmin, xmax, ymin, ymax; ymax = zNear * tanf(fovy * XM_PI / 360); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; XMMATRIX tmpMatrix = XMMatrixPerspectiveOffCenterRH(xmin, xmax, ymin, ymax, zNear, zFar); XMMATRIX projectionMatrix = XMMatrixMultiply(tmpMatrix, identityMatrix); // View Matrix float fEyeX = m_windowBounds.Width * 0.5f; float fEyeY = m_windowBounds.Height * 0.5f; float fEyeZ = m_windowBounds.Height / 1.1566f; float fLookAtX = m_windowBounds.Width * 0.5f; float fLookAtY = m_windowBounds.Height * 0.5f; float fLookAtZ = 0.0f; float fUpX = 0.0f; float fUpY = 1.0f; float fUpZ = 0.0f; XMMATRIX tmpMatrix2 = XMMatrixLookAtRH(XMVectorSet(fEyeX,fEyeY,fEyeZ,0.f), XMVectorSet(fLookAtX,fLookAtY,fLookAtZ,0.f), XMVectorSet(fUpX,fUpY,fUpZ,0.f)); XMMATRIX viewMatrix = XMMatrixMultiply(tmpMatrix2, identityMatrix); XMStoreFloat4x4(&m_constantBufferData.view, viewMatrix); Vertex Shader cbuffer ModelViewProjectionConstantBuffer : register(b0) { //matrix model; matrix view; matrix projection; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float4 color : COLOR; }; PixelInputType main(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; //===================================== // TODO: ADDED for testing input.position.z = 0.0f; //===================================== // Calculate the position of the vertex against the world, view, and projection matrices. //output.position = mul(input.position, model); output.position = mul(input.position, view); output.position = mul(output.position, projection); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Store the particle color for the pixel shader. output.color = input.color; return output; } Before I render the shader, I set the view/projection matrices into the constant buffer void ParticleRenderer::SetShaderParameters() { ViewProjectionConstantBuffer* dataPtr; D3D11_MAPPED_SUBRESOURCE mappedResource; DX::ThrowIfFailed(m_d3dContext->Map(m_constantBuffer.Get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource)); dataPtr = (ViewProjectionConstantBuffer*)mappedResource.pData; dataPtr->view = m_constantBufferData.view; dataPtr->projection = m_constantBufferData.projection; m_d3dContext->Unmap(m_constantBuffer.Get(), 0); // Now set the constant buffer in the vertex shader with the updated values. m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf() ); // Set shader texture resource in the pixel shader. m_d3dContext->PSSetShaderResources(0, 1, &m_textureView); } Nothing, black screen... I tried so many different look at, eye, and up vectors. I tried transposing the matrices. I've set the particle center position to always be (0, 0, 0), I tried different positions too, just to make sure they're not being rendered offscreen.

    Read the article

  • Logging library for (c++) games

    - by Klaim
    I know a lot of logging libraries but didn't test a lot of them. (GoogleLog, Pantheios, the coming boost::log library...) In games, especially in remote multiplayer and multithreaded games, logging is vital to debugging, even if you remove all logs in the end. Let's say I'm making a PC game (not console) that needs logs (multiplayer and multithreaded and/or multiprocess) and I have good reasons for looking for a library for logging (like, I don't have time or I'm not confident in my ability to write one correctly for my case). Assuming that I need : performance ease of use (allow streaming or formating or something like that) reliable (don't leak or crash!) cross-platform (at least Windows, MacOSX, Linux/Ubuntu) Wich logging library would you recommand? Currently, I think that boost::log is the most flexible one (you can even log to remotely!), but have not good performance. Pantheios is often cited but I don't have comparison points on performance and usage. I've used my own lib for a long time but I know it don't manage multithreading so it's a big problem, even if it's fast enough. Google Log seems interesting, I just need to test it but if you already have compared those libs and more, your advice might be of good use. Games are often performance demanding while complex to debug so it would be good to know logging libraries that, in our specific case, have clear advantages.

    Read the article

  • Particle and Physics problem.

    - by Quincy
    This was originally a forum post so I hope you guys don't mind it being 2 questions in one. I am making a game and I got some basic physics implemented. I have 2 problems, 1 with particles being drawn in the wrong place and one with going through walls while jumping in corners. Skip over to about 15 sec video showing the 2 problems : http://youtube.com/watch?v=Tm9nfWsWfiM So the problem with the particles seems to be coming from the removal, as soon as I remove that piece of code it instantly works, but there shouldn't be a problem since they shouldn't even draw when their energy gets to 0 (and then they get removed) So my first question is, how are these particles getting warped all over the screen ? Relevant code : Particle class : class Particle { //Physics public Vector2 position = new Vector2(0,0); public float direction = 180; public float speed = 100; public float energy = 1; protected float startEnergy = 1; //Visual public Sprite sprite; public float rotation = 0; public float scale = 1; public byte alpha = 255; public BlendMode blendMode { get { return sprite.BlendMode; } set { sprite.BlendMode = value; } } public Particle() { } public virtual void Think(float frameTime) { if (energy - frameTime < 0) energy = 0; else energy -= frameTime; position += new Vector2((float)Math.Cos(MathHelper.DegToRad(direction)), (float)Math.Sin(MathHelper.DegToRad(direction))) * speed * frameTime; alpha = (byte)(255 * energy / startEnergy); sprite.Rotation = rotation; sprite.Position = position; sprite.Color = new Color(sprite.Color.R, sprite.Color.G, sprite.Color.B, alpha); } public virtual void Draw(float frameTime) { if (energy > 0) { World.camera.DrawSprite(sprite); } } // Basic particle implementation class BasicSprite : Particle { public BasicSprite(Sprite _sprite) { sprite = _sprite; } } Emitter : class Emitter { protected static Random rand = new Random(); protected List<Particle> particles = new List<Particle>(); public BaseEntity target = null; public Vector2 position = new Vector2(0, 0); public bool Active = true; public float timeAlive = 0; public int particleCount = 0; public int ParticlesPerSeccond { get { return (int)(1 / particleSpawnTime); } set { particleSpawnTime = 1 / (float)value; } } public float dieTime = float.MaxValue; float particleSpawnTime = 0.05f; float spawnTime = 0; public Emitter() { } public virtual void Think(float frametime) { spawnTime += frametime; if (dieTime != float.MaxValue) { timeAlive += frametime; if (timeAlive >= dieTime) Active = false; } if (Active) { if (target != null) position = target.Position; while (spawnTime > particleSpawnTime) { spawnTime -= particleSpawnTime; AddParticle(); particleCount++; } } for (int i = 0; i < particles.Count; i++) { particles[i].Think(frametime); if (particles[i].energy <= 0) { particles.Remove(particles[i]); // As soon as this is removed, it works particleCount--; } } } public virtual void AddParticle() { } public virtual void Draw(float frametime) { foreach (Particle particle in particles) { particle.Draw(frametime); } } } class BloodEmitter : Emitter { Image image; public BloodEmitter() { image = new Image(@"Content/Particles/TinyCircle.png"); image.CreateMaskFromColor(new Color(255, 0, 255, 255)); this.dieTime = 0.5f; this.ParticlesPerSeccond = 100; } public override void AddParticle() { Sprite sprite = new Sprite(image); sprite.Color = new Color((byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255), (byte)(rand.NextDouble() * 255)); BasicSprite particle = new BasicSprite(sprite); particle.direction = (float)rand.NextDouble() * 360; particle.position = position; particle.blendMode = BlendMode.Alpha; particles.Add(particle); } } The seccond problem is the physics problem, for some reason I can get through the right bottom corner while jumping. I think this is coming from me switching animations but I thought I made it compensate for that. Relevant code : PhysicsEntity : class PhysicsEntity : BaseEntity { // Horizontal movement constants protected const float maxHorizontalSpeed = 1000; protected const float horizontalAcceleration = 15; protected const float horizontalDragAir = 0.95f; protected const float horizontalDragGround = 0.95f; // Vertical movement constants protected const float maxVerticalSpeed = 1000; protected const float verticalAcceleration = 20; // Everything needed for movement and correct animations protected float movement = 0; protected bool onGround = false; protected Vector2 Velocity = new Vector2(0, 0); protected float maxSpeed = 0; float lastThink = 0; float thinkTime = 1f/60f; public PhysicsEntity(Vector2 position, Sprite sprite) : base(position, sprite) { } public override void Draw(float frameTime) { base.Draw(frameTime); } public override void Think(float frameTime) { CalculateMovement(frameTime); base.Think(frameTime); } protected void CalculateMovement(float frameTime) { lastThink += frameTime; while (lastThink > thinkTime) { onGround = false; Velocity.X = MathHelper.Clamp(Velocity.X + horizontalAcceleration * movement, -maxHorizontalSpeed, maxHorizontalSpeed); if (onGround) Velocity.X *= horizontalDragGround; else Velocity.X *= horizontalDragAir; if (maxSpeed < Velocity.X) maxSpeed = Velocity.X; Velocity.Y = MathHelper.Clamp(Velocity.Y + verticalAcceleration, -maxVerticalSpeed, maxVerticalSpeed); lastThink -= thinkTime; DoCollisions(thinkTime); DoAnimations(thinkTime); } } public virtual void DoAnimations(float frameTime) { } public void DoCollisions(float frameTime) { Position.Y += Velocity.Y * frameTime; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } Position.X += Velocity.X * frameTime; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } public void DoCollisions(Vector2 difference) { CollisionRectangle.Y = Position.Y - difference.Y; CollisionRectangle.Height += difference.Y; Vector2 tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.Y += collisionDepth.Y; if (collisionDepth.Y < 0) onGround = true; Velocity.Y = 0; } CollisionRectangle.X = Position.X - difference.X; CollisionRectangle.Width += difference.X; tileCollision = GetTileCollision(); if (tileCollision.X != -1 || tileCollision.Y != -1) { Vector2 collisionDepth = CollisionRectangle.DepthIntersection( new Rectangle( tileCollision.X * World.tileEngine.TileWidth, tileCollision.Y * World.tileEngine.TileHeight, World.tileEngine.TileWidth, World.tileEngine.TileHeight ) ); Position.X += collisionDepth.X; Velocity.X = 0; } } Vector2 GetTileCollision() { int topLeftTileX = (int)(CollisionRectangle.TopLeft.X / World.tileEngine.TileWidth); int topLeftTileY = (int)(CollisionRectangle.TopLeft.Y / World.tileEngine.TileHeight); int BottomRightTileX = (int)(CollisionRectangle.DownRight.X / World.tileEngine.TileWidth); int BottomRightTileY = (int)(CollisionRectangle.DownRight.Y / World.tileEngine.TileHeight); if (CollisionRectangle.DownRight.Y % World.tileEngine.TileHeight == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileY -= 1; if (CollisionRectangle.DownRight.X % World.tileEngine.TileWidth == 0) // If your exactly against the tile don't count that as being inside the tile BottomRightTileX -= 1; for (int i = topLeftTileX; i <= BottomRightTileX; i++) { for (int j = topLeftTileY; j <= BottomRightTileY; j++) { if (World.tileEngine.TileIsSolid(i, j)) { return new Vector2(i, j); } } } return new Vector2(-1, -1); } } Player : enum State { Standing, Running, Jumping, Falling, Sliding, WallSlide } class Player : PhysicsEntity { private State state { get { return currentState; } set { if (currentState != value) { currentState = value; animationChanged = true; } } } private State currentState = State.Standing; private BasicEmitter basicEmitter = new BasicEmitter(); public bool flipped; public bool animationChanged = false; protected const float jumpPower = 600; AnimationManager animationManager; Rectangle DrawRectangle; public override Rectangle CollisionRectangle { get { return new Rectangle( Position.X - DrawRectangle.Width / 2f, Position.Y - DrawRectangle.Height / 2f, DrawRectangle.Width, DrawRectangle.Height ); } } public Player(Vector2 position, Sprite sprite) : base(position, sprite) { // Only posted the relevant bit DrawRectangle = animationManager.currentAnimation.drawingRectangle; } public override void Draw(float frameTime) { World.camera.DrawSprite( Sprite, Position + new Vector2(DrawRectangle.X, DrawRectangle.Y), animationManager.currentAnimation.drawingRectangle ); } public override void Think(float frameTime) { //I only posted the relevant stuff if (animationChanged) { // if the animation has changed make sure we compensate for the change in with and height animationChanged = false; DoCollisions(animationManager.getSizeDifference()); } DoCustomMovement(); base.Think(frameTime); if (!onGround && Velocity.Y > 0) { state = State.Falling; } } void DoCustomMovement() { if (onGround) { if (World.renderWindow.Input.IsKeyDown(KeyCode.W)) { Velocity.Y = -jumpPower; state = State.Jumping; } } } public override void DoAnimations(float frameTime) { string stateName = Enum.GetName(typeof(State), state); if (!animationManager.currentAnimationIs(stateName)) { animationManager.PlayAnimation(stateName); } animationManager.Think(frameTime); DrawRectangle = animationManager.currentAnimation.drawingRectangle; Sprite.Center = new Vector2( DrawRectangle.X + DrawRectangle.Width / 2, DrawRectangle.Y + DrawRectangle.Height / 2 ); Sprite.FlipX(flipped); } So why am I warping through walls ? I have given this some thought but I just can't seem to find out why this is happening. Full source if needed : source : http://www.mediafire.com/?rc7ddo09gnr68zd (download link)

    Read the article

  • Detecting extremely fast joystick button presses?

    - by DBRalir
    Is it usually possible for the player to press and release a button within a single frame, so that the game engine doesn't have time to detect it? How do programmers usually handle this situation? Is it even necessary to handle it? Specifically, I am asking about GLFW's joystick input capabilities. I am currently using GLFW to make a game, and I've noticed that keyboard and mouse have callback functions, while joysticks do not. Also, it does not appear to be possible to enable "sticky keys" for a joystick. (I have only recently started using GLFW, so please correct me if I am wrong, as having either of those would solve the problem.)

    Read the article

  • Is there a way to export all the images of my tweening effect in Flash?

    - by Paul
    i'm using Flash to create the animation of my character in 2D (i'm just beginning). Is it possible to make a tween effect of a character, and then automatically export all the images/frames? So far, it's a bit fastidious : i create my tweening effect, then i put a keyframe for each frame i want to copy and paste, then i select the movieclips and shapes and copy and paste them into another flash document, i position those clips at the exact same location as the previous image, then i erase the previous image and export the image... For 30 frames! Is there any faster way? Thanks

    Read the article

  • How to manage drawing loop when changing render targets

    - by George Duckett
    I'm managing my game state by having a base GameScreen class with a Draw method. I then have (basically) a stack of GameScreens that I render. I render the bottom one first, as screens above might not completely cover the ones below. I now have a problem where one GameScreen changes render targets while doing its rendering. Anything the previous screens have drawn to the backbuffer is lost (as XNA emulates what happens on the xbox). I don't want to just set the backbuffer to preserve its contents as I want this to work on the xbox as well as PC. How should I manage this problem? A few ideas I've had: Render every GameScreen to its own render target, then render them all to the backbuffer. Create some kind of RenderAction queue where a game screen (and anything else I guess) could queue something to be rendered to the back buffer. They'd render whatever they wanted to any render target as normal, but if they wanted to render to the backbuffer they'd stick that in a queue which would get processed once all rendertarget rendering was done. Abstract away from render targets and backbuffers and have some way of representing the way graphics flows and transforms between render targets and have something manage/work out the correct rendering order (and render targets) given what rendering process needs as input and what it produces as output. I think each of my ideas have pros and cons and there are probably several other ways of approaching this general problem so I'm interested in finding out what solutions are out there.

    Read the article

  • Smooth vector based jump

    - by Esa
    I started working on Wolfire's mathematics tutorials. I got the jumping working well using a step by step system, where you press a button and the cube moves to the next point on the jumping curve. Then I tried making the jumping happen during a set time period e.g the jump starts and lands within 1.5 seconds. I tried the same system I used for the step by step implementation, but it happens instantly. After some googling I found that Time.deltatime should be used, but I could not figure how. Below is my current jumping code, which makes the jump happen instantly. while (transform.position.y > 0) { modifiedJumperVelocity -= jumperDrag; transform.position += new Vector3(modifiedJumperVelocity.x, modifiedJumperVelocity.y, 0); } Where modifiedJumperVelocity is starting vector minus the jumper drag. JumperDrag is the value that is substracted from the modifiedJumperVelocity during each step of the jump. Below is an image of the jumping curve:

    Read the article

< Previous Page | 528 529 530 531 532 533 534 535 536 537 538 539  | Next Page >