Search Results

Search found 39156 results on 1567 pages for 'device driver development'.

Page 554/1567 | < Previous Page | 550 551 552 553 554 555 556 557 558 559 560 561  | Next Page >

  • HLSL Pixel Shader that does palette swap

    - by derrace
    I have implemented a simple pixel shader which can replace a particular colour in a sprite with another colour. It looks something like this: sampler input : register(s0); float4 PixelShaderFunction(float2 coords: TEXCOORD0) : COLOR0 { float4 colour = tex2D(input, coords); if(colour.r == sourceColours[0].r && colour.g == sourceColours[0].g && colour.b == sourceColours[0].b) return targetColours[0]; return colour; } What I would like to do is have the function take in 2 textures, a default table, and a lookup table (both same dimensions). Grab the current pixel, and find the location XY (coords) of the matching RGB in the default table, and then substitute it with the colour found in the lookup table at XY. I have figured how to pass the Textures from C# into the function, but I am not sure how to find the coords in the default table by matching the colour. Could someone kindly assist? Thanks in advance.

    Read the article

  • Maintain proper symbol order when applying an armature in flash

    - by Michael Taufen
    I am trying to animate a character's leg in flash CS 5.5 for a game I am working on. I decided to use the bone tool because it's awesome. The problem I am having, however, is that for my character to be animated properly, the symbols that make up his leg (upper leg, lower leg, and shoe) need to be on top of each other in a specific way (otherwise the shoe looks like its next to the leg, etc). Applying the bones results in the following problem: the first symbol I apply it to is placed in the rear on the armature layer, the next on top of it, and so on, until the final symbol is already on top. I need them to be in the opposite order, but arrange send to back does nothing on the armature layer. How can I fix this? tl;dr: The bone tool is not maintaining the stacking order of my objects, please help. Thanks for helping :).

    Read the article

  • Registering InputListener in libGDX

    - by JPRO
    I'm just getting started with libGDX and have run into a snag registering an InputListener for a button. I've gone through many examples and this code appears correct to me but the associated callback never triggers ("touched" is not printed to console). I'm just posting the code with the abstract game screen and the implementing screen. The application starts successfully with a label of "Exit" in the bottom left hand corner, but clicking the button/label does nothing. I'm guessing the fix is something simple. What am I overlooking? public abstract class GameScreen<T> implements Screen { protected final T game; protected final SpriteBatch batch; protected final Stage stage; public GameScreen(T game) { this.game = game; this.batch = new SpriteBatch(); this.stage = new Stage(0, 0, true); } @Override public final void render(float delta) { update(delta); // Clear the screen with the given RGB color (black) Gdx.gl.glClearColor(0f, 0f, 0f, 1f); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); stage.act(delta); stage.draw(); } public abstract void update(float delta); @Override public void resize(int width, int height) { stage.setViewport(width, height, true); } @Override public void show() { Gdx.input.setInputProcessor(stage); } // hide, pause, resume, dipose } public class ExampleScreen extends GameScreen<MyGame> { private TextButton exitButton; public ExampleScreen(MyGame game) { super(game); } @Override public void show() { super.show(); TextButton.TextButtonStyle buttonStyle = new TextButton.TextButtonStyle(); buttonStyle.font = Font.getFont("Origicide", 32); buttonStyle.fontColor = Color.WHITE; exitButton = new TextButton("Exit", buttonStyle); exitButton.addListener(new InputListener() { @Override public void touchUp (InputEvent event, float x, float y, int pointer, int button) { System.out.println("touched"); } }); stage.addActor(exitButton); } @Override public void update(float delta) { } }

    Read the article

  • How to attach turrets to tiles in a tile based game

    - by Joseph St. Pierre
    I am a flash developer, and I am building a Tower Defense game. The world is being built through tiles, and I have gotten that accomplished easily. I have also gotten level changes and enemy spawning down as well. However, I wish the player to be able to spawn turrets, and have those turrets be on specific tiles, based upon where the player placed it. Here is my code: stop(); colOffset = 50; rowOffset = 50; guns = []; placed = true; dead = 0; spawned = 0; level = 1; interval = 350 / level; amount = level * 20; counter = 0; numCol = 14; numRow = 10; tiles = []; k = 0; create = false; tileName = new Array("road","grass","end", "start"); board = new Array( new Array(1,1,1,1,3,1,1,1,1,1,2,1,1,1), new Array(1,1,1,0,0,1,1,1,1,1,0,1,1,1), new Array(1,1,1,0,1,1,1,1,1,1,0,0,1,1), new Array(1,1,1,0,0,0,1,1,1,1,1,0,1,1), new Array(1,1,1,0,1,0,0,0,1,1,1,0,0,1), new Array(1,1,1,0,1,1,1,0,0,1,1,1,0,1), new Array(1,1,0,0,1,1,1,1,0,1,1,0,0,1), new Array(1,1,0,1,1,1,1,1,0,1,0,0,1,1), new Array(1,1,0,0,0,0,0,0,0,1,0,1,1,1), new Array(1,1,1,1,1,1,1,1,0,0,0,1,1,1) ); buildBoard(); function buildBoard(){ for ( col = 0; col < numCol; col++){ for ( row = 0; row < numRow; row++){ _root.attachMovie("tile", "tile_" + col + "_" + row, _root.getNextHighestDepth()); theTile = eval("tile_" + col + "_" + row); theTile._x = (col * 50); theTile._y = (row * 50); theTile.row = row; theTile.col = col; tileType = board[row][col]; theTile.gotoAndStop(tileName[tileType]); tiles.push(theTile); } } } init(); function init(){ onEnterFrame = function(){ counter += 1; if ( spawned < amount && counter > 50){ min= _root.attachMovie("minion","minion",_root.getNextHighestDepth()); min._x = tile_4_0._x + 25; min._y = tile_4_0._y + 25; min.health = 100; choose = Math.round(Math.random()); if ( choose == 0 ){ min.waypointX = [ tile_4_1._x +25, tile_3_1._x + 25, tile_3_2._x + 25, tile_3_6._x + 25, tile_2_6._x + 25, tile_2_8._x + 25, tile_8_8._x + 25, tile_8_9._x + 25, tile_10_9._x + 25, tile_10_7._x + 25, tile_11_7._x + 25, tile_11_6._x + 25, tile_12_6._x + 25, tile_12_4._x + 25, tile_11_4._x + 25, tile_11_2._x + 25, tile_10_2._x + 25, tile_10_0._x + 25]; min.waypointY = [ tile_4_1._y +25, tile_3_1._y + 25, tile_3_2._y + 25, tile_3_6._y + 25, tile_2_6._y + 25, tile_2_8._y + 25, tile_8_8._y + 25, tile_8_9._y + 25, tile_10_9._y + 25, tile_10_7._y + 25, tile_11_7._y + 25, tile_11_6._y + 25, tile_12_6._y + 25, tile_12_4._y + 25, tile_11_4._y + 25, tile_11_2._y + 25, tile_10_2._y + 25, tile_10_0._y + 25]; } else if ( choose == 1 ){ min.waypointX = [ tile_4_1._x +25, tile_3_1._x + 25, tile_3_2._x + 25, tile_3_3._x + 25, tile_5_3._x + 25, tile_5_4._x + 25, tile_7_4._x + 25, tile_7_5._x + 25, tile_8_5._x + 25, tile_8_8._x + 25, tile_8_9._x + 25, tile_10_9._x + 25, tile_10_7._x + 25, tile_11_7._x + 25, tile_11_6._x + 25, tile_12_6._x + 25, tile_12_4._x + 25, tile_11_4._x + 25, tile_11_2._x + 25, tile_10_2._x + 25, tile_10_0._x + 25 ]; min.waypointY = [ tile_4_1._y +25, tile_3_1._y + 25, tile_3_2._y + 25, tile_3_3._y + 25, tile_5_3._y + 25, tile_5_4._y + 25, tile_7_4._y + 25, tile_7_5._y + 25, tile_8_5._y + 25, tile_8_8._y + 25, tile_8_9._y + 25, tile_10_9._y + 25, tile_10_7._y + 25, tile_11_7._y + 25, tile_11_6._y + 25, tile_12_6._y + 25, tile_12_4._y + 25, tile_11_4._y + 25, tile_11_2._y + 25, tile_10_2._y + 25, tile_10_0._y + 25 ]; } min.i = 0; counter = 0; spawned += 1; min.onEnterFrame = function(){ dx = this.waypointX[this.i] - this._x; dy = this.waypointY[this.i] - this._y; radians = Math.atan2(dy,dx); degrees = radians * 180 / Math.PI; xspeed = Math.cos(radians); yspeed = Math.sin(radians); this._x += xspeed; this._y += yspeed; if( this._x == this.waypointX[this.i] && this._y == this.waypointY[this.i]){ this.i++; } if ( this._x == tile_10_0._x + 25 && this._y == tile_10_0._y + 25){ this.removeMovieClip(); dead += 1; } } } if ( dead >= amount ){ dead = 0; level += 1; amount = level * 20; spawned = 0; } } btnM.onRelease = function(){ create = true; } } game.onEnterFrame = function(){ } It is possible for me however to complete this task, but only once. I am able to make the turret, drag it over to a tile, and have it attach itself to the tile. No problem. The issue is, I cannot do these multiple times. Please Help.

    Read the article

  • Velocity control of the player, why doesn't this work?

    - by Dominic Grenier
    I have the following code inside a while True loop: if abs(playerx) < MAXSPEED: if moveLeft: playerx -= 1 if moveRight: playerx += 1 if abs(playery) < MAXSPEED: if moveDown: playery += 1 if moveUp: playery -= 1 if moveLeft == False and abs(playerx) > 0: playerx += 1 if moveRight == False and abs(playerx) > 0: playerx -= 1 if moveUp == False and abs(playery) > 0: playery += 1 if moveDown == False and abs(playery) > 0: playery -= 1 player.x += playerx player.y += playery if player.left < 0 or player.right > 1000: player.x -= playerx if player.top < 0 or player.bottom > 600: player.y -= playery The intended result is that while an arrow key is pressed, playerx or playery increments by one at every iteration until it reaches MAXSPEED and stays at MAXSPEED. And that when the player stops pressing that arrow key, his speed decreases until it reaches 0. To me, this code explicitly says that... But what actually happens is that playerx or playery keeps incrementing regardless of MAXSPEED and continues moving even after the player stops pressing the arrow key. I keep rereading but I'm completely baffled by this weird behavior. Any insights? Thanks.

    Read the article

  • Performance issues with visibility detection and object transparency

    - by maul
    I'm working on a 3d game that has a view similar to classic isometric games (diablo, etc.). One of the things I'm trying to implement is the effect of turning walls transparent when the player walks behind them. By itself this is not a huge issue, but I'm having trouble determining which walls should be transparent exactly. I can't use a circle or square mask. There are a lot of cases where the wall piece at the same (relative) position has different visibility depending on the surrounding area. With the help of a friend I came up with this algorithm: Create a grid around the player that contains a lot of "visibility points" (my game is semi tile-based so I create one point for every tile on the grid) - the size of the square's side is close to the radius where I make objects transparent. I found 6x6 to be a good value, so that's 36 visibility points total. For every visibility point on the grid, check if that point is in the player's line of sight. For every visibility point that is in the LOS, cast a ray from the camera to that point and mark all objects the ray hits as transparent. This algorithm works - not perfectly, but only requires some tuning - however this is very slow. As you can see, it requries 36 ray casts minimum, but most of the time 60-70 depending on the position. That's simply too much for the CPU. Is there a better way to do this? I'm using Unity 3D but I'm not looking for an engine-specific solution.

    Read the article

  • Dynamic Environment Creation

    - by Jack
    I was wondering, I'm thinking on a more small-scale, abstracted level, but how does one create a dynamic environment a la Minecraft? In specific, I'm thinking of the world as a 3 dimensional array of block objects, how is it made so that large features such as oceans are created? The language isn't important, I'm thinking on a conceptual level, but if it helps, I use C# or C++. Thanks for any help!

    Read the article

  • FreeType2 Crash on FT_Init_FreeType

    - by JoeyDewd
    I'm currently trying to learn how to use the FreeType2 library for drawing fonts with OpenGL. However, when I start the program it immediately crashes with the following error: "(Can't correctly start the application (0xc000007b))" Commenting the FT_Init_FreeType removes the error and my game starts just fine. I'm wondering if it's my code or has something to do with loading the dll file. My code: #include "SpaceGame.h" #include <ft2build.h> #include FT_FREETYPE_H //Freetype test FT_Library library; Game::Game(int Width, int Height) { //Freetype FT_Error error = FT_Init_FreeType(&library); if(error) { cout << "Error occured during FT initialisation" << endl; } And my current use of the FreeType2 files. Inside my bin folder (where debug .exe is located) is: freetype6.dll, libfreetype.dll.a, libfreetype-6.dll. In Code::Blocks, I've linked to the lib and include folder of the FreeType 2.3.5.1 version. And included a compiler flag: -lfreetype My program starts perfectly fine if I comment out the FT_Init function which means the includes, and library files should be fine. I can't find a solution to my problem and google isn't helping me so any help would be greatly appreciated.

    Read the article

  • Why does my terrain turn white when I get close to it?

    - by Starkers
    When I zoom in on my terrain it goes white: The further in I zoom, the greater the whiteness becomes. Is this normal? Is this to speed up rendering or something? Can I turn it off? I'm also getting these error messages in the console over and over again: rc.right != m_GfxWindow-GetWidth() || rc.bottom != m_GfxWindow-GetHeight() and GUI Window tries to begin rendering while something else has not finished rendering! Either you have a recursive OnGUI rendering, or previous OnGUI did not clean up properly. Does this bear any correlation on the issue? Update I create virtual desktops to flit between using the program Deskpot. Turning this program off and restarting has stopped the above errors appearing in the console. However, I still get white terrain when I zoom in. Not a single error message. I've restarted my computer to no avail. I have an Asus NVidia GeForce GTX 760 2GB DDR5 Direct CU II OC Edition Graphics Card. Any known issues? Update I don't think it's fog...

    Read the article

  • Unity3D - Projection matrix camera frustum

    - by MulletDevil
    I've used off centre projection to create a custom projection matrix for my camera. When I run the game I can see the scene correctly in the game view but in the editor view the camera frustum is not correct. It still shows the original frustum shape not the new one. It also appears that Unity is using the original frustum for frustum culling and not the new one as I can see object being culled which are visible to the new frustum but would not be visible in the old one. Am I wrong in thinking that a custom projection matrix would alter the view frustum? Or am I missing something else?

    Read the article

  • Small 3D Scene Graph

    - by Alon
    I'm looking for a 3D graphics library (not a complete game engine). Preferred a scene graph. Something small (unlike jME, XNA or Unity), that I can easily expand and change. Preferred features: Cross Platform Wrriten in Java/Scala (JOGL or LWJGL), C# (preferred OpenTK), Python or JavaScript/WebGL. Support for OpenGL is a must. Direct3D is optional. Some material system Full support for some model format with full animation support (preferred COLLADA) Level of Detail (LOD) support Lighting support Shaders, GUI, Input and Terrain/Water support are also preferred, but not required Thanks!

    Read the article

  • CSM shadow errors when models are split

    - by KaiserJohaan
    I'm getting closer to fixing CSM, but there seems to be one more issue at hand. At certain angles, the models will be caught/split between two shadow map cascades, like below. first depth split second depth split - here you can see the model is caught between the splits How does one fix this? Increase the overlapping boundaries between the splits? Or is the frustrum erronous? CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix, Mat4& outFrustrumMat) { CameraFrustrum ret = { Vec4(1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, 1.0f, 0.0f, 1.0f), Vec4(-1.0f, -1.0f, 0.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); outFrustrumMat = invMVP; for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, halfExtents.y, -halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; }

    Read the article

  • Problems implementing a screen space shadow ray tracing shader

    - by Grieverheart
    Here I previously asked for the possibility of ray tracing shadows in screen space in a deferred shader. Several problems were pointed out. One of the most important problem is that only visible objects can cast shadows and objects between the camera and the shadow caster can interfere. Still I thought it'd be a fun experiment. The idea is to calculate the view coordinates of pixels and cast a ray to the light. The ray is then traced pixel by pixel to the light and its depth is compared with the depth at the pixel. If a pixel is in front of the ray, a shadow is casted at the original pixel. At first I thought that I could use the DDA algorithm in 2D to calculate the distance 't' (in p = o + t d, where o origin, d direction) to the next pixel and use it in the 3D ray equation to find the ray's z coordinate at that pixel's position. For the 2D ray, I would use the projected and biased 3D ray direction and origin. The idea was that 't' would be the same in both 2D and 3D equations. Unfortunately, this is not the case since the projection matrix is 4D. Thus, some tweak needs to be done to make this work this way. I would like to ask if someone knows of a way to do what I described above, i.e. from a 2D ray in texture coordinate space to get the 3D ray in screen space. I did implement a simple version of the idea which you can see in the following video: video here Shadows may seem a bit pixelated, but that's mostly because of the size of the step in 't' I chose. And here is the shader: #version 330 core uniform sampler2D DepthMap; uniform vec2 projAB; uniform mat4 projectionMatrix; const vec3 light_p = vec3(-30.0, 30.0, -10.0); noperspective in vec2 pass_TexCoord; smooth in vec3 viewRay; layout(location = 0) out float out_AO; vec3 CalcPosition(void){ float depth = texture(DepthMap, pass_TexCoord).r; float linearDepth = projAB.y / (depth - projAB.x); vec3 ray = normalize(viewRay); ray = ray / ray.z; return linearDepth * ray; } void main(void){ vec3 origin = CalcPosition(); if(origin.z < -60) discard; vec2 pixOrigin = pass_TexCoord; //tex coords vec3 dir = normalize(light_p - origin); vec2 texel_size = vec2(1.0 / 600.0); float t = 0.1; ivec2 pixIndex = ivec2(pixOrigin / texel_size); out_AO = 1.0; while(true){ vec3 ray = origin + t * dir; vec4 temp = projectionMatrix * vec4(ray, 1.0); vec2 texCoord = (temp.xy / temp.w) * 0.5 + 0.5; ivec2 newIndex = ivec2(texCoord / texel_size); if(newIndex != pixIndex){ float depth = texture(DepthMap, texCoord).r; float linearDepth = projAB.y / (depth - projAB.x); if(linearDepth > ray.z + 0.1){ out_AO = 0.2; break; } pixIndex = newIndex; } t += 0.5; if(texCoord.x < 0 || texCoord.x > 1.0 || texCoord.y < 0 || texCoord.y > 1.0) break; } } As you can see, here I just increment 't' by some arbitrary factor, calculate the 3D ray and project it to get the pixel coordinates, which is not really optimal. Hopefully, I would like to optimize the code as much as possible and compare it with shadow mapping and how it scales with the number of lights. PS: Keep in mind that I reconstruct position from depth by interpolating rays through a full screen quad.

    Read the article

  • Corona SDK: Quality of support and resources?

    - by Nick Wiggill
    I've not used Corona SDK before and am looking into it for a friend. (He is also considering Unity.) I wonder what the support is like for Corona? While Unity has a great many customers and so the Unity team can often not address issues directly, the community at large is very helpful and there are many excellent resources: tutorials, forum posts, code resources. What is Corona like in this regard, and by comparison?

    Read the article

  • Octree implementation for fustrum culling

    - by Manvis
    I'm learning modern (=3.1) OpenGL by coding a 3D turn based strategy game, using C++. The maps are composed of 100x90 3D hexagon tiles that range from 50 to 600 tris (20 different types) + any player units on those tiles. My current rendering technique involves sorting meshes by shaders they use (minimizing state changes) and then calling glDrawElementsInstanced() for drawing. Still get solid 16.6 ms/frame on my GTX 560Ti machine but the game struggles (45.45 ms/frame) on an old 8600GT card. I'm certain that using an octree and fustrum culling will help me here, but I have a few questions before I start implementing it: Is it OK for an octree node to have multiple meshes in it (e.g. can a soldier and the hex tile he's standing on end up in the same octree node)? How is one supposed to treat changes in object postion (e.g. several units are moving 3 hexes down)? I can't seem to find good a explanation on how to do it. As I've noticed, soting meshes by shaders is a really good way to save GPU. If I put node contents into, let's say, std::list and sort it before rendering, do you think I would gain any performance, or would it just create overhead on CPU's end? I know that this sounds like early optimization and implementing + testing would be the best way to find out, but perhaps someone knows from experience?

    Read the article

  • General visual effects to meshes/entities

    - by Pacha
    I am trying to add some visual effects to some entities, meshes, or whatever you want to call them as they are looking pretty dull in my game right now. What I want to achieve is this: http://youtu.be/zox8935PLw0?t=36s (the "texture" gets disintegrated and then goes back to normal, covering the whole mesh.) Also I would like to know what is the best way to add effects like the one in the video to my game (for example, thunder effects, shattering, etc.) I know that I can do some things with shaders, but I haven't learned them too well and I am still in a beginner level. I am using Ogre3D, and GLSL for shaders. Thanks! Note: this is a screen-shot of my game, I want to apply the effect in the video to my main character):

    Read the article

  • How are these bullets done?

    - by Mike
    I really want to know how the bullets in Radiangames Inferno are done. The bullets seem like they are just billboard particles but I am curious about how their tails are implemented. They can curve so this means they are not just a billboard. Also, they appear continuous which implies that the tails are not made of a bunch of smaller particles (I think). Can anyone shead some light on this for me?

    Read the article

  • Computing a normal matrix in conjunction with gluLookAt

    - by Chris Smith
    I have a hand-rolled camera class that converts yaw, pitch, and roll angles into a forward, side, and up vector suitable for calling gluLookAt. Using this camera class I can modify the model-view matrix to move about the 3D world just fine. However, I am having trouble when using this camera class (and associated model-view matrix) when trying to perform directional lighting in my vertex shader. The problem is that the light direction, (0, 1, 0) for example, is relative to where the 'camera is looking' and not the actual world coordinates. (Or is this eye coordinates vs. model coordinates?) I would like the light direction to be unaffected by the camera's viewing direction. For example, when the camera is looking down the Z axis the ground is lit correctly. However, if I point the camera straight at the ground, then it goes dark. This is (I think) because the light direction is parallel with the camera's 'up' vector which is perpendicular with the ground's normal vector. I tried computing the normal matrix without taking the camera's model view into account, but then none of my objects were rotated correctly. Sorry if this sounds vague. I suspect there is a straight forward answer, but I'm not 100% clear on how the normal matrix should be used for transforming vertex normals in my vertex shader. For reference, here is pseudo code for my rendering loop: pMatrix = new Matrix(); pMatrix = makePerspective(...) mvMatrix = new Matrix() camera.apply(mvMatrix); // Calls gluLookAt // Move the object into position. mvMatrix.translatev(position); mvMatrix.rotatef(rotation.x, 1, 0, 0); mvMatrix.rotatef(rotation.y, 0, 1, 0); mvMatrix.rotatef(rotation.z, 0, 0, 1); var nMatrix = new Matrix(); nMatrix.set(mvMatrix.get().getInverse().getTranspose()); // Set vertex shader uniforms. gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false, new Float32Array(pMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false, new Float32Array(mvMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false, new Float32Array(nMatrix.getFlattened())); // ... gl.drawElements(gl.TRIANGLES, this.vertexIndexBuffer.numItems, gl.UNSIGNED_SHORT, 0); And the corresponding vertex shader: // Attributes attribute vec3 aVertexPosition; attribute vec4 aVertexColor; attribute vec3 aVertexNormal; // Uniforms uniform mat4 uMVMatrix; uniform mat4 uNMatrix; uniform mat4 uPMatrix; // Varyings varying vec4 vColor; // Constants const vec3 LIGHT_DIRECTION = vec3(0, 1, 0); // Opposite direction of photons. const vec4 AMBIENT_COLOR = vec4 (0.2, 0.2, 0.2, 1.0); float ComputeLighting() { vec4 transformedNormal = vec4(aVertexNormal.xyz, 1.0); transformedNormal = uNMatrix * transformedNormal; float base = dot(normalize(transformedNormal.xyz), normalize(LIGHT_DIRECTION)); return max(base, 0.0); } void main(void) { gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); float lightWeight = ComputeLighting(); vColor = vec4(aVertexColor.xyz * lightWeight, 1.0) + AMBIENT_COLOR; } Note that I am using WebGL, so if the anser is use glFixThisProblem(...) any pointers on how to re-implement that on WebGL if missing would be appreciated.

    Read the article

  • Shadows shimmer when camera moves

    - by Chad Layton
    I've implemented shadow maps in my simple block engine as an exercise. I'm using one directional light and using the view volume to create the shadow matrices. I'm experiencing some problems with the shadows shimmering when the camera moves and I'd like to know if it's an issue with my implementation or just an issue with basic/naive shadow mapping itself. Here's a video: http://www.youtube.com/watch?v=vyprATt5BBg&feature=youtu.be Here's the code I use to create the shadow matrices. The commented out code is my original attempt to perfectly fit the view frustum. You can also see my attempt to try clamping movement to texels in the shadow map which didn't seem to make any difference. Then I tried using a bounding sphere instead, also to no apparent effect. public void CreateViewProjectionTransformsToFit(Camera camera, out Matrix viewTransform, out Matrix projectionTransform, out Vector3 position) { BoundingSphere cameraViewFrustumBoundingSphere = BoundingSphere.CreateFromFrustum(camera.ViewFrustum); float lightNearPlaneDistance = 1.0f; Vector3 lookAt = cameraViewFrustumBoundingSphere.Center; float distanceFromLookAt = cameraViewFrustumBoundingSphere.Radius + lightNearPlaneDistance; Vector3 directionFromLookAt = -Direction * distanceFromLookAt; position = lookAt + directionFromLookAt; viewTransform = Matrix.CreateLookAt(position, lookAt, Vector3.Up); float lightFarPlaneDistance = distanceFromLookAt + cameraViewFrustumBoundingSphere.Radius; float diameter = cameraViewFrustumBoundingSphere.Radius * 2.0f; Matrix.CreateOrthographic(diameter, diameter, lightNearPlaneDistance, lightFarPlaneDistance, out projectionTransform); //Vector3 cameraViewFrustumCentroid = camera.ViewFrustum.GetCentroid(); //position = cameraViewFrustumCentroid - (Direction * (camera.FarPlaneDistance - camera.NearPlaneDistance)); //viewTransform = Matrix.CreateLookAt(position, cameraViewFrustumCentroid, Up); //Vector3[] cameraViewFrustumCornersWS = camera.ViewFrustum.GetCorners(); //Vector3[] cameraViewFrustumCornersLS = new Vector3[8]; //Vector3.Transform(cameraViewFrustumCornersWS, ref viewTransform, cameraViewFrustumCornersLS); //Vector3 min = cameraViewFrustumCornersLS[0]; //Vector3 max = cameraViewFrustumCornersLS[0]; //for (int i = 1; i < 8; i++) //{ // min = Vector3.Min(min, cameraViewFrustumCornersLS[i]); // max = Vector3.Max(max, cameraViewFrustumCornersLS[i]); //} //// Clamp to nearest texel //float texelSize = 1.0f / Renderer.ShadowMapSize; //min.X -= min.X % texelSize; //min.Y -= min.Y % texelSize; //min.Z -= min.Z % texelSize; //max.X -= max.X % texelSize; //max.Y -= max.Y % texelSize; //max.Z -= max.Z % texelSize; //// We just use an orthographic projection matrix. The sun is so far away that it's rays are essentially parallel. //Matrix.CreateOrthographicOffCenter(min.X, max.X, min.Y, max.Y, -max.Z, -min.Z, out projectionTransform); } And here's the relevant part of the shader: if (CastShadows) { float4 positionLightCS = mul(float4(position, 1.0f), LightViewProj); float2 texCoord = clipSpaceToScreen(positionLightCS) + 0.5f / ShadowMapSize; float shadowMapDepth = tex2D(ShadowMapSampler, texCoord).r; float distanceToLight = length(LightPosition - position); float bias = 0.2f; if (shadowMapDepth < (distanceToLight - bias)) { return float4(0.0f, 0.0f, 0.0f, 0.0f); } } The shimmer is slightly better if I drastically reduce the view volume but I think that's mostly just because the texels become smaller and it's harder to notice them flickering back and forth. I'd appreciate any insight, I'd very much like to understand what's going on before I try other techniques.

    Read the article

  • What is a legal way to use music from registered authors in a game?

    - by mm24
    I have recently asked a question about music in games like Guitar Hero. I have found that that in Europe (at least) if I do want to use a track composed by a musician member of a royalty collecting society I need to pay a flat fee to the society and not only to the member. So a "one-to-one" agreement is not valid and the society can come up to me and ask me for money for each download. Even if for FREE! This is a fee sheet list of the UK agency: for fee, see "Permanent download services" It is about 1,200 GBP for less than 22,000 copies and they DON'T specify anything more and they said me on the phone that I need to wait and see how many downloads I get before knowing the price. This is kind of crazy as If I give away the App for free I will have to PAY 1,200 GBP!! I am shocked and I feel very bad. One agency suggested me to use a fake name of the artist, but in this way is not fair to my collaborators as what they hope is that the App gets lots of downloads and in this way that other people will get to know about them and hopefully commission them more work. The other solution is to work only with non registered musicians. The question here to you is: Has anyone found a legal way to use music from registered authors in a game?

    Read the article

  • Texturing a mesh generated from voxel data

    - by Minja
    I have implemented the Marching Cubes algorithm to display an isosurface based on voxel data. Currently, it is displayed with triplanar texturing. I'm working with unity, so I have a material with the triplanar shader attached. Now, the whole isosurface is rendered using this material. And thats my problem: I want the texture to represent the voxel data. I'm storing a material value for every point in the grid, and based on this value, I want the texture of the isosurface to change. Sadly, I have no clue how to do this. So if the voxel is sand, I want sand to be displayed; if it's stone, then there should be stone. Right now, everything is displayed as sand. Thanks in advance!

    Read the article

  • Can't click on a button with startDrag() active on stage

    - by Pedro
    I need to know how can I enable mouse click on a button when I have a MouseEvent listener for the stage. I have a MClip associated with the mouse cursor: Mouse.hide(); scope.startDrag(true); And an MouseEnvet on the stage: stage.addEventListener(MouseEvent.CLICK, FunctionXYZ); When I try to click on any button they don't assume the function that I create for those buttons... for example, button for fullscreen, exit, help, etc... Thank you very much. BR, Pedro

    Read the article

  • Sprites as Actors

    - by Scán
    Hello, I'm not experienced in GameDev questions, but as a programmer. In the language Scala, you can have scalable multi-tasking with Actors, very stable, as I hear. You can even habe hundreds of thousands of them running at once without a problem. So I thought, maybe you can use these as a base class for 2D-Sprites, to break out of the game-loop thing that requires to go through all the sprites and move them. They'd basically move themselves, event-driven. Would that make sense for a game? Having it multitasked like that? After all, it will run on the JVM, though that should not be much of a problem nowadays.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • CSM DX11 issues

    - by KaiserJohaan
    I got CSM to work in OpenGL, and now Im trying to do the same in directx. I'm using the same math library and all and I'm pretty much using the alghorithm straight off. I am using right-handed, column major matrices from GLM. The light is looking (-1, -1, -1). The problem I have is twofolds; For some reason, the ground floor is causing alot of (false) shadow artifacts, like the vast shadowed area you see. I confirmed this when I disabled the ground for the depth pass, but thats a hack more than anything else The shadows are inverted compared to the shadowmap. If you squint you can see the chairs shadows should be mirrored instead. This is the first cascade shadow map, in range of the alien and the chair: I can't figure out why this is. This is the depth pass: for (uint32_t cascadeIndex = 0; cascadeIndex < NUM_SHADOWMAP_CASCADES; cascadeIndex++) { mShadowmap.BindDepthView(context, cascadeIndex); CameraFrustrum cameraFrustrum = CalculateCameraFrustrum(degreesFOV, aspectRatio, nearDistArr[cascadeIndex], farDistArr[cascadeIndex], cameraViewMatrix); lightVPMatrices[cascadeIndex] = CreateDirLightVPMatrix(cameraFrustrum, lightDir); mVertexTransformPass.RenderMeshes(context, renderQueue, meshes, lightVPMatrices[cascadeIndex]); lightVPMatrices[cascadeIndex] = gBiasMatrix * lightVPMatrices[cascadeIndex]; farDistArr[cascadeIndex] = -farDistArr[cascadeIndex]; } CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix) { CameraFrustrum ret = { Vec4(1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, -halfExtents.y, halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; } And this is the pixel shader used for the lighting stage: #define DEPTH_BIAS 0.0005 #define NUM_CASCADES 4 cbuffer DirectionalLightConstants : register(CBUFFER_REGISTER_PIXEL) { float4x4 gSplitVPMatrices[NUM_CASCADES]; float4x4 gCameraViewMatrix; float4 gSplitDistances; float4 gLightColor; float4 gLightDirection; }; Texture2D gPositionTexture : register(TEXTURE_REGISTER_POSITION); Texture2D gDiffuseTexture : register(TEXTURE_REGISTER_DIFFUSE); Texture2D gNormalTexture : register(TEXTURE_REGISTER_NORMAL); Texture2DArray gShadowmap : register(TEXTURE_REGISTER_DEPTH); SamplerComparisonState gShadowmapSampler : register(SAMPLER_REGISTER_DEPTH); float4 ps_main(float4 position : SV_Position) : SV_Target0 { float4 worldPos = gPositionTexture[uint2(position.xy)]; float4 diffuse = gDiffuseTexture[uint2(position.xy)]; float4 normal = gNormalTexture[uint2(position.xy)]; float4 camPos = mul(gCameraViewMatrix, worldPos); uint index = 3; if (camPos.z > gSplitDistances.x) index = 0; else if (camPos.z > gSplitDistances.y) index = 1; else if (camPos.z > gSplitDistances.z) index = 2; float3 projCoords = (float3)mul(gSplitVPMatrices[index], worldPos); float viewDepth = projCoords.z - DEPTH_BIAS; projCoords.z = float(index); float visibilty = gShadowmap.SampleCmpLevelZero(gShadowmapSampler, projCoords, viewDepth); float angleNormal = clamp(dot(normal, gLightDirection), 0, 1); return visibilty * diffuse * angleNormal * gLightColor; } As you can see I am using depth bias and a bias matrix. Any hints on why this behaves so wierdly?

    Read the article

< Previous Page | 550 551 552 553 554 555 556 557 558 559 560 561  | Next Page >