Search Results

Search found 3370 results on 135 pages for 'attack vector'.

Page 69/135 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • spinning a 2d Cube

    - by Rahul Verma
    I know that a cube is actually a 3d shape , but i have some other problem over here. I have been doing 2D Game dev using libgdx but have never touched 3D rendering. Now what I want in my 2D game is that instead of coins I make my player collect magical cubes. But those cubes need to be spinning on one Diagonal, same can be seen in popular game Vector. Here is a screenshot. Can someone explaing the mathematics of such an animation

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    I'm currently calculating the normal vector of a polygon using this code, but for some faces here and there it calculates a wrong normal. I don't really know what's going on or where it fails but its not reliable. Do you have any polygon normal calculation that's tested and found to be reliable? // calculate normal of a polygon using all points var n:int = points.length; var x:Number = 0; var y:Number = 0; var z:Number = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // turn large values into a unit vector if (length != 0){ x = x / length; y = y / length; z = z / length; }else { throw new Error("Cannot calculate normal since triangle has an area of 0"); }

    Read the article

  • Generating geometry when using VBO

    - by onedayitwillmake
    Currently I am working on a project in which I generate geometry based on the players movement. A glorified very long trail, composed of quads. I am doing this by storing a STD::Vector, and removing the oldest verticies once enough exist, and then calling glDrawArrays. I am interested in switching to a shader based model, usually examples I see the VBO is generated at start and then that's basically it. What is the best route to go about creating geometry in real time, using shader / VBO approach

    Read the article

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • box2d resize bodies arround point

    - by philipp
    I have a compound object, consisting of a b2Body, vector-graphics and a list polygons which describe the b2body's shapes. This object has its own transformation matrix to centralize the storage of transformations. So far everything is working quiet fine, even scaling works, but not if i scale around a point. In the initialization phase of the object it is scaled around a point. This happens in this order: transform the main matrix transform the vector graphics and the polygons recreate the b2Body After this function ran, the shapes and all the graphics are exactly where they should be, BUT: after the first steps of the b2World the graphical stuff moves away from the body. When I ran the debugger I found out that the position of the body is 0/0 the red dot shows the center of scaling. the first image shows the basic setup and the second the final position of the graphics. This distance stays constant for the rest of the simulation. If I set the position via myBody.SetPosition( sx, sy ); the whole scenario just plays a bit more distant for the origin. Any Idea how to fix this? EDIT:: I came deeper down to the problem and it lies in the fact that i must not scale the transform matrix for the b2body shapes around the center, but set the b2body's position back to the point after scaling. But how can I calculate that point? EDIT 2 :: I came ever deeper down to it, even solved it, but this is a slow solution and i hope that there is somebody who understands what formula I need. assuming to have a set polygons relative to an origin as basis shapes for a b2body: scaling the whole object around a certain point is done in the following steps: i scale everything around the center except the polygons i create a clone of the polygons matrix i scale this clone around the point i calculate dx, dy as difference of clone.tx - original.tx and clone.ty - original.ty i scale the original polygon matrix NOT around the point i recreate the body i create the fixture i set the position of the body to dx and dy done! So what i an interested in is a formula for dx and dy without cloning matrices, scaling the clone around a point, getting dx and dy and finally scale the vertex matrix.

    Read the article

  • Simplifying C++11 optimal parameter passing when a copy is needed

    - by Mr.C64
    It seems to me that in C++11 lots of attention was made to simplify returning values from functions and methods, i.e.: with move semantics it's possible to simply return heavy-to-copy but cheap-to-move values (while in C++98/03 the general guideline was to use output parameters via non-const references or pointers), e.g.: // C++11 style vector<string> MakeAVeryBigStringList(); // C++98/03 style void MakeAVeryBigStringList(vector<string>& result); On the other side, it seems to me that more work should be done on input parameter passing, in particular when a copy of an input parameter is needed, e.g. in constructors and setters. My understanding is that the best technique in this case is to use templates and std::forward<>, e.g. (following the pattern of this answer on C++11 optimal parameter passing): class Person { std::string m_name; public: template <class T, class = typename std::enable_if < std::is_constructible<std::string, T>::value >::type> explicit Person(T&& name) : m_name(std::forward<T>(name)) { } ... }; A similar code could be written for setters. Frankly, this code seems boilerplate and complex, and doesn't scale up well when there are more parameters (e.g. if a surname attribute is added to the above class). Would it be possible to add a new feature to C++11 to simplify code like this (just like lambdas simplify C++98/03 code with functors in several cases)? I was thinking of a syntax with some special character, like @ (since introducing a &&& in addition to && would be too much typing :) e.g.: class Person { std::string m_name; public: /* Simplified syntax to produce boilerplate code like this: template <class T, class = typename std::enable_if < std::is_constructible<std::string, T>::value >::type> */ explicit Person(std::string@ name) : m_name(name) // implicit std::forward as well { } ... }; This would be very convenient also for more complex cases involving more parameters, e.g. Person(std::string@ name, std::string@ surname) : m_name(name), m_surname(surname) { } Would it be possible to add a simplified convenient syntax like this in C++? What would be the downsides of such a syntax?

    Read the article

  • I need to move an entity to the mouse location after i rightclick

    - by I.Hristov
    Well I've read the related questions-answers but still cant find a way to move my champion to the mouse position after a right-button mouse-click. I use this code at the top: float speed = (float)1/3; And this is in my void Update: //check if right mouse button is clicked if (mouse.RightButton == ButtonState.Released && previousButtonState == ButtonState.Pressed) { // gets the position of the mouse in mousePosition mousePosition = new Vector2(mouse.X, mouse.Y); //gets the current position of champion (the drawRectangle) currentChampionPosition = new Vector2(drawRectangle.X, drawRectangle.Y); // move champion to mouse position: //handles the case when the mouse position is really close to current position if (Math.Abs(currentChampionPosition.X - mousePosition.X) <= speed && Math.Abs(currentChampionPosition.Y - mousePosition.Y) <= speed) { drawRectangle.X = (int)mousePosition.X; drawRectangle.Y = (int)mousePosition.Y; } else if (currentChampionPosition != mousePosition) { drawRectangle.X += (int)((mousePosition.X - currentChampionPosition.X) * speed); drawRectangle.Y += (int)((mousePosition.Y - currentChampionPosition.Y) * speed); } } previousButtonState = mouse.RightButton; What that code does at the moment is on a click it brings the sprite 1/3 of the distance to the mouse but only once. How do I make it move consistently all the time? It seems I am not updating the sprite at all. EDIT I added the Vector2 as Nick said and with speed changed to 50 it should be OK. I tried it with if ButtonState.Pressed and it works while pressing the button. Thanks. However I wanted it to start moving when single mouse clicked. It should be moving until reaches the mousePosition. The Edit of Nick's post says to create another Vector2, But I already have the one called mousePosition. Not sure how to use another one. //gets a Vector2 direction to move *by Nick Wilson Vector2 direction = mousePosition - currentChampionPosition; //make the direction vector a unit vector direction.Normalize(); //multiply with speed (number of pixels) direction *= speed; // move champion to mouse position if (currentChampionPosition != mousePosition) { drawRectangle.X += (int)(direction.X); drawRectangle.Y += (int)(direction.Y); } } previousButtonState = mouse.RightButton;

    Read the article

  • How to deal with Character body parts from Design to Cocos2d

    - by Edwin Soho
    I'm trying to figure out the pattern the game developers use together with game designers: See the picture below with the independent parts: Questions: 1) Should I create different image parts from different body parts or keep frame by frame animaton? (I know both can be used, but I'm trying to figure what is commonly used in the industry) 2) If I'm going to generate different image parts from different body parts (which is I thing is more logical) how would I export that to Cocos2d (Vector or Bitmap)?

    Read the article

  • determine collision angle on a rotating body

    - by jorb
    update: new diagram and updated description I have a contact listener set up to try and determine the side that a collision happened at relative to the a bodies rotation. One way to solve this is to find the value of the yellow angle between the red and blue vectors drawn above. The angle can be found by taking the arc cosine of the dot product of the two vectors (Evan pointed this out). One of my points of confusion is the difference in domain of the atan2 function html canvas coordinates and the Box2d rotation information. I know I have to account for this somehow... SS below questions: Does Box2D provide these angles more directly in the collision information? Am I even on the right track? If so, any hints? I have the following javascript so far: Ship.prototype.onCollide = function (other_ent,cx,cy) { var pos = this.body.GetPosition(); //collision position relative to body var d_cx = pos.x - cx; var d_cy = pos.y - cy; //length of initial vector var len = Math.sqrt(Math.pow(pos.x -cx,2) + Math.pow(pos.y-cy,2)); //body angle - can over rotate hence mod 2*Pi var ang = this.body.GetAngle() % (Math.PI * 2); //vector representing body's angle - same magnitude as the first var b_vx = len * Math.cos(ang); var b_vy = len * Math.sin(ang); //dot product of the two vectors var dot_prod = d_cx * b_vx + d_cy * b_vy; //new calculation of difference in angle - NOT WORKING! var d_ang = Math.acos(dot_prod); var side; if (Math.abs(d_ang) < Math.PI/2 ) side = "front"; else side = "back"; console.log("length",len); console.log("pos:",pos.x,pos.y); console.log("offs:",d_cx,d_cy); console.log("body vec",b_vx,b_vy); console.log("body angle:",ang); console.log("dot product",dot_prod); console.log("result:",d_ang); console.log("side",side); console.log("------------------------"); }

    Read the article

  • How does gluLookAt work?

    - by Chan
    From my understanding, gluLookAt( eye_x, eye_y, eye_z, center_x, center_y, center_z, up_x, up_y, up_z ); is equivalent to: glRotatef(B, 0.0, 0.0, 1.0); glRotatef(A, wx, wy, wz); glTranslatef(-eye_x, -eye_y, -eye_z); But when I print out the ModelView matrix, the call to glTranslatef() doesn't seem to work properly. Here is the code snippet: #include <stdlib.h> #include <stdio.h> #include <GL/glut.h> #include <iomanip> #include <iostream> #include <string> using namespace std; static const int Rx = 0; static const int Ry = 1; static const int Rz = 2; static const int Ux = 4; static const int Uy = 5; static const int Uz = 6; static const int Ax = 8; static const int Ay = 9; static const int Az = 10; static const int Tx = 12; static const int Ty = 13; static const int Tz = 14; void init() { glClearColor(0.0, 0.0, 0.0, 0.0); glEnable(GL_DEPTH_TEST); glShadeModel(GL_SMOOTH); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); GLfloat lmodel_ambient[] = { 0.8, 0.0, 0.0, 0.0 }; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient); } void displayModelviewMatrix(float MV[16]) { int SPACING = 12; cout << left; cout << "\tMODELVIEW MATRIX\n"; cout << "--------------------------------------------------" << endl; cout << setw(SPACING) << "R" << setw(SPACING) << "U" << setw(SPACING) << "A" << setw(SPACING) << "T" << endl; cout << "--------------------------------------------------" << endl; cout << setw(SPACING) << MV[Rx] << setw(SPACING) << MV[Ux] << setw(SPACING) << MV[Ax] << setw(SPACING) << MV[Tx] << endl; cout << setw(SPACING) << MV[Ry] << setw(SPACING) << MV[Uy] << setw(SPACING) << MV[Ay] << setw(SPACING) << MV[Ty] << endl; cout << setw(SPACING) << MV[Rz] << setw(SPACING) << MV[Uz] << setw(SPACING) << MV[Az] << setw(SPACING) << MV[Tz] << endl; cout << setw(SPACING) << MV[3] << setw(SPACING) << MV[7] << setw(SPACING) << MV[11] << setw(SPACING) << MV[15] << endl; cout << "--------------------------------------------------" << endl; cout << endl; } void reshape(int w, int h) { float ratio = static_cast<float>(w)/h; glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, ratio, 1.0, 425.0); } void draw() { float m[16]; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glGetFloatv(GL_MODELVIEW_MATRIX, m); gluLookAt( 300.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f ); glColor3f(1.0, 0.0, 0.0); glutSolidCube(100.0); glGetFloatv(GL_MODELVIEW_MATRIX, m); displayModelviewMatrix(m); glutSwapBuffers(); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); glutInitWindowSize(400, 400); glutInitWindowPosition(100, 100); glutCreateWindow("Demo"); glutReshapeFunc(reshape); glutDisplayFunc(draw); init(); glutMainLoop(); return 0; } No matter what value I use for the eye vector: 300, 0, 0 or 0, 300, 0 or 0, 0, 300 the translation vector is the same, which doesn't make any sense because the order of code is in backward order so glTranslatef should run first, then the 2 rotations. Plus, the rotation matrix, is completely independent of the translation column (in the ModelView matrix), then what would cause this weird behavior? Here is the output with the eye vector is (0.0f, 300.0f, 0.0f) MODELVIEW MATRIX -------------------------------------------------- R U A T -------------------------------------------------- 0 0 0 0 0 0 0 0 0 1 0 -300 0 0 0 1 -------------------------------------------------- I would expect the T column to be (0, -300, 0)! So could anyone help me explain this? The implementation of gluLookAt from http://www.mesa3d.org void GLAPIENTRY gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz) { float forward[3], side[3], up[3]; GLfloat m[4][4]; forward[0] = centerx - eyex; forward[1] = centery - eyey; forward[2] = centerz - eyez; up[0] = upx; up[1] = upy; up[2] = upz; normalize(forward); /* Side = forward x up */ cross(forward, up, side); normalize(side); /* Recompute up as: up = side x forward */ cross(side, forward, up); __gluMakeIdentityf(&m[0][0]); m[0][0] = side[0]; m[1][0] = side[1]; m[2][0] = side[2]; m[0][1] = up[0]; m[1][1] = up[1]; m[2][1] = up[2]; m[0][2] = -forward[0]; m[1][2] = -forward[1]; m[2][2] = -forward[2]; glMultMatrixf(&m[0][0]); glTranslated(-eyex, -eyey, -eyez); }

    Read the article

  • How to implement explosion in OpenGL?

    - by Chan
    I'm relatively new to OpenGL and I'm clueless how to implement explosion. So could anyone give me some ideas how to start? Suppose the explosion occurs at location $(x, y, z)$, then I'm thinking of randomly generate a collection of vectors with $(x, y, z)$ as origin, then draw some particle (glutSolidCube) which move along this vector for some period of time, says after 1000 updates, it disappear. Is this approach feasible? A minimal example would be greatly appreciated.

    Read the article

  • SIMD Extensions for the Database Storage Engine

    - by jchang
    For the last 15 years, Intel and AMD have been progressively adding special purpose extensions to their processor architectures. The extensions mostly pertain to vector operations with Single Instruction, Multiple Data (SIMD) concept. The reasoning was that achieving significant performance improvement over each successive generation for the general purpose elements had become extraordinarily difficult. On the other hand, SIMD performance could be significantly improved with special purpose registers...(read more)

    Read the article

  • How to implement explosion in OpenGL with a particle effect?

    - by Chan
    I'm relatively new to OpenGL and I'm clueless how to implement explosion. So could anyone give me some ideas how to start? Suppose the explosion occurs at location $(x, y, z)$, then I'm thinking of randomly generate a collection of vectors with $(x, y, z)$ as origin, then draw some particle (glutSolidCube) which move along this vector for some period of time, says after 1000 updates, it disappear. Is this approach feasible? A minimal example would be greatly appreciated.

    Read the article

  • Drawing a texture at the end of a trace (crosshair?) UDK

    - by Dave Voyles
    I'm trying to draw a crosshair at the end of my trace. If my crosshair does not hit a pawn or static mesh (ex, just a skybox) then the crosshair stays locked on a certain point at that actor - I want to say its origin. Ex: Run across a pawn, then it turns yellow and stays on that pawn. If it runs across the skybox, then it stays at one point on the box. Weird? How can I get my crosshair to stay consistent? I've included two images for reference, to help illustrate. Note: The wrench is actually my crosshair. The "X" is just a debug crosshair. Ignore that. /// Image 1 /// /// Image 2 /// /*************************************************************************** * Draws the crosshair ***************************************************************************/ function bool CheckCrosshairOnFriendly() { local float CrosshairSize; local vector HitLocation, HitNormal, StartTrace, EndTrace, ScreenPos; local actor HitActor; local MyWeapon W; local Pawn MyPawnOwner; /** Sets the PawnOwner */ MyPawnOwner = Pawn(PlayerOwner.ViewTarget); /** Sets the Weapon */ W = MyWeapon(MyPawnOwner.Weapon); /** If we don't have an owner, then get out of the function */ if ( MyPawnOwner == None ) { return false; } /** If we have a weapon... */ if ( W != None) { /** Values for the trace */ StartTrace = W.InstantFireStartTrace(); EndTrace = StartTrace + W.MaxRange() * vector(PlayerOwner.Rotation); HitActor = MyPawnOwner.Trace(HitLocation, HitNormal, EndTrace, StartTrace, true, vect(0,0,0),, TRACEFLAG_Bullet); DrawDebugLine(StartTrace, EndTrace, 100,100,100,); /** Projection for the crosshair to convert 3d coords into 2d */ ScreenPos = Canvas.Project(HitLocation); /** If we haven't hit any actors... */ if ( Pawn(HitActor) == None ) { HitActor = (HitActor == None) ? None : Pawn(HitActor.Base); } } /** If our trace hits a pawn... */ if ((Pawn(HitActor) == None)) { /** Draws the crosshair for no one - Grey*/ CrosshairSize = 28 * (Canvas.ClipY / 768) * (Canvas.ClipX /1024); Canvas.SetDrawColor(100,100,128,255); Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f), ScreenPos.Y -(CrosshairSize * 0.5f)); Canvas.DrawTile(class'UTHUD'.default.AltHudTexture, CrosshairSize, CrosshairSize, 600, 262, 28, 27); return false; } /** Draws the crosshair for friendlies - Yellow */ CrosshairSize = 28 * (Canvas.ClipY / 768) * (Canvas.ClipX /1024); Canvas.SetDrawColor(255,255,128,255); Canvas.SetPos(ScreenPos.X - (CrosshairSize * 0.5f), ScreenPos.Y -(CrosshairSize * 0.5f)); Canvas.DrawTile(class'UTHUD'.default.AltHudTexture, CrosshairSize, CrosshairSize, 600, 262, 28, 27); return true; }

    Read the article

  • Pathfinding for fleeing

    - by Philipp
    As you know there are plenty of solutions when you wand to find the best path in a 2-dimensional environment which leads from point A to point B. But how do I calculate a path when an object is at point A, and wants to get away from point B, as fast and far as possible? A bit of background information: My game uses a 2d environment which isn't tile-based but has floating point accuracy. The movement is vector-based. The pathfinding is done by partitioning the game world into rectangles which are walkable or non-walkable and building a graph out of their corners. I already have pathfinding between points working by using Dijkstras algorithm. The use-case for the fleeing algorithm is that in certain situations, actors in my game should perceive another actor as a danger and flee from it. The trivial solution would be to just move the actor in a vector in the direction which is opposite from the threat until a "safe" distance was reached or the actor reaches a wall where it then covers in fear. The problem with this approach is that actors will be blocked by small obstacles they could easily get around. As long as moving along the wall wouldn't bring them closer to the threat they could do that, but it would look smarter when they would avoid obstacles in the first place: Another problem I see is with dead ends in the map geometry. In some situations a being must choose between a path which gets it faster away now but ends in a dead end where it would be trapped, or another path which would mean that it wouldn't get that far away from the danger at first (or even a bit closer) but on the other hand would have a much greater long-term reward in that it would eventually get them much further away. So the short-term reward of getting away fast must be somehow valued against the long-term reward of getting away far. There is also another rating problem for situations where an actor should accept to move closer to a minor threat to get away from a much larger threat. But completely ignoring all minor threats would be foolish, too (that's why the actor in this graphic goes out of its way to avoid the minor threat in the upper right area): Are there any standard solutions for this problem?

    Read the article

  • Build a view frustum from angles

    - by MulletDevil
    I have 4 angles, left, right, top & bottom. These angles are in degrees. They define the angle between the forward vector and the corresponding side. I am trying to use these to calculate the required values for Perseective Off Centre function found here http://docs.unity3d.com/Documentation/ScriptReference/Camera-projectionMatrix.html I tried doing (near plane-far plane) * Tan(angle) But that didn't give the correct results.

    Read the article

  • Best C++ containers for UI in Games.

    - by Vijayendra
    I am writing some UI stuff for my games in C++. Basically its a very common problem, but I dont know the best answer yet. Suppose inside my UI Library I have a view class which renders 2D/3D scene. This view can contain many subviews. I needs a container which allows me to iterate over these views fast and also insert/delete subviews. I am not sure which container is best for the job - list, vector or something else?

    Read the article

  • Create a kind of Interface c++ [migrated]

    - by Liuka
    I'm writing a little 2d rendering framework with managers for input and resources like textures and meshes (for 2d geometry models, like quads) and they are all contained in a class "engine" that interacts with them and with a directX class. So each class have some public methods like init or update. They are called by the engine class to render the resources, create them, but a lot of them should not be called by the user: //in pseudo c++ //the textures manager class class TManager { private: vector textures; .... public: init(); update(); renderTexture(); //called by the "engine class" loadtexture(); gettexture(); //called by the user } class Engine { private: Tmanager texManager; public: Init() { //initialize all the managers } Render(){...} Update(){...} Tmanager* GetTManager(){return &texManager;} //to get a pointer to the manager //if i want to create or get textures } In this way the user, calling Engine::GetTmanager will have access to all the public methods of Tmanager, including init update and rendertexture, that must be called only by Engine inside its init, render and update functions. So, is it a good idea to implement a user interface in the following way? //in pseudo c++ //the textures manager class class TManager { private: vector textures; .... public: init(); update(); renderTexture(); //called by the "engine class" friend class Tmanager_UserInterface; operator Tmanager_UserInterface*(){return reinterpret_cast<Tmanager_UserInterface*>(this)} } class Tmanager_UserInterface : private Tmanager { //delete constructor //in this class there will be only methods like: loadtexture(); gettexture(); } class Engine { private: Tmanager texManager; public: Init() Render() Update() Tmanager_UserInterface* GetTManager(){return texManager;} } //in main function //i need to load a texture //i always have access to Engine class engine-GetTmanger()-LoadTexture(...) //i can just access load and get texture; In this way i can implement several interface for each object, keeping visible only the functions i (and the user) will need. There are better ways to do the same?? Or is it just useless(i dont hide the "framework private functions" and the user will learn to dont call them)? Before i have used this method: class manager { public: //engine functions userfunction(); } class engine { private: manager m; public: init(){//call manager init function} manageruserfunciton() { //call manager::userfunction() } } in this way i have no access to the manager class but it's a bad way because if i add a new feature to the manager i need to add a new method in the engine class and it takes a lot of time. sorry for the bad english.

    Read the article

  • Getting Started with Inkscape

    <b>MakeTechEasier:</b> "Inkscape is a powerful free vector drawing program for Windows, Linux, and Mac, and this guide will get you started with using it to create your own smooth, colorful, scalable graphics."

    Read the article

  • SIMD Extensions for the Database Storage Engine

    - by jchang
    For the last 15 years, Intel and AMD have been progressively adding special purpose extensions to their processor architectures. The extensions mostly pertain to vector operations with Single Instruction, Multiple Data (SIMD) concept. The motivation was that achieving significant performance improvement over each successive generation for the general purpose elements had become extraordinarily difficult. On the other hand, SIMD performance could be significantly improved with special purpose registers...(read more)

    Read the article

  • Pseudo-magnet implementation with chipmunk

    - by Eimantas
    How should I go about implementing "natural" magnet on a certain body in chipmunk space? Context is of simple bodies lying in the space (think chessboard). When one of the figures is activated as a magnet - others should start moving towards it. Currently I'm applying force (cpBodyApplyForce)to the other figures with vector calculated towards the activated figure. However this doesn't really feel "natural". Are there any known algorithms for imitating magnets?

    Read the article

  • Easy road from DisplayObject to Molehill?

    - by Bart van Heukelom
    I have a finished Flash game which is rendered using the built-in display tree, i.e. Bitmaps contained in Sprites (and a text here and there, few vector graphics, and one bitmap-filled shape). For extra performance, I'd like it to use Molehill for rendering, but that's not possible out of the box. What's the easiest way to make this game use Molehill when available, but fall back to the current method if it's not available?

    Read the article

  • Problem creating levels using inherited classes/polymorphism

    - by Adam
    I'm trying to write my level classes by having a base class that each level class inherits from...The base class uses pure virtual functions. My base class is only going to be used as a vector that'll have the inherited level classes pushed onto it...This is what my code looks like at the moment, I've tried various things and get the same result (segmentation fault). //level.h class Level { protected: Mix_Music *music; SDL_Surface *background; SDL_Surface *background2; vector<Enemy> enemy; bool loaded; int time; public: Level(); virtual ~Level(); int bgX, bgY; int bg2X, bg2Y; int width, height; virtual void load(); virtual void unload(); virtual void update(); virtual void draw(); }; //level.cpp Level::Level() { bgX = 0; bgY = 0; bg2X = 0; bg2Y = 0; width = 2048; height = 480; loaded = false; time = 0; } Level::~Level() { } //virtual functions are empty... I'm not sure exactly what I'm supposed to include in the inherited class structure, but this is what I have at the moment... //level1.h class Level1: public Level { public: Level1(); ~Level1(); void load(); void unload(); void update(); void draw(); }; //level1.cpp Level1::Level1() { } Level1::~Level1() { enemy.clear(); Mix_FreeMusic(music); SDL_FreeSurface(background); SDL_FreeSurface(background2); music = NULL; background = NULL; background2 = NULL; Mix_CloseAudio(); } void Level1::load() { music = Mix_LoadMUS("music/song1.xm"); background = loadImage("image/background.png"); background2 = loadImage("image/background2.png"); Mix_OpenAudio(48000, MIX_DEFAULT_FORMAT, 2, 4096); Mix_PlayMusic(music, -1); } void Level1::unload() { } //functions have level-specific code in them... Right now for testing purposes, I just have the main loop call Level1 level1; and use the functions, but when I run the game I get a segmentation fault. This is the first time I've tried writing inherited classes, so I know I'm doing something wrong, but I can't seem to figure out what exactly.

    Read the article

  • How to calculate continuous motion with angular velocity in 2d

    - by Rulk
    I'm really new with physics. Maybe someone would be able to help me to solve the next problem: I need to calculate position of an agent on the plane(2D) in next time step where time step is large(20+ seconds) What I know about agent's motion: Initial Position Direction(normalised vector) Velocity(linear function from time ) - object always moves along it's direction Angular Velocity(linear function from time) Optional: External force direction External force (linear function from time) Running discreet simulation with t-0 is not an option.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >